1
|
Hu Y, Huang D, Yan J, Miao Z, Yu L, Cai N, Fang Q, Zhang Q, Yan Y. Polyoxovanadate-Based Cyclomatrix Polyphosphazene Microspheres as Efficient Heterogeneous Catalysts for the Selective Oxidation and Desulfurization of Sulfides. Molecules 2022; 27:molecules27238560. [PMID: 36500654 PMCID: PMC9738953 DOI: 10.3390/molecules27238560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The [V6O13]2- cluster is successfully immobilized to the polymeric framework of cyclomatrix polyphosphazene via the facile precipitation polymerization between the phenol group symmetrically modified [V6O13]2- and hexachlorocyclotriphosphazene. The structure of the as-prepared polyoxometalate-containing polyphosphazene (HCCP-V) was characterized by FT-IR, XPS, TGA, BET, as well as SEM and zeta potential. The presence of a rigid polyoxometalate cluster not only supports the porous structure of the polymeric framework but also provides an improved catalytic oxidation property. By using H2O2 as an oxidant, the as-prepared HCCP-V exhibited improved catalytic oxidation activity toward MPS, DBT, and CEES, which can achieve as high as 99% conversion. More importantly, the immobilization of POMs in the network of cyclomatrix polyphosphazene also provides better recyclability and stability of the heterogeneous catalyst.
Collapse
Affiliation(s)
- Yinghui Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Diping Huang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Jing Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Correspondence: (J.Y.); (Y.Y.)
| | - Zhiliang Miao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Lize Yu
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Ningjing Cai
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Quanhai Fang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Yi Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Correspondence: (J.Y.); (Y.Y.)
| |
Collapse
|
2
|
Zhang Q, Shi W, Tan W, Xie Z. Apigenin/furfurylamine-based bio-polyamide/cyclophosphazene composite: Preparation and dual applications in dye adsorption and Pb (II) electrochemical probing. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Wang Y, Yang N, Soldatov M, Liu H. A novel phosphazene-based amine-functionalized porous polymer with high adsorption ability for I2, dyes and heavy metal ions. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Li Y, Shan Q, Chen L, Chen W, Luan C. Preparation, characterization and photocatalytic performance of K
8
[Fe(H
2
O)W
11
MnO
39
]/PANI/TiO
2
ternary composite. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying Li
- Laboratory of Inorganic Synthesis College of Chemistry and Chemical Engineering Qiqihar University Qiqihar 161006 P. R. China
| | - Qiu‐jie Shan
- Laboratory of Inorganic Synthesis College of Chemistry and Chemical Engineering Qiqihar University Qiqihar 161006 P. R. China
| | - Lin Chen
- Laboratory of Inorganic Synthesis College of Chemistry and Chemical Engineering Qiqihar University Qiqihar 161006 P. R. China
| | - Wei Chen
- Laboratory of Inorganic Synthesis College of Chemistry and Chemical Engineering Qiqihar University Qiqihar 161006 P. R. China
| | - Cheng‐yu Luan
- Laboratory of Inorganic Synthesis College of Chemistry and Chemical Engineering Qiqihar University Qiqihar 161006 P. R. China
| |
Collapse
|
5
|
Wang Z, Wang Y, Yao C. Highly efficient removal of uranium(VI) from aqueous solution using the Chitosan- Hexachlorocyclotriphosphazene composite. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07944-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Wang Y, Soldatov M, Wang Q, Liu H. Phosphazene functionalized silsesquioxane-based porous polymers for absorbing I2, CO2 and dyes. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123491] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Li X, Zhao X, Li X, Jia X, Chang F, Zhang H, Hu G. Rapid simultaneous removal of cationic dyes and Cr(VI) by boron cluster polyaniline with a target site. Chem Commun (Camb) 2021; 57:7569-7572. [PMID: 34250998 DOI: 10.1039/d1cc03140f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The stable physicochemical properties of polyaniline/closo-[B12H12]2- (PA/B12) obtained by an ion exchange technique combined with polyaniline (PA) and closo-[B12H12]2- (B12) can realize rapid kinetic adsorption and complete removal of Cr(vi) and cationic dye pollutants at low concentrations. The reversible adsorption/desorption process of pollutants represents that PA/B12 has practical industrial use value.
Collapse
Affiliation(s)
- Xue Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, P. R. China.
| | - Xue Zhao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, P. R. China. and College of Chemistry and Molecular Sciences, National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaohua Li
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, P. R. China
| | - Xiuxiu Jia
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, P. R. China.
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, P. R. China.
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences, National Demonstration Center for Experimental Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, P. R. China.
| |
Collapse
|
8
|
Cheng L, Cai Z, Zhao J, Wang F, Lu M, Deng L, Cui W. Black phosphorus-based 2D materials for bone therapy. Bioact Mater 2020; 5:1026-1043. [PMID: 32695934 PMCID: PMC7355388 DOI: 10.1016/j.bioactmat.2020.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Since their discovery, Black Phosphorus (BP)-based nanomaterials have received extensive attentions in the fields of electromechanics, optics and biomedicine, due to their remarkable properties and excellent biocompatibility. The most essential feature of BP is that it is composed of a single phosphorus element, which has a high degree of homology with the inorganic components of natural bone, therefore it has a full advantage in the treatment of bone defects. This review will first introduce the source, physicochemical properties, and degradation products of BP, then introduce the remodeling process of bone, and comprehensively summarize the progress of BP-based materials for bone therapy in the form of hydrogels, polymer membranes, microspheres, and three-dimensional (3D) printed scaffolds. Finally, we discuss the challenges and prospects of BP-based implant materials in bone immune regulation and outlook the future clinical application.
Collapse
Affiliation(s)
- Liang Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| |
Collapse
|
9
|
Ding S, Shi W, Zhang K, Xie Z. Bifunctional cyclomatrix polyphosphazene-based hybrid with abundant decorating groups: Synthesis and application as efficient electrochemical Pb(II) probe and methylene blue absorbent. J Colloid Interface Sci 2020; 587:683-692. [PMID: 33223242 DOI: 10.1016/j.jcis.2020.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 11/18/2022]
Abstract
HYPOTHESIS The construction of novel functional cyclomatrix polyphosphazenes (CPPs) hybrid, which with diverse decorating groups, is a challenging task due to the structural limitation of available reaction substrates (phenols and amines). EXPERIMENTS Herein, a phenolic hydroxyl (OH) modified ployamide derivative (P2) was successfully prepared via novel benzoxazine-isocyanide chemistry (BIC). A kind of CPP hybrid (P3), which with abundant functional groups (amide, tertiary amine, benzoxazine and phenolic hydroxyl) was prepared subsequently by the condensation between P2 and hexachlorocyclotriphosphazene (HCCP). Chemical structure, elemental composition, morphology, porous properties and crystallinity of P3 were systematically analyzed here. The electrochemical detection of lead ion (Pb2+) was realized by using P3-modified glassy carbon electrode (GCE/Nafion/P3) as the working electrode. Besides this, given the unique chemical structure and morphology of P3, the selective adsorption of methylene blue (MB) by P3 was also studied here. FINDINGS Experimental results indicated that that P3 can act as bifunctional hybrid material to solve environmental issues.
Collapse
Affiliation(s)
- Sheng Ding
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Wei Shi
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Kesong Zhang
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Zhengfeng Xie
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
10
|
Zhai L, Chai S, Wang G, Zhang W, He H, Li H. Triblock Copolymer/Polyoxometalate Nanocomposite Electrolytes with Inverse Hexagonal Cylindrical Nanostructures. Macromol Rapid Commun 2020; 41:e2000438. [PMID: 33000900 DOI: 10.1002/marc.202000438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Indexed: 12/24/2022]
Abstract
The primary issue of polymer electrolytes is to achieve high ion conductivity while retaining mechanical properties. A nanocomposite electrolyte with the inverse hexagonal cylindrical phase (three-dimensionally continuous domains for ion conduction and embedded domains for mechanical support) is prepared through the electrostatic self-assembly of a polyoxometalate (H3 PW12 O40 , PW) and a triblock copolymer poly(N-vinyl pyrrolidone)-block-polystyrene-block-poly(N-vinyl pyrrolidone) (PSP). The cylindrical nanocomposite exhibits a conductivity of 1.32 mS cm-1 and a storage modulus of 4.6 × 107 Pa at room temperature. These two values are higher than those of pristine PSP by two orders of magnitudes and a factor of six, respectively. PW clusters are used as multifunctional nano-additives (morphological inducer, proton conductor, and nano-enhancer) and their incorporation achieves the simultaneous improvement in both conductive and mechanical performance.
Collapse
Affiliation(s)
- Liang Zhai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shengchao Chai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Gang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haibo He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
11
|
Li H, Wu L. A perspective on polyoxometalates as versatile synthons for precisely hybridized polymer materials. POLYM INT 2019. [DOI: 10.1002/pi.5948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Haolong Li
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University Changchun China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University Changchun China
| |
Collapse
|
12
|
Yan J, Huang H, Miao Z, Zhang Q, Yan Y. Polyoxometalate-Based Hybrid Supramolecular Polymer via Orthogonal Metal Coordination and Reversible Photo-Cross-Linking. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Yan
- Department of Applied Chemistry, School of Science, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Condition, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Huiya Huang
- Department of Applied Chemistry, School of Science, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Condition, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhiliang Miao
- Department of Applied Chemistry, School of Science, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Condition, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qiuyu Zhang
- Department of Applied Chemistry, School of Science, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Condition, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yi Yan
- Department of Applied Chemistry, School of Science, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Condition, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|