1
|
Ni H, Zhang X, Yu J, Zhao C, Si Y. Phase-Changeable Metafabric Enables Dynamic Subambient Humidity and Thermal Regulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62654-62663. [PMID: 39474935 DOI: 10.1021/acsami.4c12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A promising approach to prevent heat- and cold-related illnesses is the integration of zero-energy input control technology into personal thermal management (PTM) systems while reducing energy consumption. However, achieving optimal wearing comfort while maintaining subambient metabolic temperatures using thermally regulating materials without an energy supply remains challenging. In this study, we provide a simple and reliable methodology to produce a phase-changeable metafabric made of thermoplastic polyurethane and phase change capsule (PCC) particles with high moisture permeability and thermal comfort. This approach skillfully incorporates spray-formed PCC particles into a three-dimensional nanofibrous aggregate, forming a stable self-entangled network structure in a single step through simultaneous humidity-assisted electrospraying and electrospinning processes. Additionally, the metafabric demonstrates prominent water resistance and superhydrophobicity, which are attributed to the integration of PCC particles and nanofibers, resulting in the formation of a microporous/nanoporous structure resembling the surface of a lotus leaf. As a result, the phase-changeable metafabric shows an active and passive thermal control performance, with a water vapor transmittance rate of 13.1 kg m-2 d-1 and a phase change enthalpy of 115.05 J g-1 even after 100 thermal cycles. Furthermore, it displays excellent waterproofing capability, characterized by a water contact angle of 158.7° and the ability to withstand a high hydrostatic pressure of 87 kPa. In addition, the metafabric exhibits a good mechanical performance, boasting a tensile strength of 10.5 MPa. Overall, the proposed economical metafabric is an exemplary candidate material for next-generation PTM systems.
Collapse
Affiliation(s)
- Haiyan Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian Province 350108, China
| | - Xuan Zhang
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Cunyi Zhao
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
2
|
Luo T, Farooq A, Weng W, Lu S, Luo G, Zhang H, Li J, Zhou X, Wu X, Huang L, Chen L, Wu H. Progress in the Preparation and Application of Breathable Membranes. Polymers (Basel) 2024; 16:1686. [PMID: 38932036 PMCID: PMC11207707 DOI: 10.3390/polym16121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Breathable membranes with micropores enable the transfer of gas molecules while blocking liquids and solids, and have a wide range of applications in medical, industrial, environmental, and energy fields. Breathability is highly influenced by the nature of a material, pore size, and pore structure. Preparation methods and the incorporation of functional materials are responsible for the variety of physical properties and applications of breathable membranes. In this review, the preparation methods of breathable membranes, including blown film extrusion, cast film extrusion, phase separation, and electrospinning, are discussed. According to the antibacterial, hydrophobic, thermal insulation, conductive, and adsorption properties, the application of breathable membranes in the fields of electronics, medicine, textiles, packaging, energy, and the environment are summarized. Perspectives on the development trends and challenges of breathable membranes are discussed.
Collapse
Affiliation(s)
- Tingshuai Luo
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
| | - Ambar Farooq
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
| | - Wenwei Weng
- Fujian Key Laboratory of Disposable Sanitary Products, Fujian Hengan International Group Company Ltd., Jinjiang 362261, China; (W.W.); (G.L.)
| | - Shengchang Lu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
| | - Gai Luo
- Fujian Key Laboratory of Disposable Sanitary Products, Fujian Hengan International Group Company Ltd., Jinjiang 362261, China; (W.W.); (G.L.)
| | - Hui Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Jianguo Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Xiaxing Zhou
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Xiaobiao Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- Fujian Key Laboratory of Disposable Sanitary Products, Fujian Hengan International Group Company Ltd., Jinjiang 362261, China; (W.W.); (G.L.)
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; (T.L.); (A.F.); (H.Z.); (J.L.); (X.Z.); (L.H.); (L.C.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
| |
Collapse
|
3
|
Chang Y, Liu F. Review of Waterproof Breathable Membranes: Preparation, Performance and Applications in the Textile Field. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5339. [PMID: 37570043 PMCID: PMC10419557 DOI: 10.3390/ma16155339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Waterproof breathable membranes (WBMs) characterized by a specific internal structure, allowing air and water vapor to be transferred from one side to the other while preventing liquid water penetration, have attracted much attention from researchers. WBMs combine lamination and other technologies with textile materials to form waterproof breathable fabrics, which play a key role in outdoor sports clothing, medical clothing, military clothing, etc. Herein, a systematic overview of the recent progress of WBMs is provided, including the principles of waterproofness and breathability, common preparation methods and the applications of WBMs. Discussion starts with the waterproof and breathable mechanisms of two different membranes: hydrophilic non-porous membranes and hydrophobic microporous membranes. Then evaluation criteria and common preparation methods for WBMs are presented. In addition, treatment processes that promote water vapor transmission and prominent applications in the textile field are comprehensively analyzed. Finally, the challenges and future perspectives of WBMs are also explored.
Collapse
Affiliation(s)
| | - Fujuan Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| |
Collapse
|
4
|
Li Y, Hua Y, Ji Z, Wu Z, Fan J, Liu Y. Dual-bionic nano-groove structured nanofibers for breathable and moisture-wicking protective respirators. J Memb Sci 2023; 672:121257. [PMID: 36593802 PMCID: PMC9797220 DOI: 10.1016/j.memsci.2022.121257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic makes protective respirators highly demanded. The respirator materials should filter out viral fine aerosols effectively, allow airflow to pass through easily, and wick away the exhalant moisture timely. However, the commonly used melt-blown nonwovens perform poorly in meeting these requirements simultaneously. Herein, dual-bionic nano-groove structured (NGS) nanofibers are fabricated to serve as protective, breathable and moisture-wicking respirator materials. The creativity of this design is that the tailoring of dual-bionic nano-groove structure, combined with the strong polarity and hydrophilicity of electrospinning polymer, not only endows the nanofibrous materials with improved particle capture ability but also enable them to wick away and transmit breathing moisture. Benefitting from the synthetic effect of hierarchical structure and the intrinsic property of polymers, the resulting NGS nanofibrous membranes show a high filtration efficiency of 99.96%, a low pressure drop of 110 Pa, and a high moisture transmission rate of 5.67 kg m-2 d-1 at the same time. More importantly, the sharp increase of breathing resistance caused by the condensation of exhaled moisture is avoided, overcoming the bottleneck faced by traditional nonwovens and paving a new way for developing protective respirators with high wear comfortability.
Collapse
Affiliation(s)
- Yuyao Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yuezhen Hua
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zekai Ji
- Nantong Bolian Material Technology Co, Ltd, Nantong, 226010, China
| | - Zheng Wu
- Nantong Bolian Material Technology Co, Ltd, Nantong, 226010, China
| | - Jie Fan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yong Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
5
|
Yang J, Zhang Z, Zhou P, Zhang Y, Liu Y, Xu Y, Gu Y, Qin S, Haick H, Wang Y. Toward a new generation of permeable skin electronics. NANOSCALE 2023; 15:3051-3078. [PMID: 36723108 DOI: 10.1039/d2nr06236d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Skin-mountable electronics are considered to be the future of the next generation of portable electronics, due to their softness and seamless integration with human skin. However, impermeable materials limit device comfort and reliability for long-term, continuous usage. The recent emergence of permeable skin-mountable electronics has attracted tremendous attention in the soft electronics field. Herein, we provide a comprehensive and systematic review of permeable skin-mountable electronics. Typical porous materials and structures are first highlighted, followed by discussion of important device properties. Then, we review the latest representative applications of breathable skin-mountable electronics, such as bioelectrical sensors, temperature sensors, humidity and hydration sensors, strain and pressure sensors, and energy harvesting and storage devices. Finally, a conclusion and future directions for permeable skin electronics are provided.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yumiao Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yuheng Gu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Shenglin Qin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
6
|
Zhao J, Zhang T, Li Y, Huang L, Tang Y. Fluorine-Free, Highly Durable Waterproof and Breathable Fibrous Membrane with Self-Clean Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:516. [PMID: 36770477 PMCID: PMC9922014 DOI: 10.3390/nano13030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Lightweight, durable waterproof and breathable membranes with multifunctional properties that mimic nature have great potential for application in high-performance textiles, efficient filtering systems and flexible electronic devices. In this work, the fluoride-free triblock copolymer poly(styrene-b-butadiene-b-styrene) (SBS) fibrous membrane with excellent elastic performance was prepared using electrospinning. According to the bionics of lotus leaves, a coarse structure was built onto the surface of the SBS fiber using dip-coating of silicon dioxide nanoparticles (SiO2 NPs). Polydopamine, an efficient interfacial adhesive, was introduced between the SBS fiber and SiO2 NPs. The hydrophobicity of the modified nanofibrous membrane was highly improved, which exhibited a super-hydrophobic surface with a water contact angle large than 160°. The modified membrane retained super-hydrophobic properties after 50 stretching cycles under 100% strains. Compared with the SBS nanofibrous membrane, the hydrostatic pressure and WVT rate of the SBS/PDA/SiO2 nanofibrous membrane improved simultaneously, which were 84.2 kPa and 6.4 kg·m-2·d-1 with increases of 34.7% and 56.1%, respectively. In addition, the SBS/PDA/SiO2 nanofibrous membrane showed outstanding self-cleaning and windproof characteristics. The high-performance fibrous membrane provides a new solution for personal protective equipment.
Collapse
Affiliation(s)
- Jinchao Zhao
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, China
| | - Teng Zhang
- School of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Youmu Li
- School of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Leping Huang
- School of Material Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Youhong Tang
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
7
|
Zhang W, Sun G, Wang Y, Han W, Zhang Y, Hu W, Xin S, Xiao C. Superhydrophobic and Breathable Polyacrylonitrile/Silica/Perfluoroalkyl Ethyl Methacrylate Nanofiber Membranes Prepared by Solution Blow Spinning. ACS OMEGA 2022; 7:30333-30346. [PMID: 36061731 PMCID: PMC9434752 DOI: 10.1021/acsomega.2c03602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
Hydrophobic and breathable nanofiber membranes have attracted considerable attention owing to their applications in various fields. In this study, we fabricated superhydrophobic and breathable nanofiber membranes using solution blow spinning. We optimized the spinning process parameters by analyzing their effects on the structure and properties of the nanofiber membranes. And the nanofiber membranes achieved superhydrophobicity through hydrophobic modification treatment. The average fiber diameter and pore size of the obtained membrane were 0.51 and 13.65 μm, respectively. The membranes exhibited superhydrophobicity, breathability, and mechanical properties: water vapor transmission of 12.88 kg/m2/day, air permeability of 10.97 mm/s, water contact angle of 150.92°, maximum tensile stress of 5.36 MPa, and maximum elongation at break of 12.27%. Additionally, we studied the impact of heat treatment on the nanofiber membranes. The membranes prepared in this study can be applied to protective garments, outdoor clothing, antifouling materials, etc. Because of its relatively higher production efficiency, solution blow spinning is a prospective method for producing functional nanofibers.
Collapse
Affiliation(s)
- Wei Zhang
- Fiber
Material Research Center, School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Guangwu Sun
- Fiber
Material Research Center, School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yudong Wang
- Guangxi
University of Science and Technology, Liuzhou 545026, Guangxi Zhuang Autonomous Region, China
| | - Wanli Han
- Materials
and Textile Engineering College, Jiaxing
University, Jiaxing 314041, Zhejiang, China
| | - Yinjiang Zhang
- College
of Textile and Apparel, Key Laboratory of Clean Dyeing and Finishing
Technology of Zhejiang Province, Shaoxing
University, Shaoxing 312010, Zhejiang, China
| | - Wenfeng Hu
- Fiber
Material Research Center, School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Sanfa Xin
- Fiber
Material Research Center, School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Changfa Xiao
- Fiber
Material Research Center, School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
- State
Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| |
Collapse
|
8
|
Wang H, Fu Y, Liu R, Xiong J, Li N. Waterproof, breathable and infrared-invisible polyurethane/silica nanofiber membranes for wearable textiles. Dalton Trans 2022; 51:13949-13956. [PMID: 36040452 DOI: 10.1039/d2dt02325c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Waterproof and breathable membranes, which have great potential in applications such as membrane distillation, self-cleaning, and multifunctional clothing, have attracted a lot of attention due to their superior performance. Superhydrophobic and infrared-invisible polyurethane (PU)/silica (SiO2) nanofiber microporous membranes were prepared by facile electrospinning and a hydrothermal-assisted sol-gel method. Compared with pure PU nanofiber membranes, silica nanoparticles act as an adhesion layer, which can provide the rough surface and low surface energy of fibrous membranes. Therefore, the grafted PU/SiO2 nanofiber membrane was endowed with a good superhydrophobic effect, and its water contact angle (WCA) reached 161°. The nanofiber membrane exhibited comfortable waterproof and breathable properties, in which the air permeability and water vapor transfer rate was 5.18 mm s-1 and 7.85 kg m-2 d-1, respectively. When the PU/SiO2 nanofiber membrane was irradiated by infrared light, the surface of the fiber membrane showed a green, low-temperature state. These waterproof and breathable nanofiber membranes with superhydrophobic properties could be used in anti-icing, outdoor concealment, and camouflage applications.
Collapse
Affiliation(s)
- Huijia Wang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yongjing Fu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Rong Liu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jie Xiong
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Key Laboratory for Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ni Li
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.,Key Laboratory for Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
9
|
Gorji M, Mazinani S, Gharehaghaji AA. A review on emerging developments in thermal and moisture management by membrane‐based clothing systems towards personal comfort. J Appl Polym Sci 2022. [DOI: 10.1002/app.52416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohsen Gorji
- New Technologies Research Center (NTRC) Amirkabir University of Technology Tehran Iran
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC) Amirkabir University of Technology Tehran Iran
| | | |
Collapse
|
10
|
Kianfar P, Bongiovanni R, Ameduri B, Vitale A. Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2067868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Parnian Kianfar
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Bruno Ameduri
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alessandra Vitale
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| |
Collapse
|
11
|
Acik G. Fabrication of polypropylene fibers possessing quaternized ammonium salt based on the combination of CuAAC click chemistry and electrospinning. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Opálková Šišková A, Mosnáčková K, Hrůza J, Frajová J, Opálek A, Bučková M, Kozics K, Peer P, Eckstein Andicsová A. Electrospun Poly(ethylene Terephthalate)/Silk Fibroin Composite for Filtration Application. Polymers (Basel) 2021; 13:2499. [PMID: 34372102 PMCID: PMC8348435 DOI: 10.3390/polym13152499] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
In this study, fibrous membranes from recycled-poly(ethylene terephthalate)/silk fibroin (r-PSF) were prepared by electrospinning for filtration applications. The effect of silk fibroin on morphology, fibers diameters, pores size, wettability, chemical structure, thermo-mechanical properties, filtration efficiency, filtration performance, and comfort properties such as air and water vapor permeability was investigated. The filtration efficiency (FE) and quality factor (Qf), which represents filtration performance, were calculated from penetration through the membranes using aerosol particles ranging from 120 nm to 2.46 μm. The fiber diameter influenced both FE and Qf. However, the basis weight of the membranes has an effect, especially on the FE. The prepared membranes were classified according to EN149, and the most effective was assigned to the class FFP1 and according to EN1822 to the class H13. The impact of silk fibroin on the air permeability was assessed. Furthermore, the antibacterial activity against bacteria S. aureus and E. coli and biocompatibility were evaluated. It is discussed that antibacterial activity depends not only on the type of used materials but also on fibrous membranes' surface wettability. In vitro biocompatibility of the selected samples was studied, and it was proven to be of the non-cytotoxic effect of the keratinocytes (HaCaT) after 48 h of incubation.
Collapse
Affiliation(s)
- Alena Opálková Šišková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia;
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava, Slovakia;
| | - Katarína Mosnáčková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia;
| | - Jakub Hrůza
- Advanced Technologies and Innovation, Institute for Nanomaterials, Technical University in Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic;
| | - Jaroslava Frajová
- Faculty of Arts and Architecture, Technical University in Liberec, Studentská 1402/2, 460 01 Liberec, Czech Republic;
| | - Andrej Opálek
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava, Slovakia;
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 51 Bratislava, Slovakia;
| | - Katarína Kozics
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| | - Petra Peer
- Institute of Hydrodynamics of the Czech Academy of Sciences, v. v. i., Pod Patankou 5, 166 12 Prague 6, Czech Republic;
| | - Anita Eckstein Andicsová
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia;
| |
Collapse
|
13
|
Biochar/Kevlar Nanofiber Mixed Matrix Nanofiltration Membranes with Enhanced Dye/Salt Separation Performance. MEMBRANES 2021; 11:membranes11060443. [PMID: 34204750 PMCID: PMC8231588 DOI: 10.3390/membranes11060443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022]
Abstract
Mixed matrix membranes have received ever-growing attention due to their high separation performance, taking the advantages of both porous fillers and polymer backbones. However, limitations still exist due to the instability of polymers in harsh environments. Here, Kevlar aramid nanofibers, a nanoscale version of poly(paraphenylene terephthalamide), were applied to fabricate a nanofiltration membrane by a thermo-assisted phase inversion method due to their high mechanical strength, physical stability and resistance to solvents. Biochar was incorporated in the Kevlar nanofibers to evaluate its performance in dye/salt separation performance. The fillers’ distribution in the polymeric matrix, structural characteristics, and the interaction of fillers with the polymer in the membrane were characterized via SEM, FTIR, AFM and contact angle analysis. Under the optimal fabrication conditions, the obtained membrane exhibited a pure water flux of 3.83 L m−2 h−1 bar−1 with a dye rejection of 90.55%, 93.54% and 95.41% for Congo red, methyl blue and Reactive blue 19, respectively. Meanwhile, the mixed matrix membrane maintained a salt rejection of 59.92% and 85.37% for NaCl and Na2SO4, respectively. The obtained membrane with high separation performance suggested that Kevlar nanofiber and biochar are good candidates for membrane synthesis.
Collapse
|
14
|
Yao Y, Guo Y, Li X, Yu J, Ding B. Asymmetric Wettable, Waterproof, and Breathable Nanofibrous Membranes for Wound Dressings. ACS APPLIED BIO MATERIALS 2021; 4:3287-3293. [PMID: 35014415 DOI: 10.1021/acsabm.0c01624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the progression in wound treatment, the development of wound dressings with considerable skin regeneration capability and improved patient comfort still faces huge challenges. In this study, a type of asymmetric wettable gradient nanofibrous membrane, which is composed of a hydrophobic polyvinyl butyral (PVB)-polydimethylsiloxane (PDMS) upper layer, a PVB-PDMS/gelatin middle layer, and a hydrophilic gelatin lower layer, has been fabricated. The PVB-PDMS upper layer gave dramatically elevated water contact angles from 71.27° to 125.45° as compared with the gelatin membrane, indicating an asymmetric wettability. The composite membrane exhibited outstanding waterproof capability with a hydrostatic pressure of 58.21 kPa, excellent breathability with a water vapor transmission rate of 8.80 kg m-2 d-1, improved stretchability and tear resistance, and dramatic improvement in mesenchymal stem cell recruitment with the immobilization of stromal-cell-derived factor-1α for accelerating skin regeneration. The development of asymmetric wettable nanofibrous membranes offers insight into wound-dressing design.
Collapse
Affiliation(s)
- Yueming Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuxia Guo
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
15
|
Yue Y, Gong X, Jiao W, Li Y, Yin X, Si Y, Yu J, Ding B. In-situ electrospinning of thymol-loaded polyurethane fibrous membranes for waterproof, breathable, and antibacterial wound dressing application. J Colloid Interface Sci 2021; 592:310-318. [PMID: 33676193 DOI: 10.1016/j.jcis.2021.02.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022]
Abstract
Skin-like flexible membrane with excellent water resistance and moisture permeability is an urgent need in the wound dressing field to provide comfort and protection for the wound site. Despite efforts that have been made in the development of waterproof and breathable (W&B) membranes, the in-situ electrospinning of W&B membranes suitable for irregular wound surfaces as wound dressings still faces huge challenges. In the current work, a portable electrospinning device with multi-functions, including adjustable perfusion speed for a large range from 0.05 mL/h to 10 mL/h and high voltage up to 11 kV, was designed. The thymol-loaded ethanol-soluble polyurethane (EPU) skin-like W&B nanofibrous membranes with antibacterial activity were fabricated via the custom-designed device. Ultimately, the resultant nanofibrous membranes composed of EPU, fluorinated polyurethane (FPU), and thymol presented uniform structure, robust waterproofness with the hydrostatic pressure of 17.6 cm H2O, excellent breathability of 3.56 kg m-2 d-1, the high tensile stress of 1.83 MPa and tensile strain of 453%, as well as high antibacterial activity. These results demonstrate that the new-type device has potential as a portable electrospinning apparatus for the fabrication of antibacterial membranes directly on the wound surface and puts a new way for the development of portable electrospinning devices.
Collapse
Affiliation(s)
- Yunpeng Yue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaobao Gong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wenling Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Xia Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
16
|
Abstract
Pathogenic microbial contamination poses serious threats to human healthcare and economies worldwide, which instigates the booming development of challenging antibacterial materials. N-halamine fibrous materials (NFMs), as an important part of antibacterial materials, featuring structural continuity, good pore connectivity, rapid sterilization, rechargeable bactericidal activity, and safety to humans and environment, have received significant research attention. This review aims to present a systematic discussion of the recent advances in N-halamine antibacterial fibrous materials. We firstly introduce the chemical structures and properties of N-halamine materials. Subsequently, the developed NFMs can be categorized based on their fabrication strategies, including surface modification and one-step spinning. Then some representative applications of these fibrous materials are highlighted. Finally, challenges and future research directions of the materials are discussed in the hope of giving suggestions for the following studies. The chemical structures and properties of N-halamine materials are briefly introduced. Design and fabrication strategies of N-halamine fibrous materials are systematically reviewed. The functional applications of the N-halamine fibrous materials are discussed. Challenges and future research directions of the antibacterial N-halamine fibrous materials are provided.
Collapse
|
17
|
Hu W, Wang Z, Zha Y, Gu X, You W, Xiao Y, Wang X, Zhang S, Wang J. High Flexible and Broad Antibacterial Nanodressing Induces Complete Skin Repair with Angiogenic and Follicle Regeneration. Adv Healthc Mater 2020; 9:e2000035. [PMID: 32378346 DOI: 10.1002/adhm.202000035] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
Complete skin reconstruction is a hierarchically physiological assembly involving epidermis, dermis, vasculature, innervation, hair follicles, and sweat glands. Despite various wound dressings having been developed for skin regeneration, few works refer to the complete skin regeneration, particularly lacking for vasculatures and hair follicles. Herein, an instructive wound dressing that integrates the antibacterial property of quaternized chitin and the mechanical strength and biological multifunction of silk fibroin through layer-by-layer electrostatic self-assembly is designed and reported. The resultant dressings exhibit a nanofibrous structure ranging from 471.5 ± 212.1 to 756.9 ± 241.8 nm, suitable flexibility with tensile strength up to 4.47 ± 0.29 MPa, and broad-spectrum antibacterial activity against Escherichia coli and Staphylococcus aureus. More interestingly, the current dressing system remarkably accelerates in vivo vascular reconstruction within 15 days, and the number of regenerated hair follicles reaches up to 22 ± 4 mm-2, which is comparable to the normal tissue (27 ± 2 mm-2). Those crucial functions might originate from the combination between quaternized chitin and silk fibroin and the hierarchical structure of electrospun nanofiber. This work establishes an easy but effective pathway to design a multifunctional wound dressing for the complete skin regeneration.
Collapse
Affiliation(s)
- Weikang Hu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zijian Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- Human Genetics Resource Preservation Center in Hubei, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Yao Zha
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiang Gu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wenjie You
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- Human Genetics Resource Preservation Center in Hubei, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- Human Genetics Resource Preservation Center in Hubei, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- Human Genetics Resource Preservation Center in Hubei, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jianglin Wang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
18
|
Yang X, Wang J, Guo H, Liu L, Xu W, Duan G. Structural design toward functional materials by electrospinning: A review. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0068] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractElectrospinning as one of the most versatile technologies have attracted a lot of scientists’ interests in past decades due to its great diversity of fabricating nanofibers featuring high aspect ratio, large specific surface area, flexibility, structural abundance, and surface functionality. Remarkable progress has been made in terms of the versatile structures of electrospun fibers and great functionalities to enable a broad spectrum of applications. In this article, the electrospun fibers with different structures and their applications are reviewed. First, several kinds of electrospun fibers with different structures are presented. Then the applications of various structural electrospun fibers in different fields, including catalysis, drug release, batteries, and supercapacitors, are reviewed. Finally, the application prospect and main challenges of electrospun fibers are discussed. We hope that this review will provide readers with a comprehensive understanding of the structural design and applications of electrospun fibers in different fields.
Collapse
Affiliation(s)
- Xiuling Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingwen Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongtao Guo
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li Liu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wenhui Xu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
19
|
Tangsee S, Lashari NUR. Facile synthesis of nano silica-based coating on API5L-x80 steel to achieve ultra non-wetting surface and its corrosion resistance. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01522-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Yu X, Li Y, Wang X, Si Y, Yu J, Ding B. Thermoconductive, Moisture-Permeable, and Superhydrophobic Nanofibrous Membranes with Interpenetrated Boron Nitride Network for Personal Cooling Fabrics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32078-32089. [PMID: 32609492 DOI: 10.1021/acsami.0c04486] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Space cooling occupies a large portion of total building energy consumption, aggravating the energy crisis and restricting human sustainable development, thus an efficient and energy-saving personal cooling technology is in high demand. Recently, thermally conductive fillers, such as boron nitride (BN), are usually enriched to fibrous materials to construct thermal management textiles. However, these fabrication processes are complex and time-consuming, and the resultant materials fail to transmit moisture and resist liquid water. Herein, we develop a facile and scalable methodology to construct highly thermoconductive breathable superhydrophobic nanofibrous membranes to enhance the thermal management of textiles for personal cooling. The strategy causes boron nitride (BN) to be linked with each other along nanofibers, and thus the membranes contain well interpenetrated BN network and remain porous structure simultaneously, improving their thermal conductivity without sacrificing the moisture permeability. In addition, the membranes possess good resistance to water penetration and intriguing superhydrophobicity due to the synergistic effect of the hydrophobic polymeric matrix and improved roughness. As a consequence, the resultant membranes demonstrate outstanding hybrid active-passive cooling performance with ultrahigh in-plane thermal conductivity of 17.9 W m-1 K-1, cross-plane thermal conductivity of 0.29 W m-1 K-1, and high water vapor transmission (WVT) rate of 11.6 kg m-2 day-1, as well as excellent water repellency with water contact angle of 153° and high hydrostatic pressure of 32 kPa, indicating promising utility for the next generation of cooling fabrics.
Collapse
Affiliation(s)
- Xi Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Xianfeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
21
|
Highly Sensitive, Breathable, and Flexible Pressure Sensor Based on Electrospun Membrane with Assistance of AgNW/TPU as Composite Dielectric Layer. SENSORS 2020; 20:s20092459. [PMID: 32357444 PMCID: PMC7273205 DOI: 10.3390/s20092459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
Pressure sensors have been widely used in electronic wearable devices and medical devices to detect tiny physical movements and mechanical deformation. However, it remains a challenge to fabricate desirable, comfortable wearing, and highly sensitive as well as fast responsive sensors to capture human body physiological signs. Here, a new capacitive flexible pressure sensor that is likely to solve this problem was constructed using thermoplastic polyurethane elastomer rubber (TPU) electrospinning nanofiber membranes as a stretchable substrate with the incorporation of silver nanowires (AgNWs) to build a composite dielectric layer. In addition, carbon nanotubes (CNTs) were painted on the TPU membranes as flexible electrodes by screen printing to maintain the flexibility and breathability of the sensors. The flexible pressure sensor could detect tiny body signs; fairly small physical presses and mechanical deformation based on the variation in capacitance due to the synergistic effects of microstructure and easily altered composite permittivity of AgNW/TPU composite dielectric layers. The resultant sensors exhibited high sensitivity (7.24 kPa-1 within the range of 9.0 × 10-3 ~ 0.98 kPa), low detection limit (9.24 Pa), and remarkable breathability as well as fast responsiveness (<55 ms). Moreover, both continuously pressing/releasing cycle over 1000 s and bending over 1000 times did not impair the sensitivity, stability, and durability of this flexible pressure sensor. This proposed strategy combining the elastomer nanofiber membrane and AgNW dopant demonstrates a cost-effective and scalable fabrication of capacitive pressure sensors as a promising application in electronic skins and wearable devices.
Collapse
|
22
|
Hot-melt Adhesive Bonding of Polyurethane/Fluorinated Polyurethane/Alkylsilane-Functionalized Graphene Nanofibrous Fabrics with Enhanced Waterproofness, Breathability, and Mechanical Properties. Polymers (Basel) 2020; 12:polym12040836. [PMID: 32268559 PMCID: PMC7240538 DOI: 10.3390/polym12040836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/29/2022] Open
Abstract
Waterproof-breathable (WB) materials with outstanding waterproofness, breathability, and mechanical performance are critical in diverse consumer applications. Electrospun nanofibrous membranes with thin fiber diameters, small pore sizes, and high porosity have attracted significant attention in the WB fabric field. Hot-press treatment technology can induce the formation of inter-fiber fusion structures and hence improve the waterproofness and mechanical performance. By combining electrospinning and hot-press treatment technology, polyurethane/fluorinated polyurethane/thermoplastic polyurethane/alkylsilane-functionalized graphene (PU/FPU/TPU/FG) nanofiber WB fabric was fabricated. Subsequently, the morphologies, porous structure, hydrostatic pressure, water vapor transmission rate (WVTR), and stress–strain behavior of the nanofiber WB fabric were systematically investigated. The introduction of the hydrophobic FG sheet structure and the formation of the inter-fiber fusion structure greatly improved not only the waterproofness but also the mechanical performance of the nanofiber WB fabric. The optimized PU/FPU/TPU-50/FG-1.5 WB fabric exhibited an excellent comprehensive performance: a high hydrostatic pressure of 80.4 kPa, a modest WVTR of 7.6 kg m−2 d−1, and a robust tensile stress of 127.59 MPa, which could be used to achieve various applications. This work not only highlights the preparation of materials, but also provides a high-performance nanofiber WB fabric with huge potential application prospects in various fields.
Collapse
|
23
|
Zhao J, Wang X, Xu Y, He P, Si Y, Liu L, Yu J, Ding B. Multifunctional, Waterproof, and Breathable Nanofibrous Textiles Based on Fluorine-Free, All-Water-Based Coatings. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15911-15918. [PMID: 32141740 DOI: 10.1021/acsami.0c00846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing environmentally benign, multifunctional waterproof and breathable membranes (WBMs) is of great importance but still faces enormous challenges. Here, an environmentally benign fluorine-free, ultraviolet (UV) blocking, and antibacterial WBM with a high level of waterproofness and breathability is developed on a large scale by combining electrospinning and step-by-step surface coating technology. Fluorine-free water-based alkylacrylates with long hydrocarbon chains were coated onto polyamide 6 fibrous membranes to construct robust hydrophobic surfaces. The subsequent titanium dioxide nanoparticle emulsion coating prominently decreased the maximum pore size, leading to higher water resistance, endowing the membranes with efficient UV-resistant and antibacterial properties. The resulting fibrous membranes possessed excellent waterproofness of 106.2 kPa, exceptional breathability of 10.3 kg m-2 d-1, a significant UV protection factor of 430.5, together with a definite bactericidal efficiency of 99.9%. We expect that this methodology for construction of environmentally benign and multifunctional WBMs will shed light on the material design, and the prepared membranes could implement their promising applications in covering materials, outdoor equipment, protective clothing, and high-altitude garments.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xianfeng Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yuanqiang Xu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Peiwen He
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Si
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Lifang Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
24
|
Baji A, Agarwal K, Oopath SV. Emerging Developments in the Use of Electrospun Fibers and Membranes for Protective Clothing Applications. Polymers (Basel) 2020; 12:polym12020492. [PMID: 32102318 PMCID: PMC7077639 DOI: 10.3390/polym12020492] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022] Open
Abstract
There has been increased interest to develop protective fabrics and clothing for protecting the wearer from hazards such as chemical, biological, heat, UV, pollutants etc. Protective fabrics have been conventionally developed using a wide variety of techniques. However, these conventional protective fabrics lack breathability. For example, conventional protective fabrics offer good protection against water but have limited ability in removing the water vapor and moisture. Fibers and membranes fabricated using electrospinning have demonstrated tremendous potential to develop protective fabrics and clothing. These fabrics based on electrospun fibers and membranes have the potential to provide thermal comfort to the wearer and protect the wearer from wide variety of environmental hazards. This review highlights the emerging applications of electrospinning for developing such breathable and protective fabrics.
Collapse
Affiliation(s)
- Avinash Baji
- Department of Engineering, School of Engineering and Mathematical Sciences (SEMS), La Trobe University, Bundoora 3086, Victoria, Australia;
- Correspondence:
| | - Komal Agarwal
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), 20 Dover Drive, Singapore 138682, Singapore;
| | - Sruthi Venugopal Oopath
- Department of Engineering, School of Engineering and Mathematical Sciences (SEMS), La Trobe University, Bundoora 3086, Victoria, Australia;
| |
Collapse
|
25
|
Liu K, Deng L, Zhang T, Shen K, Wang X. Facile Fabrication of Environmentally Friendly, Waterproof, and Breathable Nanofibrous Membranes with High UV-Resistant Performance by One-Step Electrospinning. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05617] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kang Liu
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, P.R. China
| | - Li Deng
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, P.R. China
| | - Tonghui Zhang
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, P.R. China
| | - Ke Shen
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, P.R. China
| | - Xuefen Wang
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, P.R. China
| |
Collapse
|
26
|
Pei M, Huo L, Zhang K, Zhou H, Liu P. Hydrophobic surface via coating fluorinated homopolymer: Effects of the surface etching of silicon wafer and coated fluoropolymer amount. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.123984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Guo Y, Zhou W, Wang L, Dong Y, Yu J, Li X, Ding B. Stretchable PDMS Embedded Fibrous Membranes Based on an Ethanol Solvent System for Waterproof and Breathable Applications. ACS APPLIED BIO MATERIALS 2019; 2:5949-5956. [DOI: 10.1021/acsabm.9b00875] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yuxia Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wen Zhou
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Lihuan Wang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuping Dong
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
28
|
Abstract
Superhydrophobic surfaces have drawn attention from scientists and engineers because of their extreme water repellency. More interestingly, these surfaces have also demonstrated an infinite influence on civil engineering materials. In this feature article, the history of wettability theory is described firstly. The approaches to construct hierarchical micro/nanostructures such as chemical vapor deposition (CVD), electrochemical, etching, and flame synthesis methods are introduced. Then, the advantages and limitations of each method are discussed. Furthermore, the recent progress of superhydrophobicity applied on civil engineering materials and its applications are summarized. Finally, the obstacles and prospects of superhydrophobic civil engineering materials are stated and expected. This review should be of interest to scientists and civil engineers who are interested in superhydrophobic surfaces and novel civil engineering materials.
Collapse
|
29
|
Yu X, Li Y, Yin X, Wang X, Han Y, Si Y, Yu J, Ding B. Corncoblike, Superhydrophobic, and Phase-Changeable Nanofibers for Intelligent Thermoregulating and Water-Repellent Fabrics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39324-39333. [PMID: 31566350 DOI: 10.1021/acsami.9b12934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The comfort and protection of clothes are critically important for human well-being in life; however, constructing multifunctional fabrics with excellent thermoregulating and water-repellent performance still presents an exciting scientific challenge and a significant technological advancement. Therefore, we report a novel and straightforward methodology to fabricate corncoblike and phase-changeable nanofibers by incorporating n-octadecane phase change capsules (PCCs) for creating water-repellent and thermoregulating nanofibrous membranes. This strategy causes PCC to be uniformly distributed on the nanofibers to form a unique corncoblike structure, preventing the abscission of PCC and the leakage of the phase change ingredient (n-octadecane). Besides, the resultant nanofibrous membranes are endowed with hierarchical roughness, small pore size, and energy storage/release capacity in response to environmental changes. As a consequence, the nanofibrous membranes present prominent water repellence with superhydrophobicity (a water contact angle of 153°) and a high hydrostatic pressure of 84 kPa, robust mechanical properties with a tensile strength of 9.2 MPa, as well as excellent hybrid active-passive thermal regulation with a water vapor transmittance rate of 11.4 kg m-2 d-1 and a high phase change enthalpy of 74 J g-1 after 50 heating/cooling cycles, indicating them to be an exceptional candidate for personal protection and thermal management.
Collapse
Affiliation(s)
- Xi Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Yang Li
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Xia Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Xianfeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Yuhao Han
- China University of Geosciences , Wuhan 430074 , China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| |
Collapse
|