1
|
Gu R, Guo J, Zhang S, Zhou J, Wang J, Cohen Stuart MA, Wang M. Effects of catechol grafting on chitosan-based coacervation and adhesion. Int J Biol Macromol 2024; 267:131662. [PMID: 38636754 DOI: 10.1016/j.ijbiomac.2024.131662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
In this study, we investigated detailedly the contribution of catechol in tuning the formation and adhesive properties of coacervates. We have constructed a series of catechol-grafted Chitosan (Chitosan-C), and investigated their coacervation with gum arabic (GA) and the corresponding adhesion. We demonstrate that, increasing catechol grafting ratio from 0 %-44 % impacted the coacervation moderately, while enhanced the adhesion of the coacervate up to 438 % when the catechol faction was 37 %. Further increasing the grafting ratio to 55 % led to precipitated coacervates associated with a declined adhesion. Our findings identify the optimal grafting threshold for coacervation and adhesion, providing insights into the underlying mechanism of coacervate binding. Moreover, the catechol enhancement on adhesion of coacervates tolerates different substrates and diverse polyelectrolyte pairs. The revealed principles shall be helpful for designing adhesive coacervates and boosting their applications in various industrial and biomedical areas.
Collapse
Affiliation(s)
- Runkang Gu
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Jiangtao Guo
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Shiting Zhang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Jin Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China
| | - Mingwei Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Garcia-Rodriguez JM, Wilker JJ. Positive Charge Influences on the Surface Interactions and Cohesive Bonding of a Catechol-Containing Polymer. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38470565 DOI: 10.1021/acsami.3c16889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Achieving robust underwater adhesion remains challenging. Through generations of evolution, marine mussels have developed an adhesive system that allows them to anchor onto wet surfaces. Scientists have taken varied approaches to developing mussel-inspired adhesives. Mussel foot proteins are rich in lysine residues, which may play a role in the removal of salts from surfaces. Displacement of water and ions on substrates could then enable molecular contact with surfaces. The necessity of cations for underwater adhesion is still in debate. Here, we examined the performance of a methacrylate polymer containing quaternary ammonium and catechol groups. Varying amounts of charge in the polymers were studied. As opposed to protonated amines such as lysine, quaternary ammonium groups offer a nonreactive cation for isolating effects from only charge. Results shown for dry bonding demonstrated that cations tended to decrease bulk cohesion while increasing surface interactions. Stronger interactions at surfaces, along with weaker bulk bonding, indicate that cations decreased the cohesive forces. When under salt water, overall bulk adhesion also dropped with higher cation loadings. Surface attachment under salt water also dropped, indicating that the polymer cations could not displace surface waters or sodium ions. Salt did, however, appear to shield bulk cation-cation repulsions. These studies help to distinguish influences upon bulk cohesion from attachment at surfaces. The roles of cations in adhesion are complex, with both cohesive and surface bonding being relevant in different ways, sometimes even working in opposite directions.
Collapse
Affiliation(s)
- Jennifer M Garcia-Rodriguez
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Jonathan J Wilker
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
- School of Materials Engineering, Purdue University, 701 W. Stadium Avenue, West Lafayette, Indiana 47907-2045, United States
| |
Collapse
|
3
|
Fan H. Getting glued in the sea. Polym J 2023; 55:653-664. [PMID: 37284729 PMCID: PMC9982171 DOI: 10.1038/s41428-023-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Inspired by ocean organisms, scientists have been developing adhesives for application in the marine environment. However, water and high salinity, which not only weaken the interfacial bonding by the hydration layer but also induce the deterioration of adhesives by erosion, swelling, hydrolysis, or plasticization, are detrimental to adhesion, resulting in specific challenges in the development of under-seawater adhesives. In this focus review, current adhesives that are capable of macroscopic adhesion in seawater were summarized. The design strategies and performance of these adhesives were reviewed based on their bonding methods. Finally, some future research directions and perspectives for under-seawater adhesives were discussed.
Collapse
Affiliation(s)
- Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Huang P, Jiang L, Pan H, Ding L, Zhou B, Zhao M, Zou J, Li B, Qi M, Deng H, Zhou Y, Chen X. An Integrated Polymeric mRNA Vaccine without Inflammation Side Effects for Cellular Immunity Mediated Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207471. [PMID: 36326183 DOI: 10.1002/adma.202207471] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Among the few available mRNA delivery vehicles, lipid nanoparticles (LNPs) are the most clinically advanced but they require cumbersome four components and suffer from inflammation-related side effects that should be minimized for safety. Yet, a certain level of proinflammatory responses and innate immune activation are required to evoke T-cell immunity for mRNA cancer vaccination. To address these issues and develop potent yet low-inflammatory mRNA cancer vaccine vectors, a series of alternating copolymers "PHTA" featured with ortho-hydroxy tertiary amine (HTA) repeating units for mRNA delivery is synthesized, which can play triple roles of condensing mRNA, enhancing the polymeric nanoparticle (PNP) stability, and prolonging circulation time. Unlike LNPs exhibiting high levels of inflammation, the PHTA-based PNPs show negligible inflammatory side effects in vivo. Importantly, the top candidate PHTA-C18 enables successful mRNA cancer vaccine delivery in vivo and leads to a robust CD8+ T cell mediated antitumor cellular immunity. Such PHTA-based integrated PNP provides a potential approach for establishing mRNA cancer vaccines with good inflammatory safety profiles.
Collapse
Affiliation(s)
- Pei Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Lingsheng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingwen Ding
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Bo Zhou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Mengyao Zhao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Benhao Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Meiwei Qi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhang Deng
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
5
|
Wang R, Sun M, Wang C, Dong A, Zhang J. A facile and versatile strategy for synthesis of dopamine‐functionalized polymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ruosi Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| | - Mengxiao Sun
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| | - Chenyu Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE) Tianjin University Tianjin China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin China
| |
Collapse
|
6
|
Liu J, Huang H, Zhou D. Surface modification of cellulose nanofibers by oxidative polymerization of tannic acid/ethanediamine and their polyvinylalcohol composites. J Appl Polym Sci 2022. [DOI: 10.1002/app.53049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Liu
- College of Material Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
| | - Danling Zhou
- College of Health and Social Care Shanghai Urban Construction Vocational College Shanghai China
| |
Collapse
|
7
|
Zhang H, Xiao Y, Chen P, Cao H, Bai W, Yang Z, Yang P, Li Y, Gu Z. Robust Natural Polyphenolic Adhesives against Various Harsh Environments. Biomacromolecules 2022; 23:3493-3504. [PMID: 35861485 DOI: 10.1021/acs.biomac.2c00704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although adhesive hydrogels have been extensively explored, the development of adhesives with long-term strong adhesion capacity under various harsh environments is still met with profound challenges such as sophisticated preparation, long-term curing, and low bonding strength. Herein, a series of robust adhesive hydrogels have been developed via the polyphenol-epoxy-cross-linking (PEC) reactions between natural polyphenols (extracts) and epoxy glycidyl ethers. The as-prepared natural polyphenolic adhesive hydrogels could induce strong adhesion onto several kinds of typical substrates (i.e., wood, glass, paper, PET, PMMA, and Fe) under both dry and wet conditions based on multi-interactions. Moreover, those natural polyphenolic adhesives exhibited good low-temperature and solvent resistance performances, which could be widely used in different kinds of device repairment (i.e., chemical, petroleum, wood, metal, glass, plastic, rubber, and other industries) under different conditions. This work could provide new opportunities toward natural-inspired robust adhesives in various fields ranging from chemical transportation, industrial manufacturing, architectural design, and marine engineering to daily life.
Collapse
Affiliation(s)
- Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Zhang J, Li S, Yin Y, Xiang L, Xu F, Mai Y. One-Dimensional Helical Nanostructures from the Hierarchical Self-Assembly of an Achiral "Rod-Coil" Alternating Copolymer. Macromol Rapid Commun 2022; 43:e2200437. [PMID: 35726773 DOI: 10.1002/marc.202200437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Indexed: 11/09/2022]
Abstract
The self-assembly of alternating copolymers (ACPs) has attracted considerable interest due to their unique alternating nature. However, compared with block copolymers, their self-assembly behavior has remained much less explored and their reported self-assembled structures are limited. Here, we report the formation of supramolecular helical structures by the self-assembly of an achiral rod-coil alternating copolymer, poly(quarter(3-hexylthiophene)-alt-poly(ethylene glycol)) (P(Q3HT-alt-PEG)). The copolymer exhibited an interesting hierarchical self-assembly process, driven by the π-π stacking of the Q3HT segments and the solvophobic interaction of the alkyl chains in tetrahydrofuran (THF)-isopropanol (iPrOH) mixed solvents. The copolymer first self-assembled into thin nanobelts with a uniform size, then grew to helical nanoribbons and eventually twisted into helical nanowires with an average diameter of 25 ± 9 nm and a mean pitch of 80 ± 10 nm. Dissipative particle dynamics (DPD) simulation supported the formation course of the helical nanowires. Furthermore, the addition of (S)-ethyl lactate and (R)-ethyl lactate in the self-assembly of P(Q3HT-alt-PEG) resulted in the formation of left-handed and right-handed chiral nanowires, respectively, demonstrating the tunability of the chirality of the helical wires. This study expands the library of ordered self-assembled structures of ACPs, and also brings a new strategy and mechanism to construct helical supramolecular structures. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiacheng Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yucheng Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Ishihara K, Fukazawa K. Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. J Mater Chem B 2022; 10:3397-3419. [PMID: 35389394 DOI: 10.1039/d2tb00242f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fabrication of devices that accurately recognize, detect, and separate target molecules from mixtures is a crucial aspect of biotechnology for applications in medical, pharmaceutical, and food sciences. This technology has also been recently applied in solving environmental and energy-related problems. In molecular recognition, biomolecules are typically complexed with a substrate, and specific molecules from a mixture are recognized, captured, and reacted. To increase sensitivity and efficiency, the activity of the biomolecules used for capture should be maintained, and non-specific reactions on the surface should be prevented. This review summarizes polymeric materials that are used for constructing biointerfaces. Precise molecular recognition occurring at the surface of cell membranes is fundamental to sustaining life; therefore, materials that mimic the structure and properties of this particular surface are emphasized in this article. The requirements for biointerfaces to eliminate nonspecific interactions of biomolecules are described. In particular, the major issue of protein adsorption on biointerfaces is discussed by focusing on the structure of water near the interface from a thermodynamic viewpoint; moreover, the structure of polymer molecules that control the water structure is considered. Methodologies enabling stable formation of these interfaces on material surfaces are also presented.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
10
|
Geng H, Zhong QZ, Li J, Lin Z, Cui J, Caruso F, Hao J. Metal Ion-Directed Functional Metal-Phenolic Materials. Chem Rev 2022; 122:11432-11473. [PMID: 35537069 DOI: 10.1021/acs.chemrev.1c01042] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal ions are ubiquitous in nature and play significant roles in assembling functional materials in fields spanning chemistry, biology, and materials science. Metal-phenolic materials are assembled from phenolic components in the presence of metal ions through the formation of metal-organic complexes. Alkali, alkali-earth, transition, and noble metal ions as well as metalloids interacting with phenolic building blocks have been widely exploited to generate diverse hybrid materials. Despite extensive studies on the synthesis of metal-phenolic materials, a comprehensive summary of how metal ions guide the assembly of phenolic compounds is lacking. A fundamental understanding of the roles of metal ions in metal-phenolic materials engineering will facilitate the assembly of materials with specific and functional properties. In this review, we focus on the diversity and function of metal ions in metal-phenolic material engineering and emerging applications. Specifically, we discuss the range of underlying interactions, including (i) cation-π, (ii) coordination, (iii) redox, and (iv) dynamic covalent interactions, and highlight the wide range of material properties resulting from these interactions. Applications (e.g., biological, catalytic, and environmental) and perspectives of metal-phenolic materials are also highlighted.
Collapse
Affiliation(s)
- Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Qi-Zhi Zhong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China.,Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
11
|
Li X, Zhang Y, Li G, Zhao X, Wu Y. Mussel-inspired epoxy-dopamine polymer as surface primer: The effect of thermal annealing treatment for enhanced adhesion performance both at dry and hot/wet conditions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Gao L, Ma S, Bao L, Zhao X, Xiang Y, Zhang Z, Ma Y, Ma Z, Liang YM, Zhou F. Molecular Engineering Super-Robust Dry/Wet Adhesive with Strong Interface Bonding and Excellent Mechanical Tolerance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12684-12692. [PMID: 35230813 DOI: 10.1021/acsami.2c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the fact that synthetic adhesives have achieved great progress, achieving robust dry/wet adhesion under harsh operating environments is still challenging. Herein, inspired from the extraordinary adhesion mechanism of nature mussel protein adhesive, the balanced design concept of co-adhesion and interfacial adhesion is proposed to prepare one kind of novel copolymer adhesive of [poly(dopamine methacrylamide-co-methoxethyl acrylate-co-adamantane-1-carboxylic acid 2-(2-methyl-acryloyloxy)-ethyl ester)] [p(DMA-co-MEA-co-AD)], named as super-robust adhesive (SRAD). The SRAD exhibits ultra-high interface bonding strengths in air (∼7.66 MPa) and underwater (∼2.78 MPa) against an iron substrate. Especially, a greatly tough and stable adhesion strength (∼2.11 MPa) can be achieved after immersing the bonded sample in water for half a year. Furthermore, the SRAD demonstrates surprising wet bonding robustness/tolerance even encountering harsh conditions such as fluid shearing, dynamic loading, and cyclic mechanical fretting. The great advantages of SRAD, such as strong interface bonding, stable wet adhesion underwater, and good mechanical tolerance, makes it demonstrate huge application potential in engineering sealants and underwater adhesion.
Collapse
Affiliation(s)
- Luyao Gao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai 264006, China
| | - Luyao Bao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yangyang Xiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhizhi Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai 264006, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
13
|
Affiliation(s)
- Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Qian Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Bowen Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| |
Collapse
|
14
|
Narayanan A, Dhinojwala A, Joy A. Design principles for creating synthetic underwater adhesives. Chem Soc Rev 2021; 50:13321-13345. [PMID: 34751690 DOI: 10.1039/d1cs00316j] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water and adhesives have a conflicting relationship as demonstrated by the failure of most man-made adhesives in underwater environments. However, living creatures routinely adhere to substrates underwater. For example, sandcastle worms create protective reefs underwater by secreting a cocktail of protein glue that binds mineral particles together, and mussels attach themselves to rocks near tide-swept sea shores using byssal threads formed from their extracellular secretions. Over the past few decades, the physicochemical examination of biological underwater adhesives has begun to decipher the mysteries behind underwater adhesion. These naturally occurring adhesives have inspired the creation of several synthetic materials that can stick underwater - a task that was once thought to be "impossible". This review provides a comprehensive overview of the progress in the science of underwater adhesion over the past few decades. In this review, we introduce the basic thermodynamics processes and kinetic parameters involved in adhesion. Second, we describe the challenges brought by water when adhering underwater. Third, we explore the adhesive mechanisms showcased by mussels and sandcastle worms to overcome the challenges brought by water. We then present a detailed review of synthetic underwater adhesives that have been reported to date. Finally, we discuss some potential applications of underwater adhesives and the current challenges in the field by using a tandem analysis of the reported chemical structures and their adhesive strength. This review is aimed to inspire and facilitate the design of novel synthetic underwater adhesives, that will, in turn expand our understanding of the physical and chemical parameters that influence underwater adhesion.
Collapse
Affiliation(s)
- Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
15
|
Fan H, Gong JP. Bioinspired Underwater Adhesives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102983. [PMID: 34532910 DOI: 10.1002/adma.202102983] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Underwater adhesives are in high demand in both commercial and industrial sectors. Compared with adhesives used in dry (air) environments, adhesives used for wet or submerged surfaces in aqueous environments have specific challenges in development and performance. In this review, focus is on adhesives demonstrating macroscopic adhesion to wet/underwater substrates. The current strategies are first introduced for different types of underwater adhesives, and then an overview is provided of the development and performance of underwater adhesives based on different mechanisms and strategies. Finally, the possible research directions and prospects of underwater adhesives are discussed.
Collapse
Affiliation(s)
- Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo, 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo, 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
16
|
Cai C, Chen Z, Chen Y, Li H, Yang Z, Liu H. Mechanisms and applications of bioinspired underwater/wet adhesives. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chao Cai
- State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai China
| | - Zhen Chen
- State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai China
| | - Yujie Chen
- State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai China
| | - Hua Li
- State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai China
| | - Zhi Yang
- Department of Oral and Cranio‐maxillofacial Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology National Clinical Research Center of Stomatology Shanghai China
| | - Hezhou Liu
- State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
17
|
Lo Presti M, Rizzo G, Farinola GM, Omenetto FG. Bioinspired Biomaterial Composite for All-Water-Based High-Performance Adhesives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004786. [PMID: 34080324 PMCID: PMC8373158 DOI: 10.1002/advs.202004786] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Indexed: 05/24/2023]
Abstract
The exceptional underwater adhesive properties displayed by aquatic organisms, such as mussels (Mytilus spp.) and barnacles (Cirripedia spp.) have long inspired new approaches to adhesives with a superior performance both in wet and dry environments. Herein, a bioinspired adhesive composite that combines both adhesion mechanisms of mussels and barnacles through a blend of silk, polydopamine, and Fe3+ ions in an entirely organic, nontoxic water-based formulation is presented. This approach seeks to recapitulate the two distinct mechanisms that underpin the adhesion properties of the Mytilus and Cirripedia, with the former secreting sticky proteinaceous filaments called byssus while the latter produces a strong proteic cement to ensure anchoring. The composite shows remarkable adhesive properties both in dry and wet conditions, favorably comparing to synthetic commercial glues and other adhesives based on natural polymers, with performance comparable to the best underwater adhesives with the additional advantage of having an entirely biological composition that requires no synthetic procedures or processing.
Collapse
Affiliation(s)
- Marco Lo Presti
- Silklab, Department of Biomedical EngineeringTufts University200 Boston Avenue, Suite 4875MedfordMA02155USA
| | - Giorgio Rizzo
- Dipartimento di ChimicaUniversità degli Studi di Bari Aldo Morovia Orabona 4Bari70126Italy
| | - Gianluca M. Farinola
- Silklab, Department of Biomedical EngineeringTufts University200 Boston Avenue, Suite 4875MedfordMA02155USA
- Dipartimento di ChimicaUniversità degli Studi di Bari Aldo Morovia Orabona 4Bari70126Italy
| | - Fiorenzo G. Omenetto
- Silklab, Department of Biomedical EngineeringTufts University200 Boston Avenue, Suite 4875MedfordMA02155USA
- Laboratory for Living DevicesTufts UniversityMedfordMA02155USA
- Department of Electrical and Computer EngineeringTufts UniversityMedfordMA02155USA
- Department of PhysicsTufts UniversityMedfordMA02155USA
| |
Collapse
|
18
|
Krüger JM, Börner HG. Accessing the Next Generation of Synthetic Mussel-Glue Polymers via Mussel-Inspired Polymerization. Angew Chem Int Ed Engl 2021; 60:6408-6413. [PMID: 33507605 PMCID: PMC7985868 DOI: 10.1002/anie.202015833] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Indexed: 11/25/2022]
Abstract
The formation of cysteinyldopa as biogenic connectivity in proteins is used to inspire a chemical pathway toward mussel-adhesive mimics. The mussel-inspired polymerization (MIPoly) exploits the chemically diverse family of bisphenol monomers that is oxidizable with 2-iodoxybenzoic acid to give bisquinones. Those react at room temperature with dithiols in Michael-type polyadditions, which leads to polymers with thiol-catechol connectivities (TCC). A set of TCC polymers proved adhesive behavior even on challenging poly(propylene) substrates, where they compete with commercial epoxy resins in dry adhesive strength. MIPoly promises facile scale up and exhibits high modularity to tailor adhesives, as proven on a small library where one candidate showed wet adhesion on aluminum substrates in both water and sea water models.
Collapse
Affiliation(s)
- Jana M. Krüger
- Laboratory for Organic Synthesis of Functional Systems InstitutionDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems InstitutionDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| |
Collapse
|
19
|
Krüger JM, Börner HG. Die nächste Generation synthetischer Muschelkleberpolymere durch muschelinspirierte Polymerisation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jana M. Krüger
- Laboratory for Organic Synthesis of Functional Systems Institution Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems Institution Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
20
|
Xiong G, Xiong W, Dai S, Lin M, Xia G, Wan X, Mu Y. Fast-Curing Mussel-Inspired Adhesive Derived from Vegetable Oil. ACS APPLIED BIO MATERIALS 2021; 4:1360-1368. [PMID: 35014487 DOI: 10.1021/acsabm.0c01245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of functional materials based on renewable resources is of great significance in today's resource shortage. Here, we present an effective way to synthesize a mussel-inspired adhesive from acrylated epoxidized soybean oil (AESO), a renewable and commercially available small molecular material with a molecular weight around 1200 Da, by a one-step esterification reaction with the affordable 3,4-dihydroxybenzoic acid (DHA). By taking advantages of both the double bond and the catechol moiety presented in this small molecular adhesive, a short curing time was achieved with UV irradiation. An average bonding strength around 1.4 MPa at a curing time of only around 10 min on a glass substrate was observed, which reached 3.1 MPa (average 2.8 MPa) at a curing time of 2 h under ambient conditions. The curing time is much shorter, and the bonding strength is obviously stronger than the conditions where conventional oxidation agents such as IO4- or oxidation/coordination agents such as Fe3+ are used as the curing agent. Furthermore, the AESO-g-DHA can be used as an underwater adhesive, and an appreciable bonding strength up to 0.64 MPa was observed, which is superior than most of currently known commercialized glues. Given that the adhesive could be synthesized from low-cost renewable resources in one step, it might be a potential candidate for large-scale practical application.
Collapse
Affiliation(s)
- Gaoyan Xiong
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, P.R. China
| | - Wenjuan Xiong
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, P.R. China
| | - Siwen Dai
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, P.R. China
| | - Mei Lin
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, P.R. China
| | - Guozheng Xia
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, P.R. China
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, P.R. China
| | - Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, P.R. China
| |
Collapse
|
21
|
Bartucci MA, Savage AM, Flanagan D, Morgan BF, Beyer FL, Radzinski SC, Orlicki JA, Lenhart JL. Maleimide‐acrylate copolymers with pendent catechols: platform for probing adhesion. POLYM INT 2021. [DOI: 10.1002/pi.6175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Alice M Savage
- United States Army Research Laboratory Aberdeen Proving Ground MD USA
| | - David Flanagan
- United States Army Research Laboratory Aberdeen Proving Ground MD USA
| | - Brian F Morgan
- United States Army Research Laboratory Aberdeen Proving Ground MD USA
| | - Frederick L Beyer
- United States Army Research Laboratory Aberdeen Proving Ground MD USA
| | - Scott C Radzinski
- United States Army Research Laboratory Aberdeen Proving Ground MD USA
| | - Joshua A Orlicki
- United States Army Research Laboratory Aberdeen Proving Ground MD USA
| | - Joseph L Lenhart
- United States Army Research Laboratory Aberdeen Proving Ground MD USA
| |
Collapse
|
22
|
Williams GT, Haynes CJE, Fares M, Caltagirone C, Hiscock JR, Gale PA. Advances in applied supramolecular technologies. Chem Soc Rev 2021; 50:2737-2763. [DOI: 10.1039/d0cs00948b] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supramolecular chemistry has successfully built a foundation of fundamental understanding. However, with this now achieved, we show how this area of chemistry is moving out of the laboratory towards successful commercialisation.
Collapse
Affiliation(s)
| | | | - Mohamed Fares
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- 09042 Monserrato (CA)
- Italy
| | | | - Philip A. Gale
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
- The University of Sydney Nano Institute (Sydney Nano)
| |
Collapse
|