1
|
Mu Q, Tian W, Zhang J, Li R, Ji Y. Nanocrystalline Porous Materials for Chiral Separation: Synthesis, Mechanisms, and Applications. Anal Chem 2024; 96:7864-7879. [PMID: 38320090 DOI: 10.1021/acs.analchem.3c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Affiliation(s)
- Qixuan Mu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Wanting Tian
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jiale Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| |
Collapse
|
2
|
Niu X, Zhao R, Yan S, Pang Z, Li H, Yang X, Wang K. Chiral Materials: Progress, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303059. [PMID: 37217989 DOI: 10.1002/smll.202303059] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the "codebook" of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l-amino acids and d-sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xing Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
3
|
Wu J, Li L, Cao L, Liu X, Li R, Ji Y. Chirality-Controlled Mercapto-β-cyclodextrin Covalent Organic Frameworks for Selective Adsorption and Chromatographic Enantioseparation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37236148 DOI: 10.1021/acsami.3c04066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chiral covalent organic frameworks (CCOFs) benefit from superior stability, abundant chiral environment, and homogeneous pore configuration. In its constructive tactics, only the post-modification method allows for the integration of supramolecular chiral selectors into achiral COFs. Here, the finding utilizes 6-deoxy-6-mercapto-β-cyclodextrin (SH-β-CD) as chiral subunits and 2,5-dihydroxy-1,4-benzenedicarboxaldehyde (DVA) as the platform molecule to synthesize chiral functional monomers through thiol-ene click reactions and directly establish ternary "pendant-type" SH-β-CD COFs. The chiral site density on SH-β-CD COFs was regulated by changing the proportion of chiral monomers to obtain an optimal construction strategy and remarkably improve the ability of chiral separation. SH-β-CD COFs were coated on the inner wall of the capillary in a covalently bound manner. The prepared open tubular capillary was achieved for the separation of six chiral drugs. By combining the outcomes of selective adsorption and chromatographic separation, we observed the higher density of chiral sites in the CCOFs, and poorer results were achieved. From the perspective of spatial conformational distribution, we interpret the variation in the performance of these chirality-controlled CCOFs for selective adsorption and chiral separation.
Collapse
Affiliation(s)
- Jiaqi Wu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Lingyu Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Liqin Cao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Xue Liu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| |
Collapse
|
4
|
Liu C, Quan K, Chen J, Shi X, Qiu H. Chiral metal-organic frameworks and their composites as stationary phases for liquid chromatography chiral separation: A minireview. J Chromatogr A 2023; 1700:464032. [PMID: 37148566 DOI: 10.1016/j.chroma.2023.464032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Chiral metal organic frameworks (CMOFs) are a kind of crystal porous framework material that has attracted increasing attention due to the customizable combination of metal nodes and organic ligands. In particular, the highly ordered crystal structure and rich adjustable chiral structure make it a promising material for developing new chiral separation material systems. In this review, the progress of CMOFs and their different types of composites used as chiral stationary phases (CSPs) in liquid chromatography for enantioseparation are discussed. The characteristics of CMOFs and their composites are summarized, aiming to provide new ideas for the development of CMOFs with better performance and further promote the application of CMOFs materials in enantioselective high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Chunqiang Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Shi
- Institute of Materia Medica, Gansu Provincial Cancer Hospital, Lanzhou 730050, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Zhao R, Bai X, Yang W, Fan K, Zhang H. Grafting (S)-2-Phenylpropionic Acid on Coordinatively Unsaturated Metal Centers of MIL-101(Al) Metal-Organic Frameworks for Improved Enantioseparation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8456. [PMID: 36499951 PMCID: PMC9740726 DOI: 10.3390/ma15238456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Chiral metal-organic frameworks (cMOFs) are emerging chiral stationary phases for enantioseparation owing to their porosity and designability. However, a great number of cMOF materials show poor separation performance for chiral drugs in high-performance liquid chromatography (HPLC). The possible reasons might be the irregular shapes of MOFs and the low grafting degree of chiral ligands. Herein, MIL-101-Ppa@SiO2 was synthesized by a simple coordination post-synthetic modification method using (S)-(+)-2-Phenylpropionic acid and applied as the chiral stationary phase to separate chiral compounds by HPLC. NH2-MIL-101-Ppa@SiO2 prepared via covalent post-synthetic modification was used for comparison. The results showed that the chiral ligand density of MIL-101-Ppa@SiO2 was higher than that of NH2-MIL-101-Ppa@SiO2, and the MIL-101-Ppa@SiO2 column exhibited better chiral separation performance and structural stability. The binding affinities between MIL-101-Ppa@SiO2 and chiral compounds were simulated to prove the mechanism of the molecular interactions during HPLC. These results revealed that cMOFs prepared by coordination post-synthetic modification could increase the grafting degree and enhance the separation performance. This method can provide ideas for the synthesis of cMOFs.
Collapse
Affiliation(s)
- Rui Zhao
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xueyan Bai
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenhui Yang
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Kun Fan
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Kang X, Stephens ER, Spector-Watts BM, Li Z, Liu Y, Liu L, Cui Y. Challenges and opportunities for chiral covalent organic frameworks. Chem Sci 2022; 13:9811-9832. [PMID: 36199638 PMCID: PMC9431510 DOI: 10.1039/d2sc02436e] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
As highly versatile crystalline porous materials, covalent organic frameworks (COFs) have emerged as an ideal platform for developing novel functional materials, attributed to their precise tunability of structure and functionality. Introducing chiral functional units into frameworks produces chiral COFs (CCOFs) with chiral superiorities through chirality conservation and conversion processes. This review summarises recent research progress in CCOFs, including synthetic methods, chiroptical characterisations, and their applications in asymmetric catalysis, chiral separation, and enantioselective recognition and sensing. Challenges and limitations are discussed to uncover future opportunities in CCOF research.
Collapse
Affiliation(s)
- Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Emily R Stephens
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington Wellington 6012 New Zealand
| | - Benjamin M Spector-Watts
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington Wellington 6012 New Zealand
| | - Ziping Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Lujia Liu
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington Wellington 6012 New Zealand
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
7
|
Wang X, Wu J, Liu X, Qiu X, Cao L, Ji Y. Enhanced Chiral Recognition Abilities of Cyclodextrin Covalent Organic Frameworks via Chiral/Achiral Functional Modification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25928-25936. [PMID: 35609238 DOI: 10.1021/acsami.2c05572] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
β-Cyclodextrin covalent organic frameworks (β-CD COFs) show great potential in enantioseparation due to their uniformly distributed chiral recognition sites and good chemical stability. The hydroxyl and amino groups of β-CD COFs enable facile post-modification to introduce the desired functionality into the frameworks. In this study, we perform post-modification of β-CD COFBPDA with 1,4-butane sultone and [(3R,4R)-4-acetyloxy-2,5-dioxooxolan-3-yl] acetate to construct two kinds of novel functional β-CD COFs. The capillary columns prepared with these two functional β-CD COFs separated chiral dihydropyridines and fluoroquinolones with excellent selectivity and repeatability in capillary electrochromatography, while β-CD COFBPDA-modified capillary columns did not present the chiral recognition ability for these drugs. The mechanism of chiral recognition and the enhanced enantioselectivity of functional β-CD COFs were further demonstrated by molecular docking simulation. The divergent chiral separation performances of β-CD COFs suggest that the introduction of functional groups enables the modification of β-CD COF properties and tuning of its chiral recognition abilities for the diversity of enantioseparation.
Collapse
Affiliation(s)
- Xuehua Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jiaqi Wu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Xue Liu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Xin Qiu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Liqin Cao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| |
Collapse
|
8
|
Wang S, Li H, Huang H, Cao X, Chen X, Cao D. Porous organic polymers as a platform for sensing applications. Chem Soc Rev 2022; 51:2031-2080. [PMID: 35226024 DOI: 10.1039/d2cs00059h] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sensing analysis is significantly important for human health and environmental safety, and has gained increasing concern. As a promising material, porous organic polymers (POPs) have drawn widespread attention due to the availability of plentiful building blocks and their tunable structures, porosity and functions. Moreover, the permanent porous nature could provide a micro-environment to interact with guest molecules, rendering POPs attractive for application in the sensing field. In this review, we give a comprehensive overview of POPs as a platform for sensing applications. POP-based sensors are mainly divided into five categories, including fluorescence turn-on sensors, fluorescence turn-off sensors, ratiometric fluorescent sensors, colorimetric sensors and chemiresistive sensors, and their various sensing applications in detecting explosives, metal ions, anions, small molecules, biological molecules, pH changes, enantiomers, latent fingerprints and thermosensation are summarized. The different structure-based POPs and their corresponding synthetic strategies as well as the related sensing mechanisms mainly including energy transfer, donor-acceptor electron transfer, absorption competition quenching and inner filter effect are also involved in the discussion. Finally, the future outlook and perspective are addressed briefly.
Collapse
Affiliation(s)
- Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongtao Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Huanan Huang
- School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 222005, China
| | - Xiaohua Cao
- School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 222005, China
| | - Xiudong Chen
- School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 222005, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Tang B, Wang W, Hou H, Liu Y, Liu Z, Geng L, Sun L, Luo A. A β-cyclodextrin covalent organic framework used as a chiral stationary phase for chiral separation in gas chromatography. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Hou B, Li Z, Kang X, Jiang H, Cui Y. Recent Advances of Covalent Organic Frameworks for Chiral Separation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wang Y, Wang X, Sun Q, Li R, Ji Y. Facile separation of enantiomers via covalent organic framework bonded stationary phase. Mikrochim Acta 2021; 188:367. [PMID: 34617147 DOI: 10.1007/s00604-021-04925-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
Covalent organic frameworks (COFs), a type of crystalline polymers, have attracted increasing interest because of their controllability of geometry and functionality. Featuring infinitely extended networks and tremendous interaction sites, COFs emerge as a potential platform for separation science. Here, a novel chiral COF (β-CD COFBPDA) constructed by the imine condensation of 4,4'-biphenyldicarboxaldehyde and heptakis(6-amino-6-deoxy)-β-cyclodextrin was introduced into an electrochromatographic system via a photopolymerization method and applied to the separation of enantiomers. The structure and properties of as-synthesized β-CD COFBPDA were investigated by powder X-ray diffraction (PXRD) patterns, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and N2adsorption-desorption isotherms. It was proved that β-CD COFBPDA was provided with larger pore size and BET surface area. The β-CD COFBPDA coating endowed the chiral stationary phase with superior three-dimensional orientation, and realized satisfactory separation with improved selectivity and column efficiency for a dozen racemic drugs. Under the optimized conditions, homatropine, ondansetron, metoprolol, terbutaline, tulobuterol, and promethazine were all baseline separated with resolution values of 2.24, 2.03, 1.65, 1.62, 1.60, and 1.58, respectively. The results indicate the high perspective of COF modified stationary in enantioseparation.
Collapse
Affiliation(s)
- Yuying Wang
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Xuehua Wang
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Qiuyue Sun
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| |
Collapse
|
12
|
Choi HJ, Ahn YH, Koh DY. Enantioselective Mixed Matrix Membranes for Chiral Resolution. MEMBRANES 2021; 11:279. [PMID: 33920323 PMCID: PMC8069341 DOI: 10.3390/membranes11040279] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022]
Abstract
Most pharmaceuticals are stereoisomers that each enantiomer shows dramatically different biological activity. Therefore, the production of optically pure chemicals through sustainable and energy-efficient technology is one of the main objectives in the pharmaceutical industry. Membrane-based separation is a continuous process performed on a large scale that uses far less energy than the conventional thermal separation process. Enantioselective polymer membranes have been developed for chiral resolution of pharmaceuticals; however, it is difficult to generate sufficient enantiomeric excess (ee) with conventional polymers. This article describes a chiral resolution strategy using a composite structure of mixed matrix membrane that employs chiral fillers. We discuss several enantioselective fillers, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, porous organic cages (POCs), and their potential use as chiral fillers in mixed matrix membranes. State-of-the-art enantioselective mixed matrix membranes (MMMs) and the future design consideration for highly efficient enantioselective MMMs are discussed.
Collapse
Affiliation(s)
- Hwa-Jin Choi
- Department of Chemical and Molecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Yun-Ho Ahn
- Department of Chemical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea;
| | - Dong-Yeun Koh
- Department of Chemical and Molecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| |
Collapse
|