1
|
Haudum S, Strasser P, Teasdale I. Phosphorus and Silicon-Based Macromolecules as Degradable Biomedical Polymers. Macromol Biosci 2023; 23:e2300127. [PMID: 37326117 DOI: 10.1002/mabi.202300127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Synthetic polymers are indispensable in biomedical applications because they can be fabricated with consistent and reproducible properties, facile scalability, and customizable functionality to perform diverse tasks. However, currently available synthetic polymers have limitations, most notably when timely biodegradation is required. Despite there being, in principle, an entire periodic table to choose from, with the obvious exception of silicones, nearly all known synthetic polymers are combinations of carbon, nitrogen, and oxygen in the main chain. Expanding this to main-group heteroatoms can open the way to novel material properties. Herein the authors report on research to incorporate the chemically versatile and abundant silicon and phosphorus into polymers to induce cleavability into the polymer main chain. Less stable polymers, which degrade in a timely manner in mild biological environments, have considerable potential in biomedical applications. Herein the basic chemistry behind these materials is described and some recent studies into their medical applications are highlighted.
Collapse
Affiliation(s)
- Stephan Haudum
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Paul Strasser
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Ian Teasdale
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| |
Collapse
|
2
|
Tian R, Li K, Lin Y, Lu C, Duan X. Characterization Techniques of Polymer Aging: From Beginning to End. Chem Rev 2023; 123:3007-3088. [PMID: 36802560 DOI: 10.1021/acs.chemrev.2c00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Polymers have been widely applied in various fields in the daily routines and the manufacturing. Despite the awareness of the aggressive and inevitable aging for the polymers, it still remains a challenge to choose an appropriate characterization strategy for evaluating the aging behaviors. The difficulties lie in the fact that the polymer features from the different aging stages require different characterization methods. In this review, we present an overview of the characterization strategies preferable for the initial, accelerated, and late stages during polymer aging. The optimum strategies have been discussed to characterize the generation of radicals, variation of functional groups, substantial chain scission, formation of low-molecular products, and deterioration in the polymers' macro-performances. In view of the advantages and the limitations of these characterization techniques, their utilization in a strategic approach is considered. In addition, we highlight the structure-property relationship for the aged polymers and provide available guidance for lifetime prediction. This review could allow the readers to be knowledgeable of the features for the polymers in the different aging stages and provide access to choose the optimum characterization techniques. We believe that this review will attract the communities dedicated to materials science and chemistry.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Ajvazi E, Bauer F, Kracalik M, Hild S, Brüggemann O, Teasdale I. Poly[bis(serine ethyl ester)phosphazene] regulates the degradation rates of vinyl ester photopolymers. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractVinyl esters and carbonates have recently been demonstrated to have considerably lower cytotoxicity than their more commonly used (meth)acrylate counterparts, inspiring their use in the 3D printing of biomaterials. However, the degradation rates of such synthetic photopolymers are slow, especially in the mild conditions present in many biological environments. Some applications, for example, tissue regeneration scaffolds and drug release, require considerably faster biodegradation. Furthermore, it is essential to be able to easily tune the degradation rate to fit the requirements for a range of applications. Herein we present the design and synthesis of hydrolytically degradable polyphosphazenes substituted with a vinyl carbonate functionalized amino acid. Thiolene copolymerization with vinyl esters gave cured polymers which are demonstrated to considerably accelerate the degradation rates of cured vinylester/thiolene polymer scaffolds.
Graphical abstract
Collapse
|
4
|
Synthesis, Optical Characterization in Solution and Solid-State, and DFT Calculations of 3-Acetyl and 3-(1'-(2'-Phenylhydrazono)ethyl)-coumarin-(7)-substituted Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123677. [PMID: 35744802 PMCID: PMC9227197 DOI: 10.3390/molecules27123677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Intramolecular charge transfer (ICT) effects are responsible for the photoluminescent properties of coumarins. Hence, optical properties with different applications can be obtained by ICT modulation. Herein, four 3-acetyl-2H-chromen-2-ones (1a–d) and their corresponding fluorescent hybrids 3- (phenylhydrazone)-chromen-2-ones (2a–d) were synthesized in 74–65% yields. The UV-Vis data were in the 295–428 nm range. The emission depends on the substituent in position C-7 bearing electron-donating groups. Compounds 1b–d showed good optical properties due to the D-π-A structural arrangement. In compounds 2a–d, there is a quenching effect of fluorescence in solution. However, in the solid, an increase is shown due to an aggregation-induced emission (AIE) effect given by the rotational restraints and stacking in the crystal. Computational calculations of the HOMO-LUMO orbitals indicate high absorbance and emission values of the molecules, and gap values represent the bathochromic effect and the electronic efficiency of the compounds. Compounds 1a–d and 2a–d are good candidates for optical applications, such as OLEDs, organic solar cells, or fluorescence markers.
Collapse
|
5
|
Strasser P, Monkowius U, Teasdale I. Main group element and metal-containing polymers as photoresponsive soft materials. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
6
|
Bouché M, Cormode DP. Biodegradable AuNP-Based Plasmonic Nanogels as Contrast Agents for Computed Tomography and Photoacoustics. Methods Mol Biol 2022; 2393:773-796. [PMID: 34837211 DOI: 10.1007/978-1-0716-1803-5_41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gold nanoparticles (AuNP) are well-established contrast agents in computed tomography (CT) and photoacoustic imaging (PAI). A wide variety of AuNP sizes, shapes, and coatings have been reported for these applications. However, for clinical translation, AuNP should be excretable to avoid long-term accumulation and possible side effects. Sub-5 nm AuNP have the benefit to be excretable through kidney filtration, therefore their loading in biodegradable nanogels holds promise to result in contrast agents that have long circulation times in the vasculature and subsequent biodegradation for excretion. Polyphosphazenes are intrinsically biodegradable polymers capable of forming nanogels with high payloads, and to release their payloads upon degradation. The significant development in polyphosphazenes that have tailored degradation kinetics, and their formulation with drugs or contrast agents, has shown potential as a biodegradable platform for imaging vasculature and endogenous molecules, by combination of CT and PA modalities. Therefore, we herein present methods for the formulation of AuNP assemblies loaded in nanogels composed of biodegradable polyphosphazenes, with a size range from 50 to 200 nm. We describe protocols for their characterization by UV-vis spectroscopy, Fourier-transform infrared spectroscopy, various microscopy techniques, elemental quantification by induced coupling plasma optical emission spectroscopy and contrast production in both CT and PAI. Finally, we detail the methods to investigate their effect on cells, distribution in cells and imaging properties for detection of endogenous molecules.
Collapse
Affiliation(s)
- Mathilde Bouché
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Liu J, Kang W, Wang W. Photocleavage-based Photoresponsive Drug Delivery. Photochem Photobiol 2021; 98:288-302. [PMID: 34861053 DOI: 10.1111/php.13570] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
Targeted drug delivery has been extensively studied in the last decade, whereas both passive and active targeting strategies still face many challenges, such as off-target drug release. Light-responsive drug delivery systems have been developed with high controllability and spatio-temporal resolution to improve drug efficacy and reduce off-target drug release. Photoremovable protecting groups are light-responsive moieties that undergo irreversible photocleavage reactions upon light irradiation. They can be covalently linked to the molecule of interest to control its structure and function with light. In this review, we will summarize recent applications of photocleavage technologies in nanoparticle-based drug delivery for precise targeting and controlled drug release, with a highlight of strategies to achieve long-wavelength light excitation. A greater understanding of these mechanisms and emerging studies will help design more efficient photocleavage-based nanosystems to advance photoresponsive drug delivery.
Collapse
Affiliation(s)
- Jinzhao Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| | - Weirong Kang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| |
Collapse
|
8
|
Abid MA, Hussain S, Intisar A, Rizwan M, Ain Q, Mutahir Z, Yar M, Aamir A, Qureshi AK, Jamil M. Synthesis, characterization, hydrolytic degradation, mathematical modeling and antibacterial activity of poly[bis((methoxyethoxy)ethoxy)phosphazene] (MEEP). Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03625-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Coumarin-Containing Light-Responsive Carboxymethyl Chitosan Micelles as Nanocarriers for Controlled Release of Pesticide. Polymers (Basel) 2020; 12:polym12102268. [PMID: 33019778 PMCID: PMC7601645 DOI: 10.3390/polym12102268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
Currently, controlled release formulations (CRFs) of pesticides in response to biotic and/or abiotic stimuli have shown great potential for providing “on-demand” smart release of loaded active ingredients. In this study, amphiphilic biopolymers were prepared by introducing hydrophobic (7-diethylaminocoumarin-4-yl)methyl succinate (DEACMS) onto the main chain of hydrophilic carboxymethylchitosan (CMCS) via the formation of amide bonds which were able to self-assemble into spherical micelles in aqueous media and were utilized as light-responsive nanocarriers for the controlled release of pesticides. FTIR and NMR characterizations confirmed the successful synthesis of the CMCS-DEACMS conjugate. The critical micelle concentration (CMC) decreased with the increase in the substitution of DEACMS on CMCS, which ranged from 0.013 to 0.042 mg/mL. Upon irradiation under simulated sunlight, the hydrodynamic diameter, morphology, photophysical properties and photolysis were researched by means of dynamic light scattering (DLS), transmission electron microscopy (TEM), UV-vis absorption spectroscopy and fluorescence spectroscopy. Moreover, 2,4-dichlorophenoxyacetic acid (2,4-D) was used as a model pesticide and encapsulated into the CMCS-DEACMS micelles. In these micelle formulations, the release of 2,4-D was promoted upon simulated sunlight irradiation, during which the coumarin moieties were cleaved from the CMCS backbone, resulting in a shift of the hydrophilic–hydrophobic balance and destabilization of the micelles. Additionally, bioassay studies suggested that this 2,4-D contained which micelles showed good bioactivity on the target plant without harming the nontarget plant. Thereby, the light-responsive CMCS-DEACMS micelles bearing photocleavable coumarin moieties provide a smart delivery platform for agrochemicals.
Collapse
|
10
|
Annunziata F, Pinna C, Dallavalle S, Tamborini L, Pinto A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int J Mol Sci 2020; 21:E4618. [PMID: 32610556 PMCID: PMC7370201 DOI: 10.3390/ijms21134618] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022] Open
Abstract
Privileged structures have been widely used as an effective template for the research and discovery of high value chemicals. Coumarin is a simple scaffold widespread in Nature and it can be found in a considerable number of plants as well as in some fungi and bacteria. In the last years, these natural compounds have been gaining an increasing attention from the scientific community for their wide range of biological activities, mainly due to their ability to interact with diverse enzymes and receptors in living organisms. In addition, coumarin nucleus has proved to be easily synthetized and decorated, giving the possibility of designing new coumarin-based compounds and investigating their potential in the treatment of various diseases. The versatility of coumarin scaffold finds applications not only in medicinal chemistry but also in the agrochemical field as well as in the cosmetic and fragrances industry. This review is intended to be a critical overview on coumarins, comprehensive of natural sources, metabolites, biological evaluations and synthetic approaches.
Collapse
Affiliation(s)
- Francesca Annunziata
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Cecilia Pinna
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| | - Lucia Tamborini
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| |
Collapse
|
11
|
Strasser P, Teasdale I. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules 2020; 25:E1716. [PMID: 32276516 PMCID: PMC7181247 DOI: 10.3390/molecules25071716] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Polymers in which phosphorus is an integral part of the main chain, including polyphosphazenes and polyphosphoesters, have been widely investigated in recent years for their potential in a number of therapeutic applications. Phosphorus, as the central feature of these polymers, endears the chemical functionalization, and in some cases (bio)degradability, to facilitate their use in such therapeutic formulations. Recent advances in the synthetic polymer chemistry have allowed for controlled synthesis methods in order to prepare the complex macromolecular structures required, alongside the control and reproducibility desired for such medical applications. While the main polymer families described herein, polyphosphazenes and polyphosphoesters and their analogues, as well as phosphorus-based dendrimers, have hitherto predominantly been investigated in isolation from one another, this review aims to highlight and bring together some of this research. In doing so, the focus is placed on the essential, and often mutual, design features and structure-property relationships that allow the preparation of such functional materials. The first part of the review details the relevant features of phosphorus-containing polymers in respect to their use in therapeutic applications, while the second part highlights some recent and innovative applications, offering insights into the most state-of-the-art research on phosphorus-based polymers in a therapeutic context.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| |
Collapse
|
12
|
Müller AK, Jung D, Sun J, Kuckling D. Synthesis and characterization of light-degradable bromocoumarin functionalized polycarbonates. Polym Chem 2020. [DOI: 10.1039/c9py01405e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The preparation, characterization and degradation properties of novel light-degradable bromocoumarin functionalized polycarbonates were investigated in the present work.
Collapse
Affiliation(s)
- Ann-Kathrin Müller
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
- Department of Chemistry
| | - Dimitri Jung
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
| | - Jingjiang Sun
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
- Key Laboratory of Rubber-plastics
| | - Dirk Kuckling
- Department of Chemistry
- Paderborn University
- D-33098 Paderborn
- Germany
| |
Collapse
|
13
|
Teasdale I, Theis S, Iturmendi A, Strobel M, Hild S, Jacak J, Mayrhofer P, Monkowius U. Dynamic Supramolecular Ruthenium-Based Gels Responsive to Visible/NIR Light and Heat. Chemistry 2019; 25:9851-9855. [PMID: 31199024 PMCID: PMC6771519 DOI: 10.1002/chem.201902088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Indexed: 11/12/2022]
Abstract
A simple supramolecular crosslinked gel is reported with a photosensitive ruthenium bipyridine complex functioning as a crosslinker and poly(4-vinylpyridine) (P4VP) as a macromolecular ligand. Irradiation of the organogels in H2 O/MeOH with visible and NIR light (in a multiphoton process) leads to cleavage of pyridine moieties from the ruthenium complex breaking the cross-links and causing degelation and hence solubilization of the P4VP chains. Real-time (RT) photorheology experiments of thin films showed a rapid degelation in several seconds, whereas larger bulk samples could also be photocleaved. Furthermore, the gels could be reformed or healed by simple heating of the system and restoration of the metal-ligand crosslinks. The relatively simple dynamic system with a high sensitivity towards light in the visible and NIR region make them interesting positive photoresists for nano/micropatterning applications, as was demonstrated by writing, erasing, and rewriting of the gels by single- and multiphoton lithography.
Collapse
Affiliation(s)
- Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Sabrina Theis
- Institute of Inorganic ChemistryJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Aitziber Iturmendi
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Moritz Strobel
- Institute of Polymer ScienceJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Sabine Hild
- Institute of Polymer ScienceJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| | - Jaroslaw Jacak
- School of Medical Engineering and Applied Social SciencesUniversity of Applied Sciences Upper AustriaGarnisonstraße 214020LinzAustria
| | - Philipp Mayrhofer
- School of Medical Engineering and Applied Social SciencesUniversity of Applied Sciences Upper AustriaGarnisonstraße 214020LinzAustria
| | - Uwe Monkowius
- School of EducationJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| |
Collapse
|
14
|
Ogueri KS, Escobar Ivirico JL, Li Z, Blumenfield RH, Allcock HR, Laurencin CT. Synthesis, Physicochemical Analysis, and Side Group Optimization of Degradable Dipeptide-Based Polyphosphazenes as Potential Regenerative Biomaterials. ACS APPLIED POLYMER MATERIALS 2019; 1:1568-1578. [PMID: 32699835 PMCID: PMC7375698 DOI: 10.1021/acsapm.9b00333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We report the synthesis and physicochemical analysis of mixed-substituent dipeptide-based polyphosphazene polymers, poly[(glycineethylglycinato) x (phenylphenoxy) y phosphazene] (PNGEG x PhPh y ) and poly[(ethylphenylalanato) x (glycineethylglycinato) y phosphazene] (PNEPA x GEG y ), using glycylglycine ethyl ester (GEG) as the primary substituent side group and cosubstituting with phenylphenol (PhPh) and phenylalanine ethyl ester (EPA), respectively. The suitability of the cosubstituted polyphosphazenes to regenerative engineering was evaluated. The physicochemical evaluation revealed that the molecular weights, glass transition temperatures, hydrophilicity, and mechanical properties could be modulated by varying the compositions of the side groups to obtain a variety of properties. The PNEPA25GEG75 and PNGEG75PhPh25 polymers exhibited the most promising physicochemical properties. These two polymers were further subjected to in vitro hydrolysis and cell proliferation studies using poly(lactic-co-glycolic acid) (PLAGA) as a control. The hydrolysis experiments revealed that the two polymers hydrolyzed to near-neutral pH media (~5.3 to 7.0) in a relatively slow fashion, whereas a pH value as low as 2.2 was obtained for the PLAGA media over 12 weeks of degradation study. Furthermore, the two polymers showed continuous MC3T3 cell proliferation and growth in comparison to PLAGA over a 21-day culture period. These findings establish that cosubstitution of different side groups of polyphosphazenes and exploitation of the hydrogen-bonding capacity of peptide bonds in GEG offer a flexible tool that can be employed to make new and fascinating polymeric biomaterials with different and tailored properties that can suit different regenerative needs.
Collapse
Affiliation(s)
- Kenneth S. Ogueri
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Connecticut Convergence Institute, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Jorge L. Escobar Ivirico
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Connecticut Convergence Institute, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Zhongjing Li
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Riley H. Blumenfield
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Harry R. Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Cato T. Laurencin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Connecticut Convergence Institute, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| |
Collapse
|
15
|
Abstract
This microreview details recent developments in stimuli-responsive polymers with phosphorus in the main-chain, in particular polyphosphazenes and polyphosphoesters. The presence of phosphorus in the polymers endows unique properties onto the macromolecules, which can be utilized for the preparation of materials capable of physically responding to specific stimuli. Achieving the desired responsiveness has been much facilitated by recent developments in synthetic polymer chemistry, in particular controlled synthesis and backbone functionalization phosphorus-based polymers, in order to achieve the required properties and hence responsiveness of the materials. The development of phosphorus-based polymers which respond to the most important stimuli are discussed, namely, pH, oxidation, reduction, temperature and biological triggers. The polymers are placed in the context not just of each other but also with reference to state-of-the-art organic polymers.
Collapse
Affiliation(s)
- Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| |
Collapse
|
16
|
Light-triggered release of photocaged therapeutics - Where are we now? J Control Release 2019; 298:154-176. [PMID: 30742854 DOI: 10.1016/j.jconrel.2019.02.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/02/2023]
Abstract
The current available therapeutics face several challenges such as the development of ideal drug delivery systems towards the goal of personalized treatments for patients benefit. The application of light as an exogenous activation mechanism has shown promising outcomes, owning to the spatiotemporal confinement of the treatment in the vicinity of the diseased tissue, which offers many intriguing possibilities. Engineering therapeutics with light responsive moieties have been explored to enhance the bioavailability, and drug efficacy either in vitro or in vivo. The tailor-made character turns the so-called photocaged compounds highly desirable to reduce the side effects of drugs and, therefore, have received wide research attention. Herein, we seek to highlight the potential of photocaged compounds to obtain a clear understanding of the mechanisms behind its use in therapeutic delivery. A deep overview on the progress achieved in the design, fabrication as well as current and possible future applications in therapeutics of photocaged compounds is provided, so that novel formulations for biomedical field can be designed.
Collapse
|