1
|
Abolhassani S, fattahi R, Safshekan F, Saremi J, Hasanzadeh E. Advances in 4D Bioprinting: The Next Frontier in Regenerative Medicine and Tissue Engineering Applications. Adv Healthc Mater 2024. [DOI: 10.1002/adhm.202403065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 01/06/2025]
Abstract
Abstract4D bioprinting is a critical advancement in tissue engineering and regenerative medicine (TERM), enabling the creation of structures that dynamically respond to environmental stimuli over time. This review investigates various fabrication techniques and responsive materials that are central to these fields. It underscores the integration of multi‐material and biocomposite approaches in 4D bioprinting, which is crucial for fabricating complex and functional constructs with heterogeneous properties. Using 4D bioprinting techniques enhances the mimicry of natural tissue characteristics, offering tailored responses and improved integration with biological systems. Furthermore, this study highlights the synergy between 4D bioprinting and tissue engineering and demonstrates the technology's potential for developing tissues and organs. In regenerative medicine, 4D bioprinting's applications extend to creating smart implants and advanced drug delivery systems that adapt to the body's changes, promoting healing and tissue regeneration. Finally, the challenges and future directions of 4D bioprinting are also explored and emphasize its transformative impact on biomedical engineering and the future of healthcare.
Collapse
Affiliation(s)
- Sareh Abolhassani
- School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences Shiraz 7134814336 Iran
| | - Roya fattahi
- Immunogenetics Research Center Department of Tissue Engineering & Regenerative Medicine School of Advanced Technologies in Medicine Mazandaran University of Medical Sciences Sari 4847191971 Iran
| | - Farzaneh Safshekan
- Department of Mechanical Engineering Ahrar Institute of Technology and Higher Education Rasht 6359141931 Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases Jahrom University of Medical Sciences Jahrom 7154474992 Iran
| | - Elham Hasanzadeh
- Immunogenetics Research Center Department of Tissue Engineering & Regenerative Medicine School of Advanced Technologies in Medicine Mazandaran University of Medical Sciences Sari 4847191971 Iran
| |
Collapse
|
2
|
Pereira AC, Nayak VV, Coelho PG, Witek L. Integrative Modeling and Experimental Insights into 3D and 4D Printing Technologies. Polymers (Basel) 2024; 16:2686. [PMID: 39408397 PMCID: PMC11479055 DOI: 10.3390/polym16192686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
This review focuses on advancements in polymer science as it relates to three-dimensional (3D) and four-dimensional (4D) printing technologies, with a specific emphasis on applications in the biomedical field. While acknowledging the breadth of 3D and 4D printing applications, this paper concentrates on the use of polymers in creating biomedical devices and the challenges associated with their implementation. It explores integrative modeling and experimental insights driving innovations in these fields, focusing on sustainable manufacturing with biodegradable polymers, a comparative analysis of 3D and 4D printing techniques, and applications in biomedical devices. Additionally, the review examines the materials used in both 3D and 4D printing, offering a detailed comparison of their properties and applications. By highlighting the transformative potential of these technologies in various industrial and medical applications, the paper underscores the importance of continued research and development. The scope of this review also includes an overview of future research directions to address current challenges, enhance material capabilities, and explore practical applications.
Collapse
Affiliation(s)
- Angel Cabrera Pereira
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA;
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| |
Collapse
|
3
|
Chen A, Wang W, Mao Z, He Y, Chen S, Liu G, Su J, Feng P, Shi Y, Yan C, Lu J. Multimaterial 3D and 4D Bioprinting of Heterogenous Constructs for Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307686. [PMID: 37737521 DOI: 10.1002/adma.202307686] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Additive manufacturing (AM), which is based on the principle of layer-by-layer shaping and stacking of discrete materials, has shown significant benefits in the fabrication of complicated implants for tissue engineering (TE). However, many native tissues exhibit anisotropic heterogenous constructs with diverse components and functions. Consequently, the replication of complicated biomimetic constructs using conventional AM processes based on a single material is challenging. Multimaterial 3D and 4D bioprinting (with time as the fourth dimension) has emerged as a promising solution for constructing multifunctional implants with heterogenous constructs that can mimic the host microenvironment better than single-material alternatives. Notably, 4D-printed multimaterial implants with biomimetic heterogenous architectures can provide a time-dependent programmable dynamic microenvironment that can promote cell activity and tissue regeneration in response to external stimuli. This paper first presents the typical design strategies of biomimetic heterogenous constructs in TE applications. Subsequently, the latest processes in the multimaterial 3D and 4D bioprinting of heterogenous tissue constructs are discussed, along with their advantages and challenges. In particular, the potential of multimaterial 4D bioprinting of smart multifunctional tissue constructs is highlighted. Furthermore, this review provides insights into how multimaterial 3D and 4D bioprinting can facilitate the realization of next-generation TE applications.
Collapse
Affiliation(s)
- Annan Chen
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Wanying Wang
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhengyi Mao
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Yunhu He
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Shiting Chen
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Guo Liu
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Jin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Pei Feng
- State Key Laboratory of High-Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Jian Lu
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research, Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
4
|
Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D Printing for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402301. [PMID: 38580291 DOI: 10.1002/adma.202402301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/07/2024]
Abstract
4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure-property and design-shape transformation relationships of 4D (bio)printed constructs.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Ava Ghalayaniesfahani
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Chemistry, Materials and Chemical Engineering, Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Pedro J Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
5
|
Zhang Q, Chen J, Wang H, Xie D, Yang Z, Hu J, Luo H, Wan Y. Water-Induced Expanded Bilayer Vascular Graft with Good Hemocompatibility and Biocompatibility. Macromol Biosci 2024; 24:e2300401. [PMID: 38154146 DOI: 10.1002/mabi.202300401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Shape memory polymer (SMP) vascular grafts are promising interventional vascular grafts for cardiovascular disease (CAD) treatment; However, hemocompatibility and biocompatibility, which are the critical issues for the SMP vascular grafts, are not systematically concerned. Furthermore, the water-induced SMP grafts are more convenient and safer than the thermally induced ones in case of the bioapplication. Herein, in this work, the new water-induced expanded bilayer vascular graft with the inner layer of crosslinked poly(ε-caprolactone) (cPCL) and the outer layer of water-induced SMP of regenerated chitosan/polyvinyl alcohol (RCS/PVA) are prepared by hot pressing and programming approaches. The results show that the inner and outer layer surfaces of the prepared grafts are smooth, and they exhibit good interfacial interaction properties. The bilayer grafts show good mechanical properties and can be expanded in water with a diameter expansion of ≈30%. When compared with commercial expanded polytetrafluoroethylene (ePTFE), the bilayer graft shows better hemocompatibility (platelet adhesion, hemolysis rate, various clotting times, and plasma recalcification time (PRT)) and in vitro and in vivo biocompatibility, which thus is a promising material for the vascular graft.
Collapse
Affiliation(s)
- Quanchao Zhang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Jingyi Chen
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Huiwen Wang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Denghang Xie
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zhiwei Yang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Jian Hu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
- Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300384, China
| |
Collapse
|
6
|
Lee J, Chadalavada SC, Ghodadra A, Ali A, Arribas EM, Chepelev L, Ionita CN, Ravi P, Ryan JR, Santiago L, Wake N, Sheikh AM, Rybicki FJ, Ballard DH. Clinical situations for which 3D Printing is considered an appropriate representation or extension of data contained in a medical imaging examination: vascular conditions. 3D Print Med 2023; 9:34. [PMID: 38032479 PMCID: PMC10688120 DOI: 10.1186/s41205-023-00196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Medical three-dimensional (3D) printing has demonstrated utility and value in anatomic models for vascular conditions. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (3DPSIG) provides appropriateness recommendations for vascular 3D printing indications. METHODS A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with vascular indications. Each study was vetted by the authors and strength of evidence was assessed according to published appropriateness ratings. RESULTS Evidence-based recommendations for when 3D printing is appropriate are provided for the following areas: aneurysm, dissection, extremity vascular disease, other arterial diseases, acute venous thromboembolic disease, venous disorders, lymphedema, congenital vascular malformations, vascular trauma, vascular tumors, visceral vasculature for surgical planning, dialysis access, vascular research/development and modeling, and other vasculopathy. Recommendations are provided in accordance with strength of evidence of publications corresponding to each vascular condition combined with expert opinion from members of the 3DPSIG. CONCLUSION This consensus appropriateness ratings document, created by the members of the 3DPSIG, provides an updated reference for clinical standards of 3D printing for the care of patients with vascular conditions.
Collapse
Affiliation(s)
- Joonhyuk Lee
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | | | - Anish Ghodadra
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Arafat Ali
- Department of Radiology, Henry Ford Health, Detroit, MI, USA
| | - Elsa M Arribas
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leonid Chepelev
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Ciprian N Ionita
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Justin R Ryan
- Webster Foundation 3D Innovations Lab, Rady Children's Hospital, San Diego, CA, USA
- Department of Neurological Surgery, University of California San Diego Health, San Diego, CA, USA
| | - Lumarie Santiago
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole Wake
- Department of Research and Scientific Affairs, GE HealthCare, New York, NY, USA
- Center for Advanced Imaging Innovation and Research, Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Adnan M Sheikh
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Frank J Rybicki
- Department of Radiology, University of Arizona - Phoenix, Phoenix, AZ, USA
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
7
|
Zhou Y, Chen J, Liu X, Xu J. Three/Four-Dimensional Printed PLA Nano/Microstructures: Crystallization Principles and Practical Applications. Int J Mol Sci 2023; 24:13691. [PMID: 37761994 PMCID: PMC10531236 DOI: 10.3390/ijms241813691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Compared to traditional methods, three/four-dimensional (3D/4D) printing technologies allow rapid prototyping and mass customization, which are ideal for preparing nano/microstructures of soft polymer materials. Poly (lactic acid) (PLA) is a biopolymer material widely used in additive manufacturing (AM) because of its biocompatibility and biodegradability. Unfortunately, owing to its intrinsically poor nucleation ability, a PLA product is usually in an amorphous state after industrial processing, leading to some undesirable properties such as a barrier property and low thermal resistance. Crystallization mediation offers a most practical way to improve the properties of PLA products. Herein, we summarize and discuss 3D/4D printing technologies in the processing of PLA nano/microstructures, focusing on crystallization principles and practical applications including bio-inspired structures, flexible electronics and biomedical engineering mainly reported in the last five years. Moreover, the challenges and prospects of 3D/4D printing technologies in the fabrication of high-performance PLA materials nano/microstructures will also be discussed.
Collapse
Affiliation(s)
| | | | | | - Jianwei Xu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (J.C.); (X.L.)
| |
Collapse
|
8
|
Ramezani M, Mohd Ripin Z. 4D Printing in Biomedical Engineering: Advancements, Challenges, and Future Directions. J Funct Biomater 2023; 14:347. [PMID: 37504842 PMCID: PMC10381284 DOI: 10.3390/jfb14070347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
4D printing has emerged as a transformative technology in the field of biomedical engineering, offering the potential for dynamic, stimuli-responsive structures with applications in tissue engineering, drug delivery, medical devices, and diagnostics. This review paper provides a comprehensive analysis of the advancements, challenges, and future directions of 4D printing in biomedical engineering. We discuss the development of smart materials, including stimuli-responsive polymers, shape-memory materials, and bio-inks, as well as the various fabrication techniques employed, such as direct-write assembly, stereolithography, and multi-material jetting. Despite the promising advances, several challenges persist, including material limitations related to biocompatibility, mechanical properties, and degradation rates; fabrication complexities arising from the integration of multiple materials, resolution and accuracy, and scalability; and regulatory and ethical considerations surrounding safety and efficacy. As we explore the future directions for 4D printing, we emphasise the need for material innovations, fabrication advancements, and emerging applications such as personalised medicine, nanomedicine, and bioelectronic devices. Interdisciplinary research and collaboration between material science, biology, engineering, regulatory agencies, and industry are essential for overcoming challenges and realising the full potential of 4D printing in the biomedical engineering landscape.
Collapse
Affiliation(s)
- Maziar Ramezani
- Department of Mechanical Engineering, Auckland University of Technology, Auckland 1142, New Zealand
| | - Zaidi Mohd Ripin
- School of Mechanical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| |
Collapse
|
9
|
Li Y, Shi Y, Lu Y, Li X, Zhou J, Zadpoor AA, Wang L. Additive manufacturing of vascular stents. Acta Biomater 2023:S1742-7061(23)00338-0. [PMID: 37331614 DOI: 10.1016/j.actbio.2023.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
With the advancement of additive manufacturing (AM), customized vascular stents can now be fabricated to fit the curvatures and sizes of a narrowed or blocked blood vessel, thereby reducing the possibility of thrombosis and restenosis. More importantly, AM enables the design and fabrication of complex and functional stent unit cells that would otherwise be impossible to realize with conventional manufacturing techniques. Additionally, AM makes fast design iterations possible while also shortening the development time of vascular stents. This has led to the emergence of a new treatment paradigm in which custom and on-demand-fabricated stents will be used for just-in-time treatments. This review is focused on the recent advances in AM vascular stents aimed at meeting the mechanical and biological requirements. First, the biomaterials suitable for AM vascular stents are listed and briefly described. Second, we review the AM technologies that have been so far used to fabricate vascular stents as well as the performances they have achieved. Subsequently, the design criteria for the clinical application of AM vascular stents are discussed considering the currently encountered limitations in materials and AM techniques. Finally, the remaining challenges are highlighted and some future research directions are proposed to realize clinically-viable AM vascular stents. STATEMENT OF SIGNIFICANCE: Vascular stents have been widely used for the treatment of vascular disease. The recent progress in additive manufacturing (AM) has provided unprecedented opportunities for revolutionizing traditional vascular stents. In this manuscript, we review the applications of AM to the design and fabrication of vascular stents. This is an interdisciplinary subject area that has not been previously covered in the published review articles. Our objective is to not only present the state-of-the-art of AM biomaterials and technologies but to also critically assess the limitations and challenges that need to be overcome to speed up the clinical adoption of AM vascular stents with both anatomical superiority and mechanical and biological functionalities that exceed those of the currently available mass-produced devices.
Collapse
Affiliation(s)
- Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yixuan Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Lu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuan Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - Luning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
10
|
Zhang B, Li S, Zhang Z, Meng Z, He J, Ramakrishna S, Zhang C. Intelligent biomaterials for micro and nanoscale 3D printing. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
11
|
Sachan R, Warkar SG, Purwar R. An overview on synthesis, properties and applications of polycaprolactone copolymers, blends & composites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Radha Sachan
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Sudhir G. Warkar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Roli Purwar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
12
|
Zhang L, Hanif M, Li J, Shah AH, Hussain W, Zhang G. Fused Deposition Modeling and Characterization of Heat Shape Memory Poly(lactic) Acid-Based Porous Vascular Scaffold. Polymers (Basel) 2023; 15:polym15020390. [PMID: 36679272 PMCID: PMC9866565 DOI: 10.3390/polym15020390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Shape memory polymers have received widespread attention from researchers because of their low density, shape variety, responsiveness to the environment, and transparency. This study deals with heat-shape memory polymers (SMPs) based on polylactic acid (PLA) for designing and fabricating a novel porous vascular scaffold to treat vascular restenosis. The solid isotropic material penalization method (SIMP) was applied to optimize the vascular scaffolds. Based on the torsional torque loading of Hyperworks Optistruct and the boundary conditions, the topological optimization model of a vascular scaffold unit was established. Forward and reverse hybrid modeling technology was applied to complete the final stent structure's assembly. The glass transition temperature for the present SMPs is 42.15 °C. With the increase in temperature, the ultimate tensile strength of the SMPs is reduced from 29.5 MPa to 11.6 MPa. The maximum modulus at room temperature was around 34 MPa. Stress relaxation curves show that the material classification is a "thermoset" polymer. The superb mechanical properties, the transition temperature of the SMPs, and the recovery ratio made it a feasible candidate for a vascular scaffold. A circular tube based on the shape memory polymers was presented as an example for analyzing the recovery ratio in an unfolding state. A higher recovery ratio was obtained at a temperature of 65 °C with a tube thickness of 2 mm. Finally, the proposed porous vascular scaffold was successfully fabricated, assessed, and compared with the original and previously developed vascular scaffolds. The proposed scaffold structure regains its initial shape with a recovery ratio of 98% (recovery temperature of 47 °C) in 16 s. The tensile strength, Young's modulus, and bending strength of the proposed scaffold were 29.5 MPa, 695.4 MPa, and 6.02 MPa, respectively. The results showed that the proposed scaffold could be regarded as a potential candidate for a vascular implantation.
Collapse
Affiliation(s)
- Li Zhang
- Faculty of Mechanical Design and Vehicle Engineering, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (L.Z.); (M.H.)
| | - Muhammad Hanif
- Faculty of Mechanical Design and Vehicle Engineering, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (L.Z.); (M.H.)
| | - Jiacheng Li
- Faculty of Mechanical Design and Vehicle Engineering, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Abdul Hakim Shah
- Department of Physics, Khushal Khan Khattak University, Karak 27200, Pakistan
| | - Wajid Hussain
- Advanced Biomaterials and Tissue Engineering Centre, School of Biomedical Engineering, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guotao Zhang
- Faculty of Mechanical Design and Vehicle Engineering, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
He W, Zhou D, Gu H, Qu R, Cui C, Zhou Y, Wang Y, Zhang X, Wang Q, Wang T, Zhang Y. A Biocompatible 4D Printing Shape Memory Polymer as Emerging Strategy for Fabrication of Deployable Medical Devices. Macromol Rapid Commun 2023; 44:e2200553. [PMID: 36029168 DOI: 10.1002/marc.202200553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/18/2022] [Indexed: 01/26/2023]
Abstract
The rapid development of 4D printing provides a potential strategy for the fabrication of deployable medical devices (DMD). The minimally invasive surgery to implant the DMD into the body is critical, 4D printing DMD allows the well-defined device to be implanted with a high-compacted shape and transformed into their designed shape to meet the requirement. Herein, a 4D printing tissue engineering material is developed with excellent biocompatibility and shape memory effect based on the photocrosslinked polycaprolactone (PCL). The fast thiol-acrylate click reaction is applied for photocrosslinking of the acrylates capped star polymer (s-PCL-MA) with poly-thiols, that enable the 3D printing for the DMD fabrication. The cell viability, erythrocyte hemolysis, and platelet adhesion results indicate the excellent biocompatibility of the 4D printing polymer, especially the biological subcutaneous implantation results confirm the promote tissue growth and good histocompatibility. A 4D printing stent with deformable shape and recovery at a temperature close to human body temperature demonstrated the potential application as DMD. In addition, the everolimus is loaded to the polymer (ps1-PCL) through host-guest coordination with β-cyclodextrin as the core of the star polymer, which shows sustained drug release and improved body's inflammatory response.
Collapse
Affiliation(s)
- Wenyang He
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Dong Zhou
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Hao Gu
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Ruisheng Qu
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Chaoqiang Cui
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Yanyi Zhou
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Yu Wang
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Xinrui Zhang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
14
|
Application of 4D printing and AI to cardiovascular devices. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Zhao W, Yue C, Liu L, Liu Y, Leng J. Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application. Adv Healthc Mater 2022:e2201975. [PMID: 36520058 DOI: 10.1002/adhm.202201975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/06/2022] [Indexed: 12/23/2022]
Abstract
As a kind of smart material, shape memory polymer (SMP) shows great application potential in the biomedical field. Compared with traditional metal-based medical devices, SMP-based devices have the following characteristics: 1) The adaptive ability allows the biomedical device to better match the surrounding tissue after being implanted into the body by minimally invasive implantation; 2) it has better biocompatibility and adjustable biodegradability; 3) mechanical properties can be regulated in a large range to better match with the surrounding tissue. 4D printing technology is a comprehensive technology based on smart materials and 3D printing, which has great application value in the biomedical field. 4D printing technology breaks through the technical bottleneck of personalized customization and provides a new opportunity for the further development of the biomedical field. This paper summarizes the application of SMP and 4D printing technology in the field of bone tissue scaffolds, tracheal scaffolds, and drug release, etc. Moreover, this paper analyzes the existing problems and prospects, hoping to provide a preliminary discussion and useful reference for the application of SMP in biomedical engineering.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Chengbin Yue
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), P.O. Box 3011, No. 2 Yikuang Street, Harbin, 150080, P. R. China
| |
Collapse
|
16
|
3D printing technique applied in vaginoplasty: A case report. Heliyon 2022; 8:e11868. [PMID: 36561689 PMCID: PMC9763754 DOI: 10.1016/j.heliyon.2022.e11868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Background We present the first case report of the treatment of congenital vaginal atresia by 3D-printed patient-specific vaginal scaffold from China. Case presentation A 17-year-old female patient was referred to our department for treatment of congenital vaginal atresia and complications arising from previous failed operations. Pelvic examination was conducted to understand the morphological characteristics and severity of stenosis, and based on which we designed our prototypes of vaginal scaffold using software UG NX10.0. We finally obtained our patient-specific mold, which was 50 mm in length, 28 mm in diameter, 2 mm of thickness with a whole weight of 7.6 g, and it was made of polycaprolactone. After removing scar tissues caused by vaginal stenosis, an 8 cm long artificial tunnel was created, and then the polycaprolactone (PCL) vaginal mold was placed and sutured. The patient had no discomfort after surgery and was discharged 3 days after the surgery. Follow-up for 1 year after surgery, through hysteroscopy and colposcopy, it was found that the cervix was smooth, the vaginal wall was covered with stratified squamous epithelium, and the vaginal wall was soft and lubricated, which was close to a normal vagina. The incompletely absorbed mold was taken out one year after the operation. Hysteroscopy and colposcopy were performed one year and two years after the mold was taken out. The vagina was unobstructed and the length was about 12 cm. The appearance of the vaginal wrinkles was normal. The patient's quality of sexual life was good. Conclusion Our team tried to treat congenital vaginal atresia by 3D-printed patient-specific vaginal scaffold, which can effectively reduce patient complications and reduce patient pain. Through long-term follow-up, we found that this technique has achieved favorable results and improved the patient's quality of sexual life.
Collapse
|
17
|
Arif ZU, Khalid MY, Zolfagharian A, Bodaghi M. 4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Kabirian F, Mela P, Heying R. 4D Printing Applications in the Development of Smart Cardiovascular Implants. Front Bioeng Biotechnol 2022; 10:873453. [PMID: 35694223 PMCID: PMC9174528 DOI: 10.3389/fbioe.2022.873453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
Smart materials are able to react to different stimuli and adapt their shape to the environment. Although the development of 3D printing technology increased the reproducibility and accuracy of scaffold fabrication, 3D printed scaffolds can still be further improved to resemble the native anatomy. 4D printing is an innovative fabrication approach combining 3D printing and smart materials, also known as stimuli-responsive materials. Especially for cardiovascular implants, 4D printing can promisingly create programmable, adaptable prostheses, which facilitates implantation and/or create the topology of the target tissue post implantation. In this review, the principles of 4D printing with a focus on the applied stimuli are explained and the underlying 3D printing technologies are presented. Then, according to the type of stimulus, recent applications of 4D printing in constructing smart cardiovascular implants and future perspectives are discussed.
Collapse
Affiliation(s)
- Fatemeh Kabirian
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- *Correspondence: Fatemeh Kabirian,
| | - Petra Mela
- Medical Materials and Implants, Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Munich, Germany
| | - Ruth Heying
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Yang S, He Y, Leng J. Enhanced Shape Memory Metal-Coordinated Poly(aryl ether ketone)s with Tunable Gradient-Deformation Behaviors as well as Self-Healing and Reprocessing Abilities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20032-20041. [PMID: 35470667 DOI: 10.1021/acsami.2c01728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reversible dynamic bonds are able to crack and recombine upon external stimuli, which endow polymers with exceptional self-healing, reprocessing, and reversible deformation ability. In this paper, we integrated the metal coordination bonds into shape memory poly(aryl ether ketone) (PAEK) to fabricate smart materials with multifunctionalities. Through tuning the metal ion content and species, the enhancement of shape memory behaviors was achieved, including the high recovery ratio (over 98%) and fixity ratio (over 98%), which was closely related to the synergic effect of the intrinsic motion ability of PAEK matrix and the cracking-recombination of coordination bonds. Besides, through the combination of the components with different Cu2+ contents, in addition to the components with Fe2+ coordination bonds, we fabricated the gradient shape memory structures with controllable shape memory and recovery behaviors. The manipulation of gradient coordination bonds resulted in different shape recovery speeds and directions. Furthermore, due to the dynamic cracking-recombination of coordination bonds, the metal-coordinated PAEK material exhibited the great self-healing and reprocessing performances, which were significant for largely extending its application range.
Collapse
Affiliation(s)
- Shuai Yang
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Yang He
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
20
|
Exploiting the fundamentals of biological organization for the advancement of biofabrication. Curr Opin Biotechnol 2021; 74:42-54. [PMID: 34798447 DOI: 10.1016/j.copbio.2021.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
The field of biofabrication continues to progress, offering higher levels of spatial control, reproducibility, and functionality. However, we remain far from recapitulating what nature has achieved. Biological systems such as tissues and organs are assembled from the bottom-up through coordinated supramolecular and cellular processes that result in their remarkable structures and functionalities. In this perspective, we propose that incorporating such biological assembling mechanisms within fabrication techniques, offers an opportunity to push the boundaries of biofabrication. We dissect these mechanisms into distinct biological organization principles (BOPs) including self-assembly, compartmentalization, diffusion-reaction, disorder-to-order transitions, and out-of-equilibrium processes. We highlight recent work demonstrating the viability and potential of these approaches to enhance scalability, reproducibility, vascularization, and biomimicry; as well as current challenges to overcome.
Collapse
|