1
|
Nath N, Chakroborty S, Vishwakarma DP, Goga G, Yadav AS, Mohan R. Recent advances in sustainable nature-based functional materials for biomedical sensor technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57289-57313. [PMID: 36857000 PMCID: PMC9975880 DOI: 10.1007/s11356-023-26135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The lightweight, low-density, and low-cost natural polymers like cellulose, chitosan, and silk have good chemical and biodegradable properties due to their individually unique structural and functional elements. However, the mechanical properties of these polymers differ from each other. In this scenario, chitosan lacks good mechanical properties than cellulose and silk. The synthesis of nano natural polymer and reinforcement with suitable chemical compounds as the development of nanocomposite gives them promising multidisciplinary applications. Many kinds of research are already published with innovative bio-derived polymeric functional materials (Bd-PFM) applications. Most research interest is carried out on health concerns. Lots of attention has been paid to biomedical applications of Bd-PFM as biosensors. This review aims to provide a glimpse of the nanostructures Bd-PFM biosensors.
Collapse
Affiliation(s)
- Nibedita Nath
- Department of Chemistry, D.S Degree College, Laida, Sambalpur, Odisha, India
| | | | | | - Geetesh Goga
- Department of Mechanical Engineering, Bharat Group of Colleges, Sardulgarh, Punjab, 151507, India
| | - Anil Singh Yadav
- Department of Mechanical Engineering, IES College of Technology, Bhopal, Madhya Pradesh, India
| | - Ravindra Mohan
- Department of Mechanical Engineering, IES College of Technology, Bhopal, Madhya Pradesh, India
| |
Collapse
|
2
|
Wang L, Wang Y, Mou C, Wang W, Zhu C, He S, Liu H, Liu W. Petal-like Patterning of Polylactide/Poly (Butylene Succinate) Thin Films Induced by Phase Separation. Polymers (Basel) 2023; 15:4463. [PMID: 38006187 PMCID: PMC10674647 DOI: 10.3390/polym15224463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Biodegradable plastics are attracting attention as a solution to the problems caused by plastic waste. Among biodegradable plastics, polylactide (PLA) and poly (butylene succinate) (PBS) are particularly noteworthy because of their excellent biodegradability. However, the drawbacks of their mechanical properties prompts the need to compound them to achieve the desired strength. The characteristics of the interface of the composite material determine the realization of its final performance. The study of the interface and microstructure of composites is essential for the development of products from degradable polymers. The morphology evolution and microcrystal structure of spin-casted fully biodegradable (PLA/PBS) blend films were investigated using atomic force microscopy (AFM)-based nanomechanical mapping. Results show that intact blend films present an obvious phase separation, where the PBS phase is uniformly dispersed in the PLA phase in the form of pores. Furthermore, the size and number of the PBS phase have a power exponential relationship and linear relationship with PBS loading, respectively. Intriguingly, after annealing at 80 °C for 30 min, the PLA phase formed an orderly petal-like microcrystalline structure centered on the PBS phase. Moreover, the microcrystalline morphology changed from a "daisy type" to a "sunflower type" with the increased size of the PBS phase. Since the size of the PBS phase is controllable, a new method for preparing microscopic patterns using fully biodegradable polymers is proposed.
Collapse
Affiliation(s)
- Lili Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
| | - Yujie Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Chudi Mou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
| | - Wanjie Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.W.); (Y.W.); (C.M.); (W.W.); (C.Z.); (S.H.)
| |
Collapse
|
3
|
Song Y, Tang W, Han L, Liu Y, Shen C, Yin X, Ouyang B, Su Y, Guo X. Integration of nanomaterial sensing layers on printable organic field effect transistors for highly sensitive and stable biochemical signal conversion. NANOSCALE 2023; 15:5537-5559. [PMID: 36880412 DOI: 10.1039/d2nr05863d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic field effect transistor (OFET) devices are one of the most popular candidates for the development of biochemical sensors due to their merits of being flexible and highly customizable for low-cost large-area manufacturing. This review describes the key points in constructing an extended-gate type OFET (EGOFET) biochemical sensor with high sensitivity and stability. The structure and working mechanism of OFET biochemical sensors are described firstly, emphasizing the importance of critical material and device engineering to higher biochemical sensing capabilities. Next, printable materials used to construct sensing electrodes (SEs) with high sensitivity and stability are presented with a focus on novel nanomaterials. Then, methods of obtaining printable OFET devices with steep subthreshold swing (SS) for high transconductance efficiency are introduced. Finally, approaches for the integration of OFETs and SEs to form portable biochemical sensor chips are introduced, followed by several demonstrations of sensory systems. This review will provide guidelines for optimizing the design and manufacturing of OFET biochemical sensors and accelerating the movement of OFET biochemical sensors from the laboratory to the marketplace.
Collapse
Affiliation(s)
- Yawen Song
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lei Han
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chaochao Shen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaokuan Yin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bang Ouyang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaojun Guo
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Organic small molecule semiconductor materials for OFET-based biosensors. Biosens Bioelectron 2022; 216:114667. [PMID: 36099836 DOI: 10.1016/j.bios.2022.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/11/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022]
Abstract
Biosensors is an advanced detection and monitoring device for the development of biotechnology, and is also a rapid and microanalytical device at the molecular level. Demands for high sensitivity, high flexibility, good biocompatibility, easy chemical modification and low cost offer incentive for exploring new materials to develop the next-generation biosensors. With the vigorous development of organic electronics, the performances of organic devices have been effectively improved, leading to organic semiconductor materials with low cost, good flexibility, easy chemical modification and good biocompatibility for biosensors. Biosensors based on organic field-effect transistors (OFETs) have become one of the most advanced biosensor platforms because of their inherent ability to amplify received signals. Furthermore, OFET-based biosensors have been widely used in the detection of DNA, protein, cell, glucose and other biological substances due to its high sensitivity, fast analysis speed, label-free detection, small size and simple operation. This mini review briefly discusses the organic small molecule semiconductor materials, device configurations, basic principles and application fields of OFETs-based biosensors.
Collapse
|
5
|
In vitro biological activities of the flexible and virus nanoparticle-decorated silk fibroin-based films. Int J Biol Macromol 2022; 216:437-445. [PMID: 35809668 DOI: 10.1016/j.ijbiomac.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022]
Abstract
Flexible films were prepared from silk fibroin (SF) and gelatin (GA) with a presence of glycerol (Gly), followed by water vapor annealing to achieve water-insoluble matrices. The blended SF/GA/Gly films were chemically conjugated with tobacco mosaic virus (TMV), either native (TMV-wt) or genetically modified with Arg-Gly-Asp (RGD) sequences (TMV-rgd), to improve cellular responses. The attachment and proliferation of L929 cells on TMV-decorated films were improved, possibly due to enhanced surface roughness. The cellular responses were pronounced with TMV-rgd, due to the proper decoration of RGD, which is an integrin recognition motif supporting cell binding. However, the biological results were inconclusive for human primary cells because of an innate slow growth kinetic of the cells. Additionally, the cells on SF/GA/Gly films were greater populated in S and G2/M phase, and the cell cycle arrest was notably increased in the TMV-conjugated group. Our findings revealed that the films modified with TMV were cytocompatible and the cellular responses were significantly enhanced when conjugated with its RGD mutants. The biological analysis on the cellular mechanisms in response to TMV is further required to ensure the safety concern of the biomaterials toward clinical translation.
Collapse
|
6
|
Heng W, Solomon S, Gao W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107902. [PMID: 34897836 PMCID: PMC9035141 DOI: 10.1002/adma.202107902] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Indexed: 05/02/2023]
Abstract
Medical robots are invaluable players in non-pharmaceutical treatment of disabilities. Particularly, using prosthetic and rehabilitation devices with human-machine interfaces can greatly improve the quality of life for impaired patients. In recent years, flexible electronic interfaces and soft robotics have attracted tremendous attention in this field due to their high biocompatibility, functionality, conformability, and low-cost. Flexible human-machine interfaces on soft robotics will make a promising alternative to conventional rigid devices, which can potentially revolutionize the paradigm and future direction of medical robotics in terms of rehabilitation feedback and user experience. In this review, the fundamental components of the materials, structures, and mechanisms in flexible human-machine interfaces are summarized by recent and renowned applications in five primary areas: physical and chemical sensing, physiological recording, information processing and communication, soft robotic actuation, and feedback stimulation. This review further concludes by discussing the outlook and current challenges of these technologies as a human-machine interface in medical robotics.
Collapse
Affiliation(s)
- Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Samuel Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
7
|
Sun C, Vinayak MV, Cheng S, Hu W. Facile Functionalization Strategy for Ultrasensitive Organic Protein Biochips in Multi-Biomarker Determination. Anal Chem 2021; 93:11305-11311. [PMID: 34323475 DOI: 10.1021/acs.analchem.1c02601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In recent years, organic field-effect transistors (OFETs) have shown great potential for advanced protein biochips due to their inherent biocompatibility and high-throughput detectability. However, the development of OFET-based protein biochips is still at an early stage. On the one hand, single-biomarker determination is not sufficient for the diagnosis of cancer; thus, simultaneous monitoring of electrical signals toward multi-biomarkers is widely concerned and explored. On the other hand, an optimized functionalization strategy for efficient protein immobilization is another key to make OFET-based protein biochips accessible with improved detection performance. Herein, a facile functionalization strategy is developed for excellent charge-transport thin films by suppressing the gelation of diketopyrrolopyrrole (DPP)-based polymer semiconductors with the addition of the glutaraldehyde cross-linking agent. Besides, functional groups are introduced on the device surface for efficient attachment of antibodies as receptors via a condensation reaction, enabling simultaneous determination of α-fetoprotein biomarker and carcinoembryonic antigen biomarker with improved sensitivity and reliability. Therefore, the proposed high-throughput OFET-based protein biochip has the potential to be widely utilized in early liver cancer diagnosis.
Collapse
Affiliation(s)
- Chenfang Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Manikkedath V Vinayak
- Department of Chemistry, Government College Kariavattom, Thiruvananthapuram 695581, Kerala, India
| | - Shanshan Cheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.,Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
8
|
Mutee Ur Rehman HM, Rehman MM, Saqib M, Ali Khan S, Khan M, Yang Y, Kim S, Rahman SA, Kim WY. Highly Efficient and Wide Range Humidity Response of Biocompatible Egg White Thin Film. NANOMATERIALS 2021; 11:nano11071815. [PMID: 34361201 PMCID: PMC8308394 DOI: 10.3390/nano11071815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
Biopolymers are a solution to solve the increasing problems caused by the advances and revolution in the electronic industry owing to the use of hazardous chemicals. In this work, we have used egg white (EW) as the low-cost functional layer of a biocompatible humidity sensor and deposited it on gold (Au) interdigitated electrodes (IDEs) patterned through the state-of-the-art fabrication technology of thermal vacuum evaporation. The presence of hydrophilic proteins inside the thin film of EW makes it an attractive candidate for sensing humidity. Usually, the dependence of the percentage of relative humidity (%RH) on the reliability of measurement setup is overlooked for impedimetric humidity sensors but we have used a modified experimental setup to enhance the uniformity of the obtained results. The characteristics of our device include almost linear response with a quick response time (1.2 s) and fast recovery time (1.7 s). High sensitivity of 50 kΩ/%RH was achieved in the desirable detection range of 10–85%RH. The device size was intentionally kept small for its potential integration in a marketable chip. Results for the response of our fabricated sensor for dry and wet fingertips, along with determining the rate of breathing through the mouth, are part of this study, making it a potential device for health monitoring.
Collapse
Affiliation(s)
| | - Muhammad Muqeet Rehman
- Department of Electronic Engineering, Jeju National University, Jeju 63243, Korea; (M.S.); (S.A.K.); (Y.Y.); (S.K.); (S.A.R.)
- Correspondence: (M.M.R.); (W.-Y.K.)
| | - Muhammad Saqib
- Department of Electronic Engineering, Jeju National University, Jeju 63243, Korea; (M.S.); (S.A.K.); (Y.Y.); (S.K.); (S.A.R.)
| | - Shenawar Ali Khan
- Department of Electronic Engineering, Jeju National University, Jeju 63243, Korea; (M.S.); (S.A.K.); (Y.Y.); (S.K.); (S.A.R.)
| | - Maryam Khan
- Department of Electrical Engineering, GIK Institute, Topi 23460, Pakistan;
| | - Yunsook Yang
- Department of Electronic Engineering, Jeju National University, Jeju 63243, Korea; (M.S.); (S.A.K.); (Y.Y.); (S.K.); (S.A.R.)
| | - Seongwan Kim
- Department of Electronic Engineering, Jeju National University, Jeju 63243, Korea; (M.S.); (S.A.K.); (Y.Y.); (S.K.); (S.A.R.)
| | - Sheik Abdur Rahman
- Department of Electronic Engineering, Jeju National University, Jeju 63243, Korea; (M.S.); (S.A.K.); (Y.Y.); (S.K.); (S.A.R.)
| | - Woo-Young Kim
- Faculty of Applied Energy System, Major of Electronic Engineering, Jeju National University, Jeju 63243, Korea;
- Department of Electronic Engineering, Jeju National University, Jeju 63243, Korea; (M.S.); (S.A.K.); (Y.Y.); (S.K.); (S.A.R.)
- Correspondence: (M.M.R.); (W.-Y.K.)
| |
Collapse
|
9
|
Hosseini E, Dervin S, Ganguly P, Dahiya R. Biodegradable Materials for Sustainable Health Monitoring Devices. ACS APPLIED BIO MATERIALS 2021; 4:163-194. [PMID: 33842859 PMCID: PMC8022537 DOI: 10.1021/acsabm.0c01139] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.
Collapse
Affiliation(s)
- Ensieh
S. Hosseini
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Saoirse Dervin
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Priyanka Ganguly
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Ravinder Dahiya
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| |
Collapse
|
10
|
Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH. Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901924. [PMID: 31282063 DOI: 10.1002/adma.201901924] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/18/2019] [Indexed: 05/19/2023]
Abstract
Recent advances in soft materials and system integration technologies have provided a unique opportunity to design various types of wearable flexible hybrid electronics (WFHE) for advanced human healthcare and human-machine interfaces. The hybrid integration of soft and biocompatible materials with miniaturized wireless wearable systems is undoubtedly an attractive prospect in the sense that the successful device performance requires high degrees of mechanical flexibility, sensing capability, and user-friendly simplicity. Here, the most up-to-date materials, sensors, and system-packaging technologies to develop advanced WFHE are provided. Details of mechanical, electrical, physicochemical, and biocompatible properties are discussed with integrated sensor applications in healthcare, energy, and environment. In addition, limitations of the current materials are discussed, as well as key challenges and the future direction of WFHE. Collectively, an all-inclusive review of the newly developed WFHE along with a summary of imperative requirements of material properties, sensor capabilities, electronics performance, and skin integrations is provided.
Collapse
Affiliation(s)
- Hyo-Ryoung Lim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hee Seok Kim
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, 36608, USA
| | - Raza Qazi
- Department of Electrical, Computer & Energy Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Young-Tae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Institute for Electronics and Nanotechnology, Parker H. Petit Institute for Bioengineering and Biosciences, Center for Flexible and Wearable Electronics Advanced Research, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
11
|
Jian M, Zhang Y, Liu Z. Natural Biopolymers for Flexible Sensing and Energy Devices. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2379-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review. Biomed Microdevices 2019; 21:93. [DOI: 10.1007/s10544-019-0439-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Mo L, Guo Z, Yang L, Zhang Q, Fang Y, Xin Z, Chen Z, Hu K, Han L, Li L. Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics. Int J Mol Sci 2019; 20:E2124. [PMID: 31036787 PMCID: PMC6539082 DOI: 10.3390/ijms20092124] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/27/2019] [Accepted: 04/07/2019] [Indexed: 12/28/2022] Open
Abstract
Printed electronics on flexible substrates has attracted tremendous research interest research thanks its low cost, large area production capability and environmentally friendly advantages. Optimal characteristics of silver nanoparticles (Ag NPs) based inks are crucial for ink rheology, printing, post-print treatment, and performance of the printed electronics devices. In this review, the methods and mechanisms for obtaining Ag NPs based inks that are highly conductive under moderate sintering conditions are summarized. These characteristics are particularly important when printed on temperature sensitive substrates that cannot withstand sintering of high temperature. Strategies to tailor the protective agents capping on the surface of Ag NPs, in order to optimize the sizes and shapes of Ag NPs as well as to modify the substrate surface, are presented. Different (emerging) sintering technologies are also discussed, including photonic sintering, electrical sintering, plasma sintering, microwave sintering, etc. Finally, applications of the Ag NPs based ink in transparent conductive film (TCF), thin film transistor (TFT), biosensor, radio frequency identification (RFID) antenna, stretchable electronics and their perspectives on flexible and printed electronics are presented.
Collapse
Affiliation(s)
- Lixin Mo
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Zhenxin Guo
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Li Yang
- Research Institutes of Sweden (RISE), RISE Bioeconomy, Drottning Kristinas väg 61, 11428 Stockholm, Sweden.
| | - Qingqing Zhang
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Yi Fang
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Zhiqing Xin
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Zheng Chen
- Shine Optoelectronics (Kunshan) Co., Ltd., Shenzhou Industrial Park, No. 33 Yuanfeng Rd, Kunshan 215300, China.
| | - Kun Hu
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Lu Han
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Luhai Li
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China.
| |
Collapse
|
14
|
Stadlober B, Zirkl M, Irimia-Vladu M. Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chem Soc Rev 2019; 48:1787-1825. [DOI: 10.1039/c8cs00928g] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Printed ferroelectric devices are ideal candidates for self-powered and multifunctional sensor skins, contributing to a sustainable smart future.
Collapse
Affiliation(s)
| | - Martin Zirkl
- Joanneum Research Forschungsgesellschaft mbH
- 8160 Weiz
- Austria
| | | |
Collapse
|
15
|
Mishra S, Kharkar PS, Pethe AM. Biomass and waste materials as potential sources of nanocrystalline cellulose: Comparative review of preparation methods (2016 - Till date). Carbohydr Polym 2018; 207:418-427. [PMID: 30600024 DOI: 10.1016/j.carbpol.2018.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023]
Abstract
Nanocrystalline cellulose (NCC) has gained much popularity over the last decade as a preferred nanomaterial in varied applications, despite its laborious industrial production and higher cost. Its production methods have undergone a great deal of metamorphosis lately. The main emphasis has been on the environment-friendly and green processes, in addition to the sustainable and renewable feedstock. Globally, the researchers have explored biomass and waste cellulosic materials as renewable sources for NCC extraction. Newer and/or improved process alternatives, e.g., ultrasonication, enzymatic hydrolysis and mechanical treatments have been applied successfully for producing high-quality material. Detailed investigations on optimizing the overall yield from cheaper feedstock have yielded obvious benefits. This is still work in progress. The present review majorly focuses on the advances made in the NCC preparation field from biomass and waste cellulosic materials in last three years (2016 - till date). Collaborative efforts between chemical engineers and research scientists are crucial for the success of this really amazing nanomaterial.
Collapse
Affiliation(s)
- Shweta Mishra
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle (W), Mumbai, 400 056, India
| | - Prashant S Kharkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle (W), Mumbai, 400 056, India
| | - Anil M Pethe
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle (W), Mumbai, 400 056, India.
| |
Collapse
|