1
|
Hamm P, Driessen MD, Hauptstein N, Kehrein J, Worschech R, Pouyan P, Haag R, Schubert US, Müller TD, Meinel L, Lühmann T. Deciphering Polymer Interactions in Bioconjugates with Different Architectures by Structural Analysis via Time-Resolved Limited Proteolysis Mass Spectrometry. Angew Chem Int Ed Engl 2025:e202415354. [PMID: 39780761 DOI: 10.1002/anie.202415354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Therapeutic proteins are commonly conjugated with polymers to modulate their pharmacokinetics but often lack a description of the polymer-protein interaction. We deployed limited proteolysis mass spectrometry (LiP-MS) to reveal the interaction of polyethylene glycol (PEG) and PEG alternative polymers with interferon-α2a (IFN). Target conjugates were digested with the specific protease trypsin and a "heavy" 15N-IFN wild type (IFN-WT) for time-resolved quantification of the cleavage dynamics. Interactions between IFN-α2a and its high-affinity receptor were detailed by LiP-MS. Then, 10 kDa polymers of PEG, linear polyglycerol (LPG), and poly(2-oxazoline) (POX) with two different cyclooctyne linkers (BCN/DBCO) were used for site-specific bioconjugation to azide functionalized IFN-α2a. Tryptic events at each cleavage site and in different structural environments (loops/helices) were compared. PEG and LPG were similar, and POX showed a reduced interaction profile with the IFN-α2a surface. All-atom molecular dynamics simulations of IFN-DBCO-polymer conjugates revealed distinct and transient (below 50 ns) protein-interaction profiles for PEG, LPG, and POX. Cleavage dynamics of IFN-polymer conjugates from the BCN handle were homogeneous, pointing to a more conserved IFN structure than DBCO-polymer conjugates. In summary, time-resolved LiP-MS for quantification of cleavage events enhances the structural understanding of transient IFN-polymer interactions, which may be extended to other bioconjugate types.
Collapse
Affiliation(s)
- Prisca Hamm
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Marc D Driessen
- Department for Oral and Craniomaxillofacial and Plastic Surgery, University Hospital Cologne and Faculty of Medicine, University of Cologne, 50937, Cologne, Germany
- Institute of Molecular Medicine, University of Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Niklas Hauptstein
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Josef Kehrein
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Rafael Worschech
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| | - Paria Pouyan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Thomas D Müller
- Lehrstuhl für Botanik I, Molekulare Pflanzenphysik und Biophysik, University of Würzburg, 97082, Würzburg, Germany
| | - Lorenz Meinel
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080, Würzburg, Germany
| | - Tessa Lühmann
- Universität Würzburg, Institute for Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
2
|
Engel N, Hoffmann T, Behrendt F, Liebing P, Weber C, Gottschaldt M, Schubert US. Cryogels Based on Poly(2-oxazoline)s through Development of Bi- and Trifunctional Cross-Linkers Incorporating End Groups with Adjustable Stability. Macromolecules 2024; 57:2915-2927. [PMID: 38560346 PMCID: PMC10977347 DOI: 10.1021/acs.macromol.3c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
1,4-Bis(iodomethyl)benzene and 1,3,5-tris(iodomethyl)benzene were used as initiators for the cationic ring-opening polymerization (CROP) of 2-ethyl-2-oxazoline (EtOx) and its copolymerization with tert-butyl (3-(4,5-dihydrooxazol-2-yl)propyl)carbamate (BocOx) or methyl 3-(4,5-dihydrooxazol-2-yl)propanoate (MestOx). Kinetic studies confirmed the applicability of these initiators. Termination with suitable nucleophiles resulted in two- and three-armed cross-linkers featuring acrylate, methacrylate, piperazine-acrylamide, and piperazine-methacrylamide as polymerizable ω-end groups. Matrix-assisted laser desorption/ionization mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy confirmed the successful attachment of the respective ω-end groups at all initiation sites for every prepared cross-linkers. Except for acrylate, each ω-end group remained stable during deprotection of BocOx containing cross-linkers. The cryogels were prepared using EtOx-based cross-linkers, as confirmed by solid-state NMR spectroscopy, scanning electron microscopy, and thermogravimetric analysis. Stability tests revealed a complete dissolution of the acrylate-containing gels at pH = 14, whereas the piperazine-acrylamide-based cryogels featured excellent hydrolytic stability.
Collapse
Affiliation(s)
- Nora Engel
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Tim Hoffmann
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Florian Behrendt
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Phil Liebing
- Institute
of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University at Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Christine Weber
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Gottschaldt
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University at Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
3
|
Sun P, Li Z, Zhang D, Zeng W, Zheng Y, Mei L, Chen H, Gao N, Zeng X. Multifunctional biodegradable nanoplatform based on oxaliplatin prodrug cross-linked mesoporous polydopamine for enhancing cancer synergetic therapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Stafast LM, Engel N, Görls H, Weber C, Schubert US. End-functionalized diblock copolymers by mix and match of poly(2-oxazoline) and polyester building blocks. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Mazrad ZAI, Lai M, Davis TP, Nicolazzo JA, Thurecht KJ, Leiske MN, Kempe K. Protected amine-functional initiators for the synthesis of α-amine homo- and heterotelechelic poly(2-ethyl-2-oxazoline)s. Polym Chem 2022. [DOI: 10.1039/d2py00649a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Screening a series of protected amine cationic ring-opening polymerization initiators revealed the commercially available N-(3-bromopropyl)phthalimide as the most suitable to achieve defined polymers with high degree of amine functionalization.
Collapse
Affiliation(s)
- Zihnil A. I. Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - May Lai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
- Centre for Advanced Imaging, The University of Queensland, Australia
| | - Meike N. Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
6
|
Hauptstein N, Pouyan P, Kehrein J, Dirauf M, Driessen MD, Raschig M, Licha K, Gottschaldt M, Schubert US, Haag R, Meinel L, Sotriffer C, Lühmann T. Molecular Insights into Site-Specific Interferon-α2a Bioconjugates Originated from PEG, LPG, and PEtOx. Biomacromolecules 2021; 22:4521-4534. [PMID: 34643378 DOI: 10.1021/acs.biomac.1c00775] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conjugation of biologics with polymers modulates their pharmacokinetics, with polyethylene glycol (PEG) as the gold standard. We compared alternative polymers and two types of cyclooctyne linkers (BCN/DBCO) for bioconjugation of interferon-α2a (IFN-α2a) using 10 kDa polymers including linear mPEG, poly(2-ethyl-2-oxazoline) (PEtOx), and linear polyglycerol (LPG). IFN-α2a was azide functionalized via amber codon expansion and bioorthogonally conjugated to all cyclooctyne linked polymers. Polymer conjugation did not impact IFN-α2a's secondary structure and only marginally reduced IFN-α2a's bioactivity. In comparison to PEtOx, the LPG polymer attached via the less rigid cyclooctyne linker BCN was found to stabilize IFN-α2a against thermal stress. These findings were further detailed by molecular modeling studies which showed a modulation of protein flexibility upon PEtOx conjugation and a reduced amount of protein native contacts as compared to PEG and LPG originated bioconjugates. Polymer interactions with IFN-α2a were further assessed via a limited proteolysis (LIP) assay, which resulted in comparable proteolytic cleavage patterns suggesting weak interactions with the protein's surface. In conclusion, both PEtOx and LPG bioconjugates resulted in a similar biological outcome and may become promising PEG alternatives for bioconjugation.
Collapse
Affiliation(s)
- Niklas Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Paria Pouyan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Josef Kehrein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Marc D Driessen
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martina Raschig
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.,Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|