1
|
Ou X, Pan J, Liu Q, Niu Y, Zhou Y, Yan F. High-Toughness CO 2-Sourced Ionic Polyurea Adhesives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312906. [PMID: 38207115 DOI: 10.1002/adma.202312906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/24/2023] [Indexed: 01/13/2024]
Abstract
Polyurea (PUa) adhesives are renowned for their exceptional adhesion to diverse substrates even in harsh environments. However, the presence of quadruple bidentate intermolecular hydrogen bonds in the polymer chains creates a trade-off between cohesive energy and interfacial adhesive energy. To overcome this challenge, a series of CO2-sourced ionic PUa adhesives with ultratough adhesion to various substrates are developed. The incorporated ionic segments within the adhesive serve to partially mitigate the intermolecular hydrogen bonding interactions while conferring unique electrostatic interactions, leading to both high cohesive energy and interfacial adhesive energy. The maximum adhesive strength of 10.9 MPa can be attained by ionizing the CO2-sourced PUa using bromopropane and subsequently exchanging the anion with lithium bis(trifluoromethylsulfonyl)imide. Additionally, these ionic PUa adhesives demonstrate several desirable properties such as low-temperature stability (-80 °C), resistance to organic solvents and water, high flame retardancy, antibacterial activity, and UV-fluorescence, thereby expanding their potential applications. This study presents a general and effective approach for designing high-strength adhesives suitable for a wide array of uses.
Collapse
Affiliation(s)
- Xu Ou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ji Pan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qinbo Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yajuan Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yingjie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Mulk WU, Ali SA, Shah SN, Shah MUH, Zhang QJ, Younas M, Fatehizadeh A, Sheikh M, Rezakazemi M. Breaking boundaries in CO2 capture: Ionic liquid-based membrane separation for post-combustion applications. J CO2 UTIL 2023; 75:102555. [DOI: 10.1016/j.jcou.2023.102555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
|
3
|
Hu H, Wang B, Chen B, Deng X, Gao G. Swellable poly(ionic liquid)s: Synthesis, structure-property relationships and applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Zunita M, Hastuti R, Alamsyah A, Kadja GT, Khoiruddin K, Kurnia KA, Yuliarto B, Wenten I. Polyionic liquid membrane: Recent development and perspective. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Liu C, Raza F, Qian H, Tian X. Recent advances in poly(ionic liquid)s for biomedical application. Biomater Sci 2022; 10:2524-2539. [PMID: 35411889 DOI: 10.1039/d2bm00046f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Poly(ionic liquid)s (PILs) are polymers containing ions in their side-chain or backbone, and the designability and outstanding physicochemical properties of PILs have attracted widespread attention from researchers. PILs have specific characteristics, including negligible vapor pressure, high thermal and chemical stability, non-flammability, and self-assembly capabilities. PILs can be well combined with advanced analytical instruments and technology and have made outstanding contributions to the development of biomedicine aiding in the continuous advancement of science and technology. Here we reviewed the advances of PILs in the biomedical field in the past five years with a focus on applications in proteomics, drug delivery, and development. This paper aims to engage pharmaceutical and biomedical scientists to full understand PILs and accelerate the progress from laboratory research to industrialization.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
6
|
Meng H, Ruirui K, Juanjuan C. Graphene Oxide/Polylactic Acid Microbubbles for Efficient Removal of Lead Ions from Aqueous Solutio. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2022. [DOI: 10.37015/audt.2022.210030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
7
|
Zhang J, Zhong T, Xiang Y, Zhang X, Feng X. Microfibrillated cellulose reinforced poly(vinyl imidazole) cryogels for continuous removal of heavy metals. J Appl Polym Sci 2021. [DOI: 10.1002/app.51456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinmeng Zhang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Tianyi Zhong
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Yun Xiang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Xufeng Zhang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Xiyun Feng
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| |
Collapse
|
8
|
Chen B, Wang M, Wang X, Zhao Q, Wang Y, Gao G. Poly(ionic liquid)s with superior swelling and enrichment properties in solvents. Polym Chem 2021. [DOI: 10.1039/d1py00377a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molar swelling ratio and enrichment factor of poly(ionic liquid)s were linearly positively correlated with the Hansen solubility parameter of the solvent and the difference between the Hansen solubility parameters of mixed solvents, respectively.
Collapse
Affiliation(s)
- Bihua Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Man Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Xin Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Qi Zhao
- Shanxi Engineering Research Center of Biorefinery
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Yingxiong Wang
- Shanxi Engineering Research Center of Biorefinery
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Guohua Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|
9
|
García Rojas LM, Huerta-Aguilar CA, Tecuapa-Flores ED, Huerta-José DS, Thangarasu P, Sidhu JS, Singh N, de la Luz Corea Téllez M. Why ionic liquids coated ZnO nanocomposites emerging as environmental remediates: Enhanced photo-oxidation of 4-nitroaniline and encouraged antibacterial behavior. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
|
11
|
|
12
|
Wang A, Liu Z, Xu L, Lou N, Li M, Liu L. Controllable click synthesis of poly(ionic liquid)s by surfactant-free ionic liquid microemulsions for selective dyes reduction. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Yin B, Xu W, Liu C, Kong M, Lv Y, Huang Y, Yang Q, Li G. Synthesis of poly(ionic liquid) for trifunctional epoxy resin with simultaneously enhancing the toughness, thermal and dielectric performances. RSC Adv 2020; 10:2085-2095. [PMID: 35494607 PMCID: PMC9048971 DOI: 10.1039/c9ra10516f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
Poly(ionic liquid) (PIL), integrating the characteristics of both polymers and ionic liquid, is synthesized and employed to modify diglycidyl-4,5-epoxy-cyclohexane-1,2-dicarboxylate (TDE-85). With the addition of PIL, the fracture toughness, and thermal and dielectric performances of TDE-85 were discovered to be simultaneously improved, meanwhile the tensile modulus and strength is increased. Upon an optimal loading of 3 wt% PIL, the critical stress intensity factor (K IC), tensile modulus and strength are raised by 92.9%, 13.3% and 10.7%, respectively. Multi-toughening mechanisms due to spherical domains of PIL formed in TDE-85 during curing are responsible for the improved toughness. Moreover, the dielectric and thermal properties of TDE-85 are also enhanced by adding PIL. With the optimal addition of 5 wt% PIL, the dielectric constant of the composites is enhanced by 62.5%, the glass transition temperature is increased by 16.58 °C and the residual weight of carbon is increased by 59%.
Collapse
Affiliation(s)
- Bingyan Yin
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Wenqing Xu
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Chengjun Liu
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Miqiu Kong
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Yadong Lv
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Yajiang Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University Chengdu 610065 People's Republic of China
| | - Qi Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University Chengdu 610065 People's Republic of China
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University Chengdu 610065 People's Republic of China
| |
Collapse
|
14
|
Jääskeläinen S, Koshevoy IO, Suvanto S, Ryhänen T, Hirva P. Vinylimidazole coordination modes to Pt and Au metal centers. NEW J CHEM 2020. [DOI: 10.1039/d0nj00845a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Reaction conditions affect the coordination modes of vinylimidazole to platinum and gold.
Collapse
Affiliation(s)
- Sirpa Jääskeläinen
- Department of Chemistry
- University of Eastern Finland
- Fi-80101 Joensuu
- Finland
| | - Igor O. Koshevoy
- Department of Chemistry
- University of Eastern Finland
- Fi-80101 Joensuu
- Finland
| | - Sari Suvanto
- Department of Chemistry
- University of Eastern Finland
- Fi-80101 Joensuu
- Finland
| | - Tiina Ryhänen
- Department of Chemistry
- University of Eastern Finland
- Fi-80101 Joensuu
- Finland
| | - Pipsa Hirva
- Department of Chemistry
- University of Eastern Finland
- Fi-80101 Joensuu
- Finland
| |
Collapse
|
15
|
Trigo-López M, Vallejos S, Reglero Ruiz JA, Ramos C, Beltrán S, García FC, García JM. Fabrication of microporous PMMA using ionic liquids: An improved route to classical ScCO2 foaming process. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Sun Y, Ren YY, Li Q, Shi RW, Hu Y, Guo JN, Sun Z, Yan F. Conductive, Stretchable, and Self-healing Ionic Gel Based on Dynamic Covalent Bonds and Electrostatic Interaction. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2325-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Yan X, Anguille S, Bendahan M, Moulin P. Ionic liquids combined with membrane separation processes: A review. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.103] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Porous ionic liquid polymer: A reusable adsorbent with broad operating pH range for speciation of nitrate and nitrite. Sci Rep 2019; 9:11130. [PMID: 31366946 PMCID: PMC6668434 DOI: 10.1038/s41598-019-47648-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/22/2019] [Indexed: 11/08/2022] Open
Abstract
Ionic liquids (ILs) are a class of fluids with unique physicochemical properties employing polymeric substances emerging new materials. Solidification of ILs into porous materials generates porous ionic liquid polymers that combine the unique characteristics of ILs with common porous materials and polymers. In this study, it's the first time the porous ionic liquid polymer was chosen as a sorbent for extraction and speciation of nitrite and nitrate. Porous IL was prepared through polymerization of 1-allyl-3-methylimidazolium bromide monomers in the presence of azobisisobutyronitrile (AIBN) and crosslinking of ethylene glycol dimethyl acrylate (EGDMA). Parameters affecting the adsorbent performance were optimized. Under the optimal conditions, correlation coefficient (R2) was 0.9996 and LOD was 0.1 µg L-1. This method presented the linearity in the concentration range between 0.1-100 µg L-1 and the relative standard deviation was 3.2%. Finally, the adsorption behavior of the obtained sorbent for nitrate and nitrite determination in various real samples was evaluated. The result indicates that the porous ionic liquid polymer showed high adsorption capacity (233 mg g-1). The convenient preparation of the porous ionic liquid material, as well as high adsorption capacity for anionic pollutants predicted its broad application potential in anion removal materials.
Collapse
|
19
|
Poly (N-vinyl imidazole) gel-filled membrane adsorbers for highly efficient removal of dyes from water. J Chromatogr A 2018; 1563:198-206. [PMID: 29886000 DOI: 10.1016/j.chroma.2018.05.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022]
Abstract
Energy-efficient and time-saving process for recovery of hazardous dyes from wastewater is highly desired in dyeing industry. In this work, poly(N-vinyl imidazole) (PVI) gel-filled membrane adsorbers were developed for highly efficient recovery of dyes through adsorption filtration. The membrane adsorbers were fabricated via dip-coating of Nylon macroporous membranes in PVI solutions followed by quaternization crosslinking with p-xylylene dichloride (XDC). Physicochemical characterizations indicated that PVI gel was successfully filled and fixed inside the Nylon matrix. In optimized conditions. The treating capacity of membrane adsorbers to typical dye sunset yellow (25 ppm of the feed concentration) reached up to 197 mg/g with the removal ratio >99%. Both the treating capacity and the removal ratio were kept steady even when the permeation flux was as high as 1000 L/m2 h. The membrane adsorbers developed in this work were able to not only remove anionic dyes from water, but also separate anionic dyes from cationic ones. The zeta potential and adsorption tests showed that the electrostatic interaction between PVI gel and dye molecules was responsible for the high removal efficiencies to anionic dyes. The membrane adsorbers can be regenerated effectively with NaOH solution and demonstrated good stability in both acidic and alkaline conditions.
Collapse
|
20
|
Zhang W, Zhao Q, Yuan J. Porous Polyelectrolytes: The Interplay of Charge and Pores for New Functionalities. Angew Chem Int Ed Engl 2018; 57:6754-6773. [PMID: 29124842 PMCID: PMC6001701 DOI: 10.1002/anie.201710272] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 01/27/2023]
Abstract
The past decade has witnessed rapid advances in porous polyelectrolytes and there is tremendous interest in their synthesis as well as their applications in environmental, energy, biomedicine, and catalysis technologies. Research on porous polyelectrolytes is motivated by the flexible choice of functional organic groups and processing technologies as well as the synergy of the charge and pores spanning length scales from individual polyelectrolyte backbones to their nano-/micro-superstructures. This Review surveys recent progress in porous polyelectrolytes including membranes, particles, scaffolds, and high surface area powders/resins as well as their derivatives. The focus is the interplay between surface chemistry, Columbic interaction, and pore confinement that defines new chemistry and physics in such materials for applications in energy conversion, molecular separation, water purification, sensing/actuation, catalysis, tissue engineering, and nanomedicine.
Collapse
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
- Department of Materials and Environmental Chemistry (MMK)Stockholm University10691StockholmSweden
| |
Collapse
|
21
|
Zhang W, Zhao Q, Yuan J. Poröse Polyelektrolyte: Zusammenspiel zwischen Poren und Ladung für neue Funktionen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
- Department of Materials and Environmental Chemistry (MMK); Stockholm University; 10691 Stockholm Schweden
| |
Collapse
|
22
|
|
23
|
Ren Y, Guo J, Lu Q, Xu D, Qin J, Yan F. Polypropylene Nonwoven Fabric@Poly(ionic liquid)s for Switchable Oil/Water Separation, Dye Absorption, and Antibacterial Applications. CHEMSUSCHEM 2018; 11:1092-1098. [PMID: 29334177 DOI: 10.1002/cssc.201702320] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Pollutants in wastewater include oils, dyes, and bacteria, making wastewater cleanup difficult. Multifunctional wastewater treatment media consisting of poly(ionic liquid)-grafted polypropylene (PP) nonwoven fabrics (PP@PIL) are prepared by a simple and scalable surface-grafting process. The fabricated PP@PIL fabrics exhibit impressive switchable oil/water separation (η>99 %) and dye absorption performance (q=410 mg g-1 ), as well as high antibacterial properties. The oil/water separation can be easily switched by anion exchanging of the PIL segments. Moreover, the multiple functions (oil/water separation, dye absorption, and antibacterial properties) occurred at the same time, and did not interfere with each other. The multifunctional fibrous filter can be easily regenerated by washing with an acid solution, and the absorption capacity is maintained after many recycling tests. These promising features make PIL-grafted PP nonwoven fabric a potential one-step treatment for multicomponent wastewater.
Collapse
Affiliation(s)
- Yongyuan Ren
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiangna Guo
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qian Lu
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Dan Xu
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jing Qin
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|