1
|
Huang W, Zhang X, Chen J, Zhang B, Chen B, Zhang G. Organic Photocatalyzed Polyacrylamide without Heterogeneous End Groups: A Mechanistic Study. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wenhuan Huang
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | | | | | | | - Biao Chen
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Guoqing Zhang
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
2
|
Lentz JC, Cavanagh R, Moloney C, Falcone Pin B, Kortsen K, Fowler HR, Jacob PL, Krumins E, Clark C, Machado F, Breitkreuz N, Cale B, Goddard AR, Hirst JD, Taresco V, Howdle SM. N-Hydroxyethyl acrylamide as a functional eROP initiator for the preparation of nanoparticles under "greener" reaction conditions. Polym Chem 2022; 13:6032-6045. [PMID: 36353599 PMCID: PMC9623607 DOI: 10.1039/d2py00849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
N-Hydroxyethyl acrylamide was used as a functional initiator for the enzymatic ring-opening polymerisation of ε-caprolactone and δ-valerolactone. N-Hydroxyethyl acrylamide was found not to undergo self-reaction in the presence of Lipase B from Candida antarctica under the reaction conditions employed. By contrast, this is a major problem for 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate which both show significant transesterification issues leading to unwanted branching and cross-linking. Surprisingly, N-hydroxyethyl acrylamide did not react fully during enzymatic ring-opening polymerisation. Computational docking studies helped us understand that the initiated polymer chains have a higher affinity for the enzyme active site than the initiator alone, leading to polymer propagation proceeding at a faster rate than polymer initiation leading to incomplete initiator consumption. Hydroxyl end group fidelity was confirmed by organocatalytic chain extension with lactide. N-Hydroxyethyl acrylamide initiated polycaprolactones were free-radical copolymerised with PEGMA to produce a small set of amphiphilic copolymers. The amphiphilic polymers were shown to self-assemble into nanoparticles, and to display low cytotoxicity in 2D in vitro experiments. To increase the green credentials of the synthetic strategies, all reactions were carried out in 2-methyl tetrahydrofuran, a solvent derived from renewable resources and an alternative for the more traditionally used fossil-based solvents tetrahydrofuran, dichloromethane, and toluene.
Collapse
Affiliation(s)
- Joachim C Lentz
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Robert Cavanagh
- School of Pharmacy, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Cara Moloney
- School of Pharmacy, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Bruno Falcone Pin
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Kristoffer Kortsen
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Harriet R Fowler
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Philippa L Jacob
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Eduards Krumins
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Charlotte Clark
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Fabricio Machado
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
- Institute of Chemistry, University of Brasília Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Nicholas Breitkreuz
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Ben Cale
- Croda Europe Limited Cowick Hall Snaith DN14 9AA Goole UK
| | - Amy R Goddard
- Croda Europe Limited Cowick Hall Snaith DN14 9AA Goole UK
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| | - Steven M Howdle
- School of Chemistry, University of Nottingham, University Park NG7 2RD Nottingham UK
| |
Collapse
|
3
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
4
|
Jiang J, Chen W, Cheng A, Guo J, Liu Y. Preparation of Polyacrylamide with Improved Tacticity and Low Molecular Weight Distribution. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225501028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Polyacrylamide with improved tacticity and low molecular weight distribution was obtained via stereospecific atom transfer radical polymerization (ATRP) using the mixture of Lewis acids Y(OTf)3 and AlCl3 in a certain ratio as stereospecific catalyst and chloroacetic acid/ Cu2O / N,N,N’,N’-tetramethylethylenediamine( TMEDA) as initiating system. The initiating system afforded persistently controlled ATRP of acrylamide with lower polydispersity index ranging from 1.12 to 1.35 as well as a moderate polymerization process. The participation of the mixture of Lewis acids Y(OTf)3 and AlCl3 as stereospecific catalyst in the stereospecific ATRP of acrylamide contributed optimal stereospecific PAM with the meso content 80%~83%. Polymerization kinetics displayed a living/controlled nature of the present polymerizations.
Collapse
|
5
|
Sun F, Li R, Jin F, Zhang H, Zhang J, Wang T, Feng ZQ. Dopamine/zinc oxide doped poly( N-hydroxyethyl acrylamide)/agar dual network hydrogel with super self-healing, antibacterial and tissue adhesion functions designed for transdermal patch. J Mater Chem B 2021; 9:5492-5502. [PMID: 34161410 DOI: 10.1039/d1tb00822f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual network (DN) hydrogels with excellent mechanical strength and controllable component adjustment characteristics have a broad application range in the field of biomedicine. However, the tissue adhesion, skin affinity, self-healing, and antibacterial properties of DN hydrogels are inadequate for their application as skin patches. In this work, we prepared dopamine/zinc oxide (DOPA/ZnO) doped poly(N-hydroxyethyl acrylamide) (p(HEAA))/agar DN hydrogels and combined them to obtain a bilayer hydrogel (two-layer gel) with moisturizing properties. Upon incorporating 0.86 wt% of dopamine (DOPA), the resultant DOPA/p(HEAA))/agar DN hydrogel (DOPA@DNG) exhibited high tensile strain (up to 1600%), excellent self-repair ability, and tissue adhesion. ZnO/p(HEAA))/agar DN hydrogel (ZnO NG) obtained by incorporating 2 w/v ZnO nanoparticles (ZnO NPs) achieved high tensile strength (1.2 MPa), good antibacterial ability, and low charge transfer resistance. Moreover, ZnO NG, which has a tight structure, was employed as a protective layer for the two-layer gel, which can effectively slow down the excessive evaporation of water to protect the DOPA@DNG stability as a skin patch. Evidence showed that the two-layer hydrogel has water retention. Water retention still remains at over 50% after keeping the hydrogel in air for 3 days. These properties mean the two-layer gel based on the DOPA/ZnO doped DN hydrogels could be used as a transdermal patch for numerous applications in drug delivery, wearable devices, and electronic skin.
Collapse
Affiliation(s)
- Fengyu Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Rui Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Haiyang Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jin Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Ting Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
6
|
Benchaphanthawee W, Peng CH. Organo-Cobalt Complexes in Reversible-Deactivation Radical Polymerization. CHEM REC 2021; 21:3628-3647. [PMID: 34132014 DOI: 10.1002/tcr.202100122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/25/2021] [Indexed: 01/15/2023]
Abstract
Cobalt complexes have played an essential role in different chemical reactions. One of them that has attracted substantial attention in polymer science is cobalt mediated radical polymerization (CMRP), which is famous for its remarkable efficiency in controlling the radical polymerization of vinyl acetate (VAc) and other less active monomers (LAMs). Two pathways, reversible termination (RT) and degenerative transfer (DT), were recognized to control the polymerization in CMRP and could be further used to rationalize the mechanism of other RDRP methods. These control mechanisms were then found to be correlated to the redox potential of cobalt complexes and thus could be judged more quantitatively. The control of polymer composition and tacticity could also be achieved by using CMRP. The hybridization of CMRP and atom transfer radical polymerization (ATRP) could directly synthesize the vinyl acetate/methyl methacrylate and vinyl acetate/styrene block copolymers in one pot. The copolymer of acrylates and 1-octene could be obtained by visible-light-induced CMRP. With the addition of bulky Lewis acid, CMRP of N,N-dimethylacrylamide (DMA) showed high isotacticities with the contents of meso dyads (m) and meso triads (mm) up to 94 % and 87 %, respectively, and generated the crystalline PDMA with Tm as high as 276 °C. This personal account reviewed the development of CMRP with the mechanistic understanding, the control of composition and stereoselectivity of the polymeric products, and its perspective.
Collapse
Affiliation(s)
- Wachara Benchaphanthawee
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., 30013, Hsinchu, Taiwan
| | - Chi-How Peng
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., 30013, Hsinchu, Taiwan
| |
Collapse
|
7
|
Controlled post-polymerization modification through modulation of repeating unit reactivity: Proof of concept discussed using linear polyethylenimine example. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Teator AJ, Varner TP, Knutson PC, Sorensen CC, Leibfarth FA. 100th Anniversary of Macromolecular Science Viewpoint: The Past, Present, and Future of Stereocontrolled Vinyl Polymerization. ACS Macro Lett 2020; 9:1638-1654. [PMID: 35617075 DOI: 10.1021/acsmacrolett.0c00664] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The thermomechanical properties exhibited by synthetic macromolecules can be directly linked to their tacticity, or the relative stereochemistry of repeat units. The development of stereoselective coordination-insertion polymerization, for example, led to the discovery of isotactic polypropylene, now one of the most widely produced commodity plastics in the world. Widespread interest in controlling polymer tacticity has led to a variety of stereoselective polymerization methodologies; however, this area of polymer science has lagged behind when compared to the ability to control molecular weight, dispersity, and composition. Despite decades of advancements, many stereoregular vinyl polymers remain unknown, particularly those comprised of polar functionality or derived from renewable resources. This Viewpoint provides an overview of recent developments in stereocontrolled polymerization, with an emphasis on propagation mechanism, and highlights successes, limitations, and future challenges for continued innovation.
Collapse
Affiliation(s)
- Aaron J. Teator
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Travis P. Varner
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Phil C. Knutson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cole C. Sorensen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frank A. Leibfarth
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Zaborniak I, Surmacz K, Chmielarz P. Synthesis of sugar‐based macromolecules via
sono‐ATRP
in miniemulsion. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Izabela Zaborniak
- Department of Physical Chemistry, Faculty of ChemistryRzeszow University of Technology Rzeszów Poland
| | - Karolina Surmacz
- Doctoral School of Engineering and Technical Sciences at Rzeszów University of Technology Rzeszów Poland
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of ChemistryRzeszow University of Technology Rzeszów Poland
| |
Collapse
|
10
|
Wu Z, Peng CH, Fu X. Tacticity control approached by visible-light induced organocobalt-mediated radical polymerization: the synthesis of crystalline poly(N,N-dimethylacrylamide) with high isotacticity. Polym Chem 2020. [DOI: 10.1039/d0py00587h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A crystalline polymer with high isotacticity, controlled molecular weight, and narrow polydispersity was synthesized via radical polymerization.
Collapse
Affiliation(s)
- Zhenqiang Wu
- Beijing National Laboratory for Molecular Sciences
- State Key Lab of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
| | - Chi-How Peng
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters
- National Tsing Hua University
- Hsinchu
- Taiwan
| | - Xuefeng Fu
- Beijing National Laboratory for Molecular Sciences
- State Key Lab of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing
| |
Collapse
|
11
|
Destephen A, Lezama L, Ballard N. Lewis acid-surfactant complex catalyzed polymerization in aqueous dispersed media: cationic or radical polymerization? Polym Chem 2020. [DOI: 10.1039/d0py00363h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evidence is presented that shows Lewis acid-surfactant complex catalyzed polymerization proceeds via a radical, not a cationic, mechanism.
Collapse
Affiliation(s)
- Aurélie Destephen
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta Center
- 20018 Donostia-San Sebastián
- Spain
| | - Luis Lezama
- Departamento de Química Inorgánica
- Universidad del País Vasco UPV/EHU
- Bilbao
- Spain
| | - Nicholas Ballard
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta Center
- 20018 Donostia-San Sebastián
- Spain
| |
Collapse
|
12
|
Santos WG, Budkina DS, Santagneli SH, Tarnovsky AN, Zukerman-Schpector J, Ribeiro SJL. Ion-Pair Complexes of Pyrylium and Tetraarylborate as New Host-Guest Dyes: Photoinduced Electron Transfer Promoting Radical Polymerization. J Phys Chem A 2019; 123:7374-7383. [PMID: 31386369 DOI: 10.1021/acs.jpca.9b03581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultrafast transient absorption spectroscopy, NOESY-NMR, and EPR spectroscopy shed light on how π-π stacking interactions combined with electrostatic interactions can be used to form stable ion-pair complexes between pyrylium and tetraarylborate ions in which the interaction of the π-delocalized clouds promotes the observation of new radiative processes and also electron transfer processes excitation using visible light. The results exhibit a striking combination of properties, chemical stability and photophysical and photochemical events, that make these ion-pair complexes as a step toward the realization of chromophore/luminescent materials and also their use as a new monophotoinitiator system in radical polymerization reactions.
Collapse
Affiliation(s)
- Willy G Santos
- Institute of Chemistry , São Paulo State University - UNESP , CP 355, Araraquara , SP 14801-970 , Brazil.,Department of Chemistry , Federal University of São Carlos , UFSCar, CP 676, São Carlos , SP 13565-905 , Brazil
| | - Darya S Budkina
- Center for Photochemical Sciences, Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Silvia H Santagneli
- Institute of Chemistry , São Paulo State University - UNESP , CP 355, Araraquara , SP 14801-970 , Brazil
| | - Alexander N Tarnovsky
- Center for Photochemical Sciences, Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Julio Zukerman-Schpector
- Department of Chemistry , Federal University of São Carlos , UFSCar, CP 676, São Carlos , SP 13565-905 , Brazil
| | - Sidney J L Ribeiro
- Institute of Chemistry , São Paulo State University - UNESP , CP 355, Araraquara , SP 14801-970 , Brazil
| |
Collapse
|