1
|
Zeng L, Kang D, Zhu L, Zhou Z, Li Y, Ling W, Zhang Y, Yu DG, Kim I, Song W. Poly(phenylalanine) and poly(3,4-dihydroxy-L-phenylalanine): Promising biomedical materials for building stimuli-responsive nanocarriers. J Control Release 2024; 372:810-828. [PMID: 38968969 DOI: 10.1016/j.jconrel.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Cancer is a serious threat to human health because of its high annual mortality rate. It has attracted significant attention in healthcare, and identifying effective strategies for the treatment and relief of cancer pain requires urgency. Drug delivery systems (DDSs) offer the advantages of excellent efficacy, low cost, and low toxicity for targeting drugs to tumor sites. In recent decades, copolymer carriers based on poly(phenylalanine) (PPhe) and poly(3,4-dihydroxy-L-phenylalanine) (PDopa) have been extensively investigated owing to their good biocompatibility, biodegradability, and controllable stimulus responsiveness, which have resulted in DDSs with loading and targeted delivery capabilities. In this review, we introduce the synthesis of PPhe and PDopa, highlighting the latest proposed synthetic routes and comparing the differences in drug delivery between PPhe and PDopa. Subsequently, we summarize the various applications of PPhe and PDopa in nanoscale-targeted DDSs, providing a comprehensive analysis of the drug release behavior based on different stimulus-responsive carriers using these two materials. In the end, we discuss the challenges and prospects of polypeptide-based DDSs in the field of cancer therapy, aiming to promote their further development to meet the growing demands for treatment.
Collapse
Affiliation(s)
- Lingcong Zeng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Linglin Zhu
- Oncology Department of Huadong Hospital, Minimally Invasive Tumor Treatment Center, No. 139 Yan'an West Road, Jing'an District, Shanghai, China 200040
| | - Zunkang Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yichong Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wei Ling
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
2
|
Jamshaid U, Anton N, Elhassan M, Conzatti G, Vandamme TF. Novel Hydrogels Based on the Nano-Emulsion Formulation Process: Development, Rheological Characterization, and Study as a Drug Delivery System. Pharmaceutics 2024; 16:812. [PMID: 38931933 PMCID: PMC11207514 DOI: 10.3390/pharmaceutics16060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we present a new type of polymer-free hydrogel made only from nonionic surfactants, oil, and water. Such a system is produced by taking advantage of the physicochemical behavior and interactions between nonionic surfactants and oil and water phases, according to a process close to spontaneous emulsification used in the production of nano-emulsions. Contrary to the classical process of emulsion-based gel formulation, we propose a simple one-step approach. Beyond the originality of the concept, these nanoemulgels appear as very promising systems able to encapsulate and deliver various molecules with different solubilities. In the first section, we propose a comprehensive investigation of the gel formation process and its limits through oscillatory rheological characterization, characterization of the sol/gel transitions, and gel strength. The second section is focused on the follow-up of the release of an encapsulated model hydrophilic molecule and on the impact of the rheological gel properties on the release profiles.
Collapse
Affiliation(s)
- Usama Jamshaid
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France; (U.J.); (M.E.); (G.C.)
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan
| | - Nicolas Anton
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France; (U.J.); (M.E.); (G.C.)
| | - Mohamed Elhassan
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France; (U.J.); (M.E.); (G.C.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani 21111, Sudan
| | - Guillaume Conzatti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France; (U.J.); (M.E.); (G.C.)
| | - Thierry F. Vandamme
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France; (U.J.); (M.E.); (G.C.)
| |
Collapse
|
3
|
Nagasawa A, Watanabe K, Suga K, Nagao D. Independent control over sizes and surface properties of polystyrene-based particles using multiple comonomers. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Chen X, Chen DR, Liu H, Yang L, Zhang Y, Bu LL, Sun ZJ, Cai L. Local delivery of gambogic acid to improve anti-tumor immunity against oral squamous cell carcinoma. J Control Release 2022; 351:381-393. [PMID: 36096364 DOI: 10.1016/j.jconrel.2022.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
Oral squamous cell carcinoma (OSCC) accounts for nearly 90% of oral cavity malignancies. However, despite significant advances in the last four decades, little improvement has been achieved in the overall survival rates for OSCC patients. While gambogic acid (GA) is a potential candidate compound for treating a variety of malignancies, its anti-cancer impact on OSCC has not to be completely investigated. The tumor immune microenvironment (TIME) has been proven to play a crucial role in the prognosis of cancer patients. Although there are few reports on the T cell activation effect of GA, the regulation of GA on the TIME of OSCC has barely been studied yet. In this study, GA was applied to treat OSCC-bearing mice through in situ controlled release. First, GA-loaded mPEG2000-PCL micelles (GA-MIC) were prepared by the thin-film hydration method to improve the aqueous dispersibility of GA. Second, poly(D, l-lactide)-poly(ethylene glycol)-poly(D, l-lactide) (PLEL) was synthesized for thermosensitive hydrogel preparation. Third, GA-MIC was mixed with PLEL to form an injectable therapeutic hydrogel (GA-MIC-GEL). The anti-tumor and TIME regulation effects of GA-MIC-GEL on tumor-bearing mice were further examined. The results showed that the thermosensitive GA-MIC-GEL with sensitive sol-gel transition characteristics could form hydrogel at 37 °C within 24 s, facilitating the local delivery and sustained GA release. Biochemical, hematological, and pathological analysis proved that GA-MIC-GEL has good biological safety. Moreover, GA-MIC-GEL promoted an obvious regression of both primary and distant tumors on the OSCC mouse models. Mechanically, GA-MIC-GEL down-regulated the expression of PD-1, increased the frequency of cytotoxic T cells and reduced the immunosuppressive cellular components, which boosted the anti-tumor immunity of OSCC-bearing mice. The constructed thermosensitive hydrogel for local delivery of GA has provided a safe and effective strategy with great potential for OSCC therapy.
Collapse
Affiliation(s)
- Xinmian Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - De-Run Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hongmei Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lei Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yutao Zhang
- Department of Pathology, The First People's Hospital of Zigong, Zigong 643000, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lulu Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
5
|
Liu L, Wu W, Chen X, Hao J, Liu X, Dong S, Cao S, Yao B, Yu H. Responsive emulsion gels of glycyrrhizic acid and alanine for cigarette capsules. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Wu Y, Zeng M, Cheng Q, Huang C. Recent Progress toward Physical Stimuli-Responsive Emulsions. Macromol Rapid Commun 2022; 43:e2200193. [PMID: 35622941 DOI: 10.1002/marc.202200193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/30/2022] [Indexed: 11/11/2022]
Abstract
Emulsion as a fine dispersion of immiscible liquids has involved widespread applications in industry, pharmaceuticals, agriculture and personal care. Stimuli-responsive emulsions capable of on-demand demulsification or changing their properties are required in many cases such as controllable release cargo, oil recovery, emulsifiers recycle and product separation, great progress has been achieved in these areas. Among these various triggers, much effort has been made to develop physical stimuli, due to the noninvasive and environmentally friendly characteristics. Physical stimuli-responsive emulsions provide a plenty of valuable practical applications in the fields of sustainable industry, biomedical reaction, drug delivery. Here, we summarize the recent development in the field of emulsions in response to physical stimuli consisting of temperature, light, magnetic field, electrical field, etc. The preparation methods and mechanisms of physical stimuli-responsive emulsions and their applications of catalysis reaction, drug delivery, and oil recovery are highlighted in this review. The future directions and outstanding problems of the physical stimuli-responsive emulsions are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yutian Wu
- School of chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Min Zeng
- School of chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Quanyong Cheng
- School of chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Caili Huang
- School of chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430070, China
| |
Collapse
|
7
|
Feng M, Kong X, Feng Y, Li X, Luo N, Zhang L, Du C, Wang D. A New Reversible Thermosensitive Liquid-Solid TENG Based on a P(NIPAM-MMA) Copolymer for Triboelectricity Regulation and Temperature Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201442. [PMID: 35485306 DOI: 10.1002/smll.202201442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Intelligent and highly precise control of liquid-solid triboelectricity is of great significance for energy collection and electrostatic prevention. However, most of the traditional methods are irreversible and complex, greatly limiting their applicability. Here, a reversible thermosensitive liquid-solid triboelectric nanogenerator (L-S TENG) is assembled based on P(NIPAM-MMA) (PNM) copolymer for tunable triboelectrification. Through temperature regulation, the conformation between acylamino and isopropyl groups changes with the interfacial wettability and triboelectricity of PNM. When the temperature rises from 20 to 60 °C, the contact angle of PNM rises from 22.49° to 82.08°, and the output of the PNM-based L-S TENG shows a 27-fold increase. In addition, this transformation is reversible and repeatable with excellent durability for up to 60 days. Other organic liquids, such as glycol, exhibit positive response to temperature for this PNM-based L-S TENG. Polymers including polymethylmethacrylic, polytetrafluoroethylene, and polyimide are verified to not have such thermo-sensitivity properties. In addition, a droplet-based wireless warning system based on PNM is designed and actuated for monitoring specific temperature. The introduction of thermal PNM not only provides new material for reversible manipulation of L-S TENG, but also provides a new method for designing highly sensitive temperature warning sensors.
Collapse
Affiliation(s)
- Min Feng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiang Kong
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, P. R. China
| | - Yange Feng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, P. R. China
| | - Xiaojuan Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ning Luo
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, P. R. China
| | - Liqiang Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, P. R. China
| | - Changhe Du
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Daoai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266100, P. R. China
| |
Collapse
|
8
|
Peng R, Zhang J, Du C, Li Q, Hu A, Liu C, Chen S, Shan Y, Yin W. Investigation of the Release Mechanism and Mould Resistance of Citral-Loaded Bamboo Strips. Polymers (Basel) 2021; 13:polym13193314. [PMID: 34641130 PMCID: PMC8512208 DOI: 10.3390/polym13193314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study, the sustained-release system loading citral was synthesised by using PNIPAm nanohydrogel as a carrier and analysed its drug-release kinetics and mechanism. Four release models, namely zero-order, first-order, Higuchi, and Peppas, were employed to fit the experimental data, and the underlying action mechanism was analysed. The optimised system was applied to treat a bamboo mould, followed by assessment of the mould-proof performance. Our experimental results revealed that the release kinetics equation of the system conformed to the first order; the higher the external temperature, the better the match was. In the release process, PNIPAm demonstrated a good protection and sustained-release effect on citral. Under the pressure of 0.5 MPa, immersion time of 120 min, and the system concentration ratio of 1, the optimal drug-loading parameters were obtained using the slow-release system with the best release parameters. Compared to the other conditions, bamboos treated with pressure impregnation demonstrated a better control effect on bamboo mould, while the control effect on Penicillium citrinum, Trichoderma viride, Aspergillus niger, and mixed mould was 100% after 28 days. Moreover, the structure and colour of bamboo remained unchanged during the entire process of mould control.
Collapse
|