1
|
Choi W, Sun H, Battistella C, Berger O, Vratsanos MA, Wang MM, Gianneschi NC. Biomolecular Densely Grafted Brush Polymers: Oligonucleotides, Oligosaccharides and Oligopeptides. Angew Chem Int Ed Engl 2020; 59:19762-19772. [PMID: 32436259 PMCID: PMC11042487 DOI: 10.1002/anie.202005379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 01/19/2023]
Abstract
In this Minireview, we describe synthetic polymers densely functionalized with sequence-defined biomolecular sidechains. We focus on synthetic brush polymers of oligonucleotides, oligosaccharides, and oligopeptides, prepared via graft-through polymerization from biomolecule functionalized monomers. The resulting structures are brush polymers wherein a biomolecular graft is positioned at each monomer backbone unit. We describe key synthetic milestones, identify synthetic opportunities, and highlight recent advances in the field, including biological applications.
Collapse
Affiliation(s)
- Wonmin Choi
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Hao Sun
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Claudia Battistella
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Or Berger
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Maria A. Vratsanos
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Max M. Wang
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Nathan C. Gianneschi
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| |
Collapse
|
2
|
Choi W, Sun H, Battistella C, Berger O, Vratsanos MA, Wang MM, Gianneschi NC. Biomolecular Densely Grafted Brush Polymers: Oligonucleotides, Oligosaccharides and Oligopeptides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wonmin Choi
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Hao Sun
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Claudia Battistella
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Or Berger
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Maria A. Vratsanos
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Max M. Wang
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Nathan C. Gianneschi
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| |
Collapse
|
3
|
Affiliation(s)
- Azis Adharis
- Macromolecular Chemistry and New Polymeric MaterialsZernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric MaterialsZernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
5
|
Hadjicharalambous C, Flouraki C, Narain R, Chatzinikolaidou M, Vamvakaki M. Controlling pre-osteoblastic cell adhesion and spreading on glycopolymer brushes of variable film thickness. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:98. [PMID: 29946888 DOI: 10.1007/s10856-018-6112-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Controlling the cell behavior on biocompatible polymer surfaces is critical for the development of suitable medical implant coatings as well as in anti-adhesive applications. Synthetic glycopolymer brushes, based on sugar methacrylate monomers have been reported as robust surfaces to resist protein adsorption and cell adhesion. In this study, poly(D-gluconamidoethyl methacrylate) (PGAMA) brushes of various chain lengths were synthesized directly from initiator functionalized glass substrates using surface-initiated atom transfer radical polymerization. The glycopolymer film thicknesses were determined by ellipsometry, whereas the wettability and the morphology of the surfaces were characterized by static water contact angle measurements and atomic force microscopy, respectively. Stable, grafted films with thicknesses in the dry state between 4 and 20 nm and of low roughness (~1 nm) were obtained by varying the polymerization time. Cell experiments with MC3T3-E1 pre-osteoblasts cultured on the PGAMA brushes were performed to examine the effect of film thickness on the cell morphology, cytoskeleton organization and growth. The results revealed good cell spreading and proliferation on PGAMA layers of low film thickness, whereas cell adhesion was prevented on polymer films with thickness higher than ~10 nm, indicating their potential use in medical implants and anti-adhesive surfaces, respectively.
Collapse
Affiliation(s)
- Chrystalleni Hadjicharalambous
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Chara Flouraki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Alberta, Canada
| | - Maria Chatzinikolaidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece.
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece.
| |
Collapse
|
6
|
Ikeda T. Glycidyl Triazolyl Polymers: Poly(ethylene glycol) Derivatives Functionalized by Azide-Alkyne Cycloaddition Reaction. Macromol Rapid Commun 2018. [PMID: 29528171 DOI: 10.1002/marc.201700825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glycidyl triazolyl polymer (GTP), which is the product of the Huisgen dipolar cycloaddition reaction between glycidyl azide polymer and alkyne derivatives, is featured here. GTP is the multifunctionalized poly(ethylene glycol) (PEG). The drawback of PEG is that linear PEG has the functional group only at both ends. The low loading capability of the functional groups limits the possibilities of PEG applications. GTP facilitates the synthesis of multifunctionalized PEG derivatives. In this article, 74 examples of GTP homopolymers and copolymers are introduced. The synthetic protocols and work-up processes of GTP are summarized. In addition, application studies are reviewed: for example, stimuli-responsive and self-healing materials, materials for electrical memory devices, ion-conductive materials, and biomedical materials. Finally, some issues on GTP synthesis and future directions for GTP-based polymer materials are proposed.
Collapse
Affiliation(s)
- Taichi Ikeda
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|