1
|
Rosas M, Sousa CFV, Pereira A, Amaral AJR, Pesqueira T, Patrício SG, Fateixa S, Nogueira HIS, Mano JF, Oliveira AL, Borges J. Silk Sericin/Chitosan Supramolecular Multilayered Thin Films as Sustainable Cytocompatible Nanobiomaterials. Biomacromolecules 2025; 26:296-310. [PMID: 39680042 DOI: 10.1021/acs.biomac.4c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Silk sericin (SS) has been widely discarded as a waste by the silk textile industry during the degumming process to obtain fibroin. However, in the past decade, an in-depth understanding of its properties and functions turned it into a high added-value biomaterial for biomedical applications. Herein, we report the molecular design and development of sustainable supramolecular multilayered nanobiomaterials encompassing SS and oppositely charged chitosan (CHT) through a combination of self-assembly and electrostatically driven layer-by-layer (LbL) assembly technology. The successful buildup of SS/CHT multilayered nanobiomaterials was demonstrated by the quartz crystal microbalance with dissipation monitoring and attenuated total reflectance-Fourier transform infrared spectroscopy, and the nanofilms' wettable properties and nanofibrillar-like topography were shown by water contact angle, atomic force microscopy, and scanning electron microscopy. In vitro assays demonstrated the cytocompatibility of the LbL nanofilms toward human primary dermal fibroblasts, holding great promise as biofunctional nanocoatings for drug/therapeutics/cell delivery, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Miguel Rosas
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina ─ Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Cristiana F V Sousa
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Ana Pereira
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Adérito J R Amaral
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Tamagno Pesqueira
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Sónia G Patrício
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Sara Fateixa
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Helena I S Nogueira
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - João F Mano
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Ana L Oliveira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina ─ Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Borges
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Patkar SS, Wang B, Mosquera AM, Kiick KL. Genetically Fusing Order-Promoting and Thermoresponsive Building Blocks to Design Hybrid Biomaterials. Chemistry 2024; 30:e202400582. [PMID: 38501912 PMCID: PMC11661552 DOI: 10.1002/chem.202400582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
The unique biophysical and biochemical properties of intrinsically disordered proteins (IDPs) and their recombinant derivatives, intrinsically disordered protein polymers (IDPPs) offer opportunities for producing multistimuli-responsive materials; their sequence-encoded disorder and tendency for phase separation facilitate the development of multifunctional materials. This review highlights the strategies for enhancing the structural diversity of elastin-like polypeptides (ELPs) and resilin-like polypeptides (RLPs), and their self-assembled structures via genetic fusion to ordered motifs such as helical or beta sheet domains. In particular, this review describes approaches that harness the synergistic interplay between order-promoting and thermoresponsive building blocks to design hybrid biomaterials, resulting in well-structured, stimuli-responsive supramolecular materials ordered on the nanoscale.
Collapse
Affiliation(s)
- Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA, 02142, United States
| | - Bin Wang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Ana Maria Mosquera
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| |
Collapse
|
3
|
Connor A, Zha RH, Koffas M. Production and secretion of recombinant spider silk in Bacillus megaterium. Microb Cell Fact 2024; 23:35. [PMID: 38279170 PMCID: PMC10821235 DOI: 10.1186/s12934-024-02304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Silk proteins have emerged as versatile biomaterials with unique chemical and physical properties, making them appealing for various applications. Among them, spider silk, known for its exceptional mechanical strength, has attracted considerable attention. Recombinant production of spider silk represents the most promising route towards its scaled production; however, challenges persist within the upstream optimization of host organisms, including toxicity and low yields. The high cost of downstream cell lysis and protein purification is an additional barrier preventing the widespread production and use of spider silk proteins. Gram-positive bacteria represent an attractive, but underexplored, microbial chassis that may enable a reduction in the cost and difficulty of recombinant silk production through attributes that include, superior secretory capabilities, frequent GRAS status, and previously established use in industry. RESULTS In this study, we explore the potential of gram-positive hosts by engineering the first production and secretion of recombinant spider silk in the Bacillus genus. Using an industrially relevant B. megaterium host, it was found that the Sec secretion pathway enables secretory production of silk, however, the choice of signal sequence plays a vital role in successful secretion. Attempts at increasing secreted titers revealed that multiple translation initiation sites in tandem do not significantly impact silk production levels, contrary to previous findings for other gram-positive hosts and recombinant proteins. Notwithstanding, targeted amino acid supplementation in minimal media was found to increase production by 135% relative to both rich media and unaltered minimal media, yielding secretory titers of approximately 100 mg/L in flask cultures. CONCLUSION It is hypothesized that the supplementation strategy addressed metabolic bottlenecks, specifically depletion of ATP and NADPH within the central metabolism, that were previously observed for an E. coli host producing the same recombinant silk construct. Furthermore, this study supports the hypothesis that secretion mitigates the toxicity of the produced silk protein on the host organism and enhances host performance in glucose-based minimal media. While promising, future research is warranted to understand metabolic changes more precisely in the Bacillus host system in response to silk production, optimize signal sequences and promoter strengths, investigate the mechanisms behind the effect of tandem translation initiation sites, and evaluate the performance of this system within a bioreactor.
Collapse
Affiliation(s)
- Alexander Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - R Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
4
|
Connor A, Lamb JV, Delferro M, Koffas M, Zha RH. Two-step conversion of polyethylene into recombinant proteins using a microbial platform. Microb Cell Fact 2023; 22:214. [PMID: 37848881 PMCID: PMC10580613 DOI: 10.1186/s12934-023-02220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The increasing prevalence of plastic waste combined with the inefficiencies of mechanical recycling has inspired interest in processes that can convert these waste streams into value-added biomaterials. To date, the microbial conversion of plastic substrates into biomaterials has been predominantly limited to polyhydroxyalkanoates production. Expanding the capabilities of these microbial conversion platforms to include a greater diversity of products generated from plastic waste streams can serve to promote the adoption of these technologies at a larger scale and encourage a more sustainable materials economy. RESULTS Herein, we report the development of a new strain of Pseudomonas bacteria capable of converting depolymerized polyethylene into high value bespoke recombinant protein products. Using hexadecane, a proxy for depolymerized polyethylene, as a sole carbon nutrient source, we optimized media compositions that facilitate robust biomass growth above 1 × 109 cfu/ml, with results suggesting the benefits of lower hydrocarbon concentrations and the use of NH4Cl as a nitrogen source. We genomically integrated recombinant genes for green fluorescent protein and spider dragline-inspired silk protein, and we showed their expression in Pseudomonas aeruginosa, reaching titers of approximately 10 mg/L when hexadecane was used as the sole carbon source. Lastly, we demonstrated that chemically depolymerized polyethylene, comprised of a mixture of branched and unbranched alkanes, could be converted into silk protein by Pseudomonas aeruginosa at titers of 11.3 ± 1.1 mg/L. CONCLUSION This work demonstrates a microbial platform for the conversion of a both alkanes and plastic-derived substrates to recombinant, protein-based materials. The findings in this work can serve as a basis for future endeavors seeking to upcycle recalcitrant plastic wastes into value-added recombinant proteins.
Collapse
Affiliation(s)
- Alexander Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jessica V Lamb
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL, 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL, 60439, USA
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - R Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
5
|
Valmonte Z, Baker Z, Loor J, Sarkar A. Concurrent Reduction and Stabilization of Graphene Oxide Dispersion by Silk-Inspired Polymer. ACS APPLIED POLYMER MATERIALS 2023; 5:4621-4627. [PMID: 37469881 PMCID: PMC10353489 DOI: 10.1021/acsapm.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023]
Abstract
Silk, a popular biomaterial, is used as a greener alternative of toxic reducing agent in biocompatible graphene synthesis. However, silk often forms gel uncontrollably due to its heavy-chain molecular weight and faces significant challenges in the reduction, stabilization, and dispersion process of graphene. In this contribution, we report a rapid chemical synthesis approach for a low-molecular-weight silk-inspired polymer via ring-opening and microwave-assisted Diels-Alder-aided step-growth polymerizations. This synthetic polymer with periodic sequences of hydrophilic and hydrophobic moieties not only reduces graphene oxide efficiently but also enhances the dispersibility of hydrophobic reduced graphene oxide in aqueous media.
Collapse
Affiliation(s)
- Zoren Valmonte
- Department
of Chemistry and Biochemistry, Montclair
State University (MSU), Montclair, New Jersey 07043, United States
| | - Zeyad Baker
- Department
of Chemistry and Biochemistry, Montclair
State University (MSU), Montclair, New Jersey 07043, United States
| | - Jianna Loor
- Department
of Biology, Montclair State University (MSU), Montclair, New Jersey 07043, United States
| | - Amrita Sarkar
- Department
of Chemistry and Biochemistry, Montclair
State University (MSU), Montclair, New Jersey 07043, United States
| |
Collapse
|
6
|
Kim Y, Yoon T, Park WB, Na S. Predicting mechanical properties of silk from its amino acid sequences via machine learning. J Mech Behav Biomed Mater 2023; 140:105739. [PMID: 36871478 DOI: 10.1016/j.jmbbm.2023.105739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The silk fiber is increasingly being sought for its superior mechanical properties, biocompatibility, and eco-friendliness, making it promising as a base material for various applications. One of the characteristics of protein fibers, such as silk, is that their mechanical properties are significantly dependent on the amino acid sequence. Numerous studies have been conducted to determine the specific relationship between the amino acid sequence of silk and its mechanical properties. Still, the relationship between the amino acid sequence of silk and its mechanical properties is yet to be clarified. Other fields have adopted machine learning (ML) to establish a relationship between the inputs, such as the ratio of different input material compositions and the resulting mechanical properties. We have proposed a method to convert the amino acid sequence into numerical values for input and succeeded in predicting the mechanical properties of silk from its amino acid sequences. Our study sheds light on predicting mechanical properties of silk fiber from respective amino acid sequences.
Collapse
|
7
|
Connor A, Wigham C, Bai Y, Rai M, Nassif S, Koffas M, Zha RH. Novel insights into construct toxicity, strain optimization, and primary sequence design for producing recombinant silk fibroin and elastin-like peptide in E. coli. Metab Eng Commun 2023; 16:e00219. [PMID: 36825067 PMCID: PMC9941211 DOI: 10.1016/j.mec.2023.e00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Spider silk proteins (spidroins) are a remarkable class of biomaterials that exhibit a unique combination of high-value attributes and can be processed into numerous morphologies for targeted applications in diverse fields. Recombinant production of spidroins represents the most promising route towards establishing the industrial production of the material, however, recombinant spider silk production suffers from fundamental difficulties that includes low titers, plasmid instability, and translational inefficiencies. In this work, we sought to gain a deeper understanding of upstream bottlenecks that exist in the field through the production of a panel of systematically varied spidroin sequences in multiple E. coli strains. A restriction on basal expression and specific genetic mutations related to stress responses were identified as primary factors that facilitated higher titers of the recombinant silk constructs. Using these findings, a novel strain of E. coli was created that produces recombinant silk constructs at levels 4-33 times higher than standard BL21(DE3). However, these findings did not extend to a similar recombinant protein, an elastin-like peptide. It was found that the recombinant silk proteins, but not the elastin-like peptide, exert toxicity on the E. coli host system, possibly through their high degree of intrinsic disorder. Along with strain engineering, a bioprocess design that utilizes longer culturing times and attenuated induction was found to raise recombinant silk titers by seven-fold and mitigate toxicity. Targeted alteration to the primary sequence of the recombinant silk constructs was also found to mitigate toxicity. These findings identify multiple points of focus for future work seeking to further optimize the recombinant production of silk proteins and is the first work to identify the intrinsic disorder and subsequent toxicity of certain spidroin constructs as a primary factor related to the difficulties of production.
Collapse
Affiliation(s)
- Alexander Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Caleb Wigham
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Yang Bai
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Manish Rai
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Sebastian Nassif
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Corresponding author. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - R. Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Corresponding author. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
8
|
Poirier A, Le Griel P, Hoffmann I, Perez J, Pernot P, Fresnais J, Baccile N. Ca 2+ and Ag + orient low-molecular weight amphiphile self-assembly into "nano-fishnet" fibrillar hydrogels with unusual β-sheet-like raft domains. SOFT MATTER 2023; 19:378-393. [PMID: 36562421 DOI: 10.1039/d2sm01218a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Low-molecular weight gelators (LMWGs) are small molecules (Mw < ∼1 kDa), which form self-assembled fibrillar network (SAFiN) hydrogels in water when triggered by an external stimulus. A great majority of SAFiN gels involve an entangled network of self-assembled fibers, in analogy to a polymer in a good solvent. In some rare cases, a combination of attractive van der Waals and repulsive electrostatic forces drives the formation of bundles with a suprafibrillar hexagonal order. In this work, an unexpected micelle-to-fiber transition is triggered by Ca2+ or Ag+ ions added to a micellar solution of a novel glycolipid surfactant, whereas salt-induced fibrillation is not common for surfactants. The resulting SAFiN, which forms a hydrogel above 0.5 wt%, has a "nano-fishnet" structure, characterized by a fibrous network of both entangled fibers and β-sheet-like rafts, generally observed for silk fibroin, actin hydrogels or mineral imogolite nanotubes, but not known for SAFiNs. The β-sheet-like raft domains are characterized by a combination of cryo-TEM and SAXS and seem to contribute to the stability of glycolipid gels. Furthermore, glycolipid is obtained by fermentation from natural resources (glucose, rapeseed oil), thus showing that naturally engineered compounds can have unprecedented properties, when compared to the wide range of chemically derived amphiphiles.
Collapse
Affiliation(s)
- Alexandre Poirier
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | - Patrick Le Griel
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | | | - Javier Perez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette Cedex, France
| | - Petra Pernot
- ESRF - The European Synchrotron, CS40220, 38043 Grenoble, France
| | - Jérôme Fresnais
- Sorbonne Université, CNRS, Laboratoire de Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX - UMR 8234, F-75252, Paris Cedex 05, France
| | - Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| |
Collapse
|
9
|
Poirier A, Le Griel P, Bizien T, Zinn T, Pernot P, Baccile N. Shear recovery and temperature stability of Ca 2+ and Ag + glycolipid fibrillar metallogels with unusual β-sheet-like domains. SOFT MATTER 2023; 19:366-377. [PMID: 36508178 DOI: 10.1039/d2sm00374k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Low-molecular weight gelators (LMWGs) are small molecules (Mw < ∼1 kDa), which form self-assembled fibrillar network (SAFiN) hydrogels in water. A great majority of SAFiN gels are described by an entangled network of self-assembled fibers, in analogy to a polymer in a good solvent. Here, fibrillation of a biobased glycolipid bolaamphiphile is triggered by Ca2+ or Ag+ ions which are added to its diluted micellar phase. The resulting SAFiN, which forms a hydrogel above 0.5 wt%, has a "nano-fishnet" structure, characterized by a fibrous network of both entangled fibers and β-sheet-like rafts, generally observed for silk fibroin, actin hydrogels or mineral imogolite nanotubes, but generally not known for SAFiN. This work focuses on the strength of the SAFIN gels, their fast recovery after applying a mechanical stimulus (strain) and their unusual resistance to temperature, studied by coupling rheology to small angle X-ray scattering (rheo-SAXS) using synchrotron radiation. The Ca2+-based hydrogel maintains its properties up to 55 °C, while the Ag+-based gel shows a constant elastic modulus up to 70 °C, without the appearance of any gel-to-sol transition temperature. Furthermore, the glycolipid is obtained by fermentation from natural resources (glucose and rapeseed oil), thus showing that naturally engineered compounds can have unprecedented properties, when compared to the wide range of chemically derived amphiphiles.
Collapse
Affiliation(s)
- Alexandre Poirier
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | - Patrick Le Griel
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | - Thomas Bizien
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette Cedex, France
| | - Thomas Zinn
- ESRF - The European Synchrotron, CS40220, 38043 Grenoble, France
| | - Petra Pernot
- ESRF - The European Synchrotron, CS40220, 38043 Grenoble, France
| | - Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| |
Collapse
|
10
|
Ji X, Wang J, Wang T, Wang N, Li X, Huang Y, Huang X, Hao H. Supramolecular Self-Assembly Process during Gelation and Crystallization of Cefradine. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiongtao Ji
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Xin Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Yunhai Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
| |
Collapse
|
11
|
Yu H, Kalutantirige FC, Yao L, Schroeder CM, Chen Q, Moore JS. Self-Assembly of Repetitive Segment and Random Segment Polymer Architectures. ACS Macro Lett 2022; 11:1366-1372. [PMID: 36413761 DOI: 10.1021/acsmacrolett.2c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent advances in chemical synthesis have created new methodologies for synthesizing sequence-controlled synthetic polymers, but rational design of monomer sequence for desired properties remains challenging. In this work, we synthesize periodic polymers with repetitive segments using a sequence-controlled ring-opening metathesis polymerization (ROMP) method, which draws inspiration from proteins containing repetitive sequence motifs. The repetitive segment architecture is shown to dramatically affect the self-assembly behavior of these materials. Our results show that polymers with identical repetitive sequences assemble into uniform spherical nanoparticles after thermal annealing, whereas copolymers with random placement of segments with different sequences exhibit disordered assemblies without a well-defined morphology. Overall, these results bring a new understanding to the role of periodic repetitive sequences in polymer assembly.
Collapse
Affiliation(s)
- Hao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Falon C Kalutantirige
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lehan Yao
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Qian Chen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Ectopic expression of sericin enables efficient production of ancient silk with structural changes in silkworm. Nat Commun 2022; 13:6295. [PMID: 36273007 PMCID: PMC9588020 DOI: 10.1038/s41467-022-34128-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Bombyx mori silk is a super-long natural protein fiber with a unique structure and excellent performance. Innovative silk structures with high performance are in great demand, thus resulting in an industrial bottleneck. Herein, the outer layer sericin SER3 is ectopically expressed in the posterior silk gland (PSG) in silkworms via a piggyBac-mediated transgenic approach, then secreted into the inner fibroin layer, thus generating a fiber with sericin microsomes dispersed in fibroin fibrils. The water-soluble SER3 protein secreted by PSG causes P25's detachment from the fibroin unit of the Fib-H/Fib-L/P25 polymer, and accumulation between the fibroin layer and the sericin layer. Consequently, the water solubility and stability of the fibroin-colloid in the silk glandular cavity, and the crystallinity increase, and the mechanical properties of cocoon fibers, moisture absorption and moisture liberation of the silk also improve. Meanwhile, the mutant overcomes the problems of low survival and abnormal silk gland development, thus enabling higher production efficiency of cocoon silk. In summary, we describe a silk gland transgenic target protein selection strategy to alter the silk fiber structure and to innovate its properties. This work provides an efficient and green method to produce silk fibers with new functions.
Collapse
|
13
|
Zhang X, Xiao L, Ding Z, Lu Q, Kaplan DL. Engineered Tough Silk Hydrogels through Assembling β-Sheet Rich Nanofibers Based on a Solvent Replacement Strategy. ACS NANO 2022; 16:10209-10218. [PMID: 35587205 DOI: 10.1021/acsnano.2c01616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
β-Sheet rich silk nanofiber hydrogels are suitable scaffolds in tissue regeneration and carriers for various drugs. However, unsatisfactory mechanical performance limits its applications. Here, insight into the silk nanofibers stimulates the remodeling of previous solvent systems to actively regulate the assembly of silk nanofibers. Formic acid, a solvent of regenerated silk fibroin, is used to shield the charge repulsion of silk nanofibers to facilitate the nanofiber assembly under concentrated solutions. Formic acid was replaced with water to solidify the assembly, which induced the formation of a tough hydrogel. The hydrogels generated with this process possessed a modulus of 5.88 ± 0.82 MPa, ultimate stress of 1.55 ± 0.06 MPa, and toughness of 0.85 ± 0.03 MJ m-3, superior to those of previous silk hydrogels prepared through complex cross-linking processes. Benefiting from the dense gel network and high β-sheet content, these silk nanofiber hydrogels had good stability and antiswelling ability. The modulus could be modulated via changing the silk nanofiber concentration to provide differentiation signals to stem cells. Improved mechanical and bioactive properties with these hydrogels suggest utility in biomedical and engineering fields. More importantly, our present study reveals that the in-depth understanding of silk nanofibers could infuse power into traditional fabrication systems to achieve more high performance biomaterials, which is seldom considered in silk material studies.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
14
|
Liu C, Zhou L, Cao S, Zhang H, Han J, Liu Z. Supramolecular systems prepared using terpyridine-containing pillararene. Polym Chem 2022. [DOI: 10.1039/d1py01397a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progresses about the preparation of terpyridine-containing pillararene, as well as the utilization of those building blocks for making external stimulud-responsive supramolecular systems were summarized in this review.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China
| |
Collapse
|
15
|
Khosropanah MH, Vaghasloo MA, Shakibaei M, Mueller AL, Kajbafzadeh AM, Amani L, Haririan I, Azimzadeh A, Hassannejad Z, Zolbin MM. Biomedical applications of silkworm (Bombyx Mori) proteins in regenerative medicine (a narrative review). J Tissue Eng Regen Med 2021; 16:91-109. [PMID: 34808032 DOI: 10.1002/term.3267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Silk worm (Bombyx Mori) protein, have been considered as potential materials for a variety of advanced engineering and biomedical applications for decades. Recently, silkworm silk has gained significant importance in research attention mainly because of its remarkable and exceptional mechanical properties. Silk has already been shown to have unique interactions with cells in tissues through bio-recognition units. The natural silk contains fibroin and sericin and has been used in various tissues of the human body (skin, bone, nerve, and so on). Besides, silk also still has anti-cancer, anti-tyrosinase, anti-coagulant, anti-oxidant, anti-bacterial, and anti-diabetic properties. This article is supposed to describe the diverse biomedical capabilities of B. Mori silk as the appropriate biomaterial among the assorted natural and artificial polymers that are presently accessible, and ideal for usage in regenerative medicine fields.
Collapse
Affiliation(s)
- Mohammad Hossein Khosropanah
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Alizadeh Vaghasloo
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Amani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy and Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Chang MP, Huang W, Mai DJ. Monomer‐scale design of functional protein polymers using consensus repeat sequences. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marina P. Chang
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Winnie Huang
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Danielle J. Mai
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
17
|
Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules 2021; 22:2299-2324. [PMID: 33957752 DOI: 10.1021/acs.biomac.1c00160] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptide/protein therapeutics have been significantly applied in the clinical treatment of various diseases such as cancer, diabetes, etc. owing to their high biocompatibility, specificity, and therapeutic efficacy. However, due to their immunogenicity, instability stemming from its complex tertiary and quaternary structure, vulnerability to enzyme degradation, and rapid renal clearance, the clinical application of protein/peptide therapeutics is significantly confined. Though nanotechnology has been demonstrated to prevent enzyme degradation of the protein therapeutics and thus enhance the half-life, issues such as initial burst release and uncontrollable release kinetics are still unsolved. Moreover, the traditional administration method results in poor patient compliance, limiting the clinical application of protein/peptide therapeutics. Exploiting the sustained-release formulations for more controllable delivery of protein/peptide therapeutics to decrease the frequency of injection and enhance patient compliance is thus greatly meaningful. In this review, we comprehensively summarize the substantial advancements of protein/peptide sustained-release systems in the past decades. In addition, the advantages and disadvantages of all these sustained-release systems in clinical application together with their future challenges are also discussed in this review.
Collapse
|
18
|
Barbee MH, Wright ZM, Allen BP, Taylor HF, Patteson EF, Knight AS. Protein-Mimetic Self-Assembly with Synthetic Macromolecules. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meredith H. Barbee
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zoe M. Wright
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin P. Allen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hailey F. Taylor
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily F. Patteson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S. Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
19
|
Sarkar A, Edson C, Tian D, Fink TD, Cianciotti K, Gross RA, Bae C, Zha RH. Rapid Synthesis of Silk-Like Polymers Facilitated by Microwave Irradiation and Click Chemistry. Biomacromolecules 2020; 22:95-105. [PMID: 32902261 DOI: 10.1021/acs.biomac.0c00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silk is a natural fiber that surpasses most man-made polymers in its combination of strength and toughness. Silk fibroin, the primary protein component of silk, can be synthetically mimicked by a linear copolymer with alternating rigid and soft segments. Strategies for chemical synthesis of such silk-like polymers have persistently resulted in poor sequence control, long reaction times, and low molecular weights. Here, we present a two-stage approach for rapidly synthesizing silk-like polymers with precisely defined rigid blocks. This approach utilizes solid-phase peptide synthesis to create uniform oligoalanine "prepolymers", followed by microwave-assisted step-growth polymerization with bifunctional poly(ethylene glycol). Multiple coupling chemistries and reaction conditions were explored, with microwave-assisted click chemistry yielding polymers with Mw ∼ 14 kg/mol in less than 20 min. These polymers formed antiparallel β-sheets and nanofibers, which is consistent with the structure of natural silk fibroin. Thus, our strategy demonstrates a promising modular approach for synthesizing silk-like polymers.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Cody Edson
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ding Tian
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tanner D Fink
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Katherine Cianciotti
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Richard A Gross
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Chulsung Bae
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - R Helen Zha
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
20
|
On the Secondary Structure of Silk Fibroin Nanoparticles Obtained Using Ionic Liquids: An Infrared Spectroscopy Study. Polymers (Basel) 2020; 12:polym12061294. [PMID: 32516911 PMCID: PMC7361871 DOI: 10.3390/polym12061294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022] Open
Abstract
Silk fibroin from Bombyx mori caterpillar is an outstanding biocompatible polymer for the production of biomaterials. Its impressive combination of strength, flexibility, and degradability are related to the protein’s secondary structure, which may be altered during the manufacture of the biomaterial. The present study looks at the silk fibroin secondary structure during nanoparticle production using ionic liquids and high-power ultrasound using novel infrared spectroscopic approaches. The infrared spectrum of silk fibroin fibers shows that they are composed of 58% β-sheet, 9% turns, and 33% irregular and/or turn-like structures. When fibroin was dissolved in ionic liquids, its amide I band resembled that of soluble silk and no β-sheet absorption was detected. Silk fibroin nanoparticles regenerated from the ionic liquid solution exhibited an amide I band that resembled that of the silk fibers but had a reduced β-sheet content and a corresponding higher content of turns, suggesting an incomplete turn-to-sheet transition during the regeneration process. Both the analysis of the experimental infrared spectrum and spectrum calculations suggest a particular type of β-sheet structure that was involved in this deficiency, whereas the two other types of β-sheet structure found in silk fibroin fibers were readily formed.
Collapse
|
21
|
Park Y, Jung Y, Li TD, Lao J, Tu RS, Chen X. β-Sheet Nanocrystals Dictate Water Responsiveness of Bombyx Mori Silk. Macromol Rapid Commun 2020; 41:e1900612. [PMID: 32125047 DOI: 10.1002/marc.201900612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Water-responsive (WR) materials that strongly swell and shrink in response to changes in relative humidity (RH) have shown a great potential to serve as high-energy actuators for soft robotics and new energy-harvesting systems. However, the design criteria governing the scalable and high-efficiency WR actuation remain unclear, and thus inhibit further development of WR materials for practical applications. Nature has provided excellent examples of WR materials that contain stiff nanocrystalline structures that can be crucial to understand the fundamentals of WR behavior. This work reports that regenerated Bombyx (B.) mori silk can be processed to increase β-sheet crystallinity, which dramatically increases the WR energy density to 1.6 MJ m-3 , surpassing that of all known natural muscles, including mammalian muscles and insect muscles. Interestingly, the maximum water sorption decreases from 80.4% to 19.2% as the silk's β-sheet crystallinity increases from 19.7% to 57.6%, but the silk's WR energy density shows an eightfold increase with higher fractions of β-sheets. The findings of this study suggest that high crystallinity of silk reduces energy dissipation and translates the chemical potential of water-induced pressure to external loads more efficiently during the hydration/dehydration processes. Moreover, the availability of B. mori silk opens up possibilities for simple and scalable modification and production of powerful WR actuators.
Collapse
Affiliation(s)
- Yaewon Park
- Advanced Science Research Center (ASRC), City University of New York, 85, St. Nicholas Terrace, New York, NY, 10031, USA
| | - Yeojin Jung
- Advanced Science Research Center (ASRC), City University of New York, 85, St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemical Engineering, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Tai-De Li
- Advanced Science Research Center (ASRC), City University of New York, 85, St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Physics, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Jianpei Lao
- Department of Chemical Engineering, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Raymond S Tu
- Advanced Science Research Center (ASRC), City University of New York, 85, St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemical Engineering, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Xi Chen
- Advanced Science Research Center (ASRC), City University of New York, 85, St. Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemical Engineering, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA.,Ph.D. Program in Chemistry and Physics, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
| |
Collapse
|
22
|
|
23
|
Sarkar A, Connor AJ, Koffas M, Zha RH. Chemical Synthesis of Silk-Mimetic Polymers. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4086. [PMID: 31817786 PMCID: PMC6947416 DOI: 10.3390/ma12244086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/15/2023]
Abstract
Silk is a naturally occurring high-performance material that can surpass man-made polymers in toughness and strength. The remarkable mechanical properties of silk result from the primary sequence of silk fibroin, which bears semblance to a linear segmented copolymer with alternating rigid ("crystalline") and flexible ("amorphous") blocks. Silk-mimetic polymers are therefore of great emerging interest, as they can potentially exhibit the advantageous features of natural silk while possessing synthetic flexibility as well as non-natural compositions. This review describes the relationships between primary sequence and material properties in natural silk fibroin and furthermore discusses chemical approaches towards the synthesis of silk-mimetic polymers. In particular, step-growth polymerization, controlled radical polymerization, and copolymerization with naturally derived silk fibroin are presented as strategies for synthesizing silk-mimetic polymers with varying molecular weights and degrees of sequence control. Strategies for improving macromolecular solubility during polymerization are also highlighted. Lastly, the relationships between synthetic approach, supramolecular structure, and bulk material properties are explored in this review, with the aim of providing an informative perspective on the challenges facing chemical synthesis of silk-mimetic polymers with desirable properties.
Collapse
Affiliation(s)
| | | | | | - R. Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (A.S.); (A.J.C.); (M.K.)
| |
Collapse
|
24
|
Euti EM, Wolfel A, Picchio ML, Romero MR, Martinelli M, Minari RJ, Igarzabal CIA. Controlled Thermoreversible Formation of Supramolecular Hydrogels Based on Poly(vinyl alcohol) and Natural Phenolic Compounds. Macromol Rapid Commun 2019; 40:e1900217. [DOI: 10.1002/marc.201900217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/07/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Esteban M. Euti
- Facultad de Ciencias QuímicasDepartamento de Química OrgánicaUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende Córdoba X5000HUA Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) CONICETDepartamento de Química OrgánicaAv. Velez Sarsfield 1611 Córdoba 5000 Argentina
| | - Alexis Wolfel
- Facultad de Ciencias QuímicasDepartamento de Química OrgánicaUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende Córdoba X5000HUA Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) CONICETDepartamento de Química OrgánicaAv. Velez Sarsfield 1611 Córdoba 5000 Argentina
| | - Matías L. Picchio
- Facultad de Ciencias QuímicasDepartamento de Química OrgánicaUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende Córdoba X5000HUA Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) CONICETDepartamento de Química OrgánicaAv. Velez Sarsfield 1611 Córdoba 5000 Argentina
- Facultad Regional Villa MaríaUniversidad Tecnológica NacionalAv. Universidad 450 Villa María 5900 Argentina
| | - Marcelo R. Romero
- Facultad de Ciencias QuímicasDepartamento de Química OrgánicaUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende Córdoba X5000HUA Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) CONICETDepartamento de Química OrgánicaAv. Velez Sarsfield 1611 Córdoba 5000 Argentina
| | - Marisa Martinelli
- Facultad de Ciencias QuímicasDepartamento de Química OrgánicaUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende Córdoba X5000HUA Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) CONICETDepartamento de Química OrgánicaAv. Velez Sarsfield 1611 Córdoba 5000 Argentina
| | - Roque J. Minari
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) CONICETGrupo de Polímeros y Reactores de PolimerizaciónGüemes 3450 Santa Fe 3000 Argentina
- Facultad de Ingeniería QuímicaUniversidad Nacional del LitoralSantiago de Estero 2829 Santa Fe 3000 Argentina
| | - Cecilia I. Alvarez Igarzabal
- Facultad de Ciencias QuímicasDepartamento de Química OrgánicaUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende Córdoba X5000HUA Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) CONICETDepartamento de Química OrgánicaAv. Velez Sarsfield 1611 Córdoba 5000 Argentina
| |
Collapse
|
25
|
Zha RH, Delparastan P, Fink TD, Bauer J, Scheibel T, Messersmith PB. Universal nanothin silk coatings via controlled spidroin self-assembly. Biomater Sci 2019; 7:683-695. [PMID: 30628598 PMCID: PMC6459601 DOI: 10.1039/c8bm01186a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Robust, biocompatible, and facile coatings are promising for improving the in vivo performance of medical implants and devices. Here, we demonstrate the formation of nanothin silk coatings by leveraging the biomimetic self-assembly of eADF4(C16), an amphiphilic recombinant protein based on the Araneus diadematus dragline spidroin ADF4. These coatings result from concurrent adsorption and supramolecular assembly of eADF4(C16) induced by KH2PO4, thereby providing a mild one-pot coating strategy in which the coating rate can be controlled by protein and KH2PO4 concentration. The thickness of the coatings ranges from 2-30 nm depending on the time immersed in the aqueous coating solution. Coatings can be formed on hydrophobic and hydrophilic substrates regardless of surface chemistry and without requiring specialized surface activation. Moreover, coatings appear to be stable through vigorous rinsing and prolonged agitation in water. Grazing incidence wide angle X-ray scattering, single-molecule force spectroscopy, and Congo red staining techniques confirm the formation of β-sheet nanocrystals within the eADF4(C16) coating, which contributes to the cohesive and adhesive stability of the material. Coatings are exceptionally smooth in the dry state and are hydrophilic regardless of substrate hydrophobicity. Under aqueous conditions, nanothin silk coatings exhibit the properties of a hydrogel material.
Collapse
Affiliation(s)
- R Helen Zha
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Li K, Li P, Fan Y. The assembly of silk fibroin and graphene-based nanomaterials with enhanced mechanical/conductive properties and their biomedical applications. J Mater Chem B 2019; 7:6890-6913. [DOI: 10.1039/c9tb01733j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The assembly of silk fibroin and graphene-based nanomaterials would present fantastic properties and functions via optimizing the interaction between each other, and can be processed into various formats to tailor specific biomedical applications.
Collapse
Affiliation(s)
- Kun Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Ping Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Yubo Fan
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| |
Collapse
|
27
|
Otter R, Besenius P. Supramolecular assembly of functional peptide–polymer conjugates. Org Biomol Chem 2019; 17:6719-6734. [DOI: 10.1039/c9ob01191a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The following review gives an overview about synthetic peptide–polymer conjugates as macromolecular building blocks and their self-assembly into a variety of supramolecular architectures, from supramolecular polymer chains, to anisotropic 1D arrays, 2D layers, and more complex 3D networks.
Collapse
Affiliation(s)
- Ronja Otter
- Institute of Organic Chemistry
- Johannes Gutenberg-University Mainz
- 55128 Mainz
- Germany
| | - Pol Besenius
- Institute of Organic Chemistry
- Johannes Gutenberg-University Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
28
|
Yamada S, Morita M, Agou T, Kubota T, Ichikawa T, Konno T. Thermoresponsive luminescence properties of polyfluorinated bistolane-type light-emitting liquid crystals. Org Biomol Chem 2018; 16:5609-5617. [PMID: 30027986 DOI: 10.1039/c8ob01497c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We developed and characterized four polyfluorinated bistolane derivatives. These compounds, which possess either two alkoxy substituents or an alkoxy group and a bromine atom in their two molecular terminals, were synthesized from readily available 4-alkoxy-1-ethynylbenzene with a facile three-step procedure. Their thermodynamic and photophysical properties were evaluated in detail, and they were found to display both liquid-crystalline (LC) and photoluminescence properties. Remarkably, the photoluminescence behaviors dramatically changed during the thermal phase transition between the crystal and LC phases. Thus, these polyfluorinated bistolanes may be promising candidates for thermoresponsive luminous molecules.
Collapse
Affiliation(s)
- Shigeyuki Yamada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | | | | | | | | | | |
Collapse
|