1
|
Ma Z, Zhao S, Zhai H, Yuan R, Wei Y, Feng L, Tao L. Superhydrophobic Coatings Composed of Multifunctional Polymers Synthesized Using Successive Modification of Dihydropyrimidin-2(1 H)-thione. ACS Macro Lett 2023; 12:1491-1497. [PMID: 37874180 DOI: 10.1021/acsmacrolett.3c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Polymer synthesis via multicomponent reactions (MCRs) has opened avenues in polymer chemistry and led to the development of various types of functional polymers. Herein, we developed a strategy to prepare multifunctional polymers via the successive modification of dihydropyrimidin-2(1H)-thione (DHPMT), which can be generated by the tricomponent Biginelli reaction. Four hydrophobic polymers were efficiently prepared by using DHPMT derivatives. These polymers can be dip-coated onto the oxidized copper mesh to obtain superhydrophobic meshes because of the strong attractive forces between the DHPMT derivatives and Cu(II). The optimized mesh has self-cleaning properties and outstanding stability in various liquid environments; it has also been successfully applied for oil/water separation with high separation efficiency and good durability. These results demonstrate that successive modification of DHPMT is a promising method for fabricating multifunctional polymers, which may have applications in polymer chemistry and materials science.
Collapse
Affiliation(s)
- Zeyu Ma
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuaiheng Zhao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huajun Zhai
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Feng
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Althomali RH, Musad Saleh EA, Mohammed Ali RH, Mamadoliev II, Ramadan MF, Kareem AT, Aggarwal S, Hadrawi SK. Synthesis of a bistriazolyl-phenanthroline-Cu(ii) complex immobilized on nanomagnetic iron oxide as a novel green catalyst for synthesis of imidazoles via annulation reactions. NANOSCALE ADVANCES 2023; 5:6177-6193. [PMID: 37941952 PMCID: PMC10629005 DOI: 10.1039/d3na00653k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023]
Abstract
We designed and prepared a novel N-heterocycle-based nanocatalyst by a post synthetic method, namely the [Fe3O4@DAA-BTrzPhen-Cu(ii)] composite. In this method, bistriazolyl-phenanthroline groups were stepwise synthesized on an Fe3O4 substrate and used as a tetradentate nitrogenous ligand for coordinating to copper ions. The obtained nanocomposite was well characterized using FT-IR, PXRD, TGA, EDAX, ICP-OES, EDX-mapping, SEM, TEM, VSM and BET analyses, which confirm the formation of a thermostable crystalline spherical particle morphology with the particle size in the range of 17 nm to 25 nm and a magnetization value of 42 emu g-1. Also, the catalytic activity of [Fe3O4@DAA-BTrzPhen-Cu(ii)] as a novel and magnetically separable heterogeneous nanocatalyst was evaluated in preparing various tetrasubstituted imidazole derivatives from one-pot four-component condensation of anilines, aldehydes, 1,2-diketones and ammonium acetate, and favorable products were produced with excellent yields. The stability, low Cu leaching, and heterogenous nature of the nanocatalyst were confirmed by hot-filtration and leaching tests. The copper based nanocatalyst could be easily recovered by magnetic field separation and recycled at least 8 times in a row without noticeable loss in its catalytic activity.
Collapse
Affiliation(s)
- Raed H Althomali
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University Wadi Al-Dawasir 11991 Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University Wadi Al-Dawasir 11991 Saudi Arabia
| | | | - Ikromjon Ilkhomidinovich Mamadoliev
- Department of Medical Chemistry, Samarkand State Medical Institute Samarkand Uzbekistan
- Department of Anatomy, Tashkent State Dental Institute Tashkent Uzbekistan
| | | | - Ashwaq Talib Kareem
- College of Pharmacy, National University of Science and Technology Dhi Qar Iraq
| | - Saurabh Aggarwal
- Department of Mechanical Engineering, Uttaranchal Institute of Technology, Uttaranchal University Dehradun-248007 India
| | - Salema K Hadrawi
- Refrigeration and Air-conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University Najaf Iraq
| |
Collapse
|
3
|
Pan S, Zhang N, He X, Fang Z, Wu Y, Wei Y, Tao L. Poly(vinyl alcohol) Modified via the Hantzsch Reaction for Biosafe Antioxidant Self-Healing Hydrogel. ACS Macro Lett 2023; 12:1037-1044. [PMID: 37440314 DOI: 10.1021/acsmacrolett.3c00298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Efficient routes for the preparation of functional self-healing hydrogels from functional polymers are needed. In this study, we developed a strategy to effectively produce a vanillin-modified poly(vinyl alcohol) (PVA-vanillin) through the Hantzsch reaction. This polymer was cross-linked with a phenylboronic acid-containing polymer (PB) that was also prepared using the Hantzsch reaction to fabricate a hydrogel through borate ester linkages under mild conditions (25 °C, pH ∼ 7.4). This hydrogel had excellent antioxidant abilities due to the 1,4-dihydropyridine (DHP) rings and the vanillin moieties in the hydrogel structures; it was also self-healable and injectable owing to the dynamic borate ester linkages. Furthermore, the antioxidant self-healing hydrogel had low cytotoxicity and exhibited favorable safety in animal experiments, indicating its potential as a safe implantable cell or drug carrier. This study developed a method for preparing functional polymers and related self-healing hydrogels in a facile manner; it demonstrated the value of the Hantzsch reaction in exploiting antioxidant self-healing hydrogels for biomedical applications, which may provide insight into the design of other functional self-healing hydrogels through different multicomponent reactions.
Collapse
Affiliation(s)
- Siyu Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Nan Zhang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhao Fang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Yuwei Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
4
|
Stepping Further from Coupling Tools: Development of Functional Polymers via the Biginelli Reaction. Molecules 2022; 27:molecules27227886. [PMID: 36431987 PMCID: PMC9698737 DOI: 10.3390/molecules27227886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Multicomponent reactions (MCRs) have been used to prepare polymers with appealing functions. The Biginelli reaction, one of the oldest and most famous MCRs, has sparked new scientific discoveries in polymer chemistry since 2013. Recent years have seen the Biginelli reaction stepping further from simple coupling tools; for example, the functions of the Biginelli product 3,4-dihydropyrimidin-2(1H)-(thi)ones (DHPM(T)) have been gradually exploited to develop new functional polymers. In this mini-review, we mainly summarize the recent progress of using the Biginelli reaction to identify polymers for biomedical applications. These polymers have been documented as antioxidants, anticancer agents, and bio-imaging probes. Moreover, we also provide a brief introduction to some emerging applications of the Biginelli reaction in materials and polymer science. Finally, we present our perspectives for the further development of the Biginelli reaction in polymer chemistry.
Collapse
|
5
|
Catalyst-free multicomponent polymerization of sulfonyl azide, aldehyde and cyclic amino acids toward zwitterionic and amphiphilic poly(N-sulfonyl amidine) as nanocatalyst precursor. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Li M, Duan X, Jiang Y, Sun X, Xu X, Zheng Y, Song W, Zheng N. Multicomponent Polymerization of Azides, Alkynes, and Electrophiles toward 1,4,5-Trisubstituted Polytriazoles. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Li
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuelun Duan
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Jiang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinhao Sun
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiang Xu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yubin Zheng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wangze Song
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Nan Zheng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Copper-catalyzed Z-selective synthesis of acrylamides and polyacrylamides via alkylidene ketenimines. Nat Commun 2022; 13:4362. [PMID: 35896596 PMCID: PMC9329291 DOI: 10.1038/s41467-022-32082-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
It remains very important to discover and study new fundamental intermediates consisting of carbon and nitrogen as the abundant elements of organic molecules. The unique alkylidene ketenimine could be formed in situ under mild conditions by an unexpected copper-catalyzed three-component reaction of alkyne, azide and water involving a successive cycloaddition, N2 extrusion and carbene-assisted rearrangement. Only Z-α,β-unsaturated amides instead of E-α,β-unsaturated amides or triazoles were acquired from alkylidene ketenimines with excellent selectivities and stereospecificities. In addition, a series of “approximate” alternating copolymers (poly (triazole-alt-Z-acrylamides)) with high Mns and yields were efficiently afforded by multicomponent polymerization through a very simple operation basing on this multicomponent reaction. Alkylidene ketenimines are rarely reported, but synthetically useful, reactive intermediates. Here, the authors disclose a three-component reaction of alkyne, azide and water by cycloaddition, nitrogen extrusion, and carbene-assisted rearrangement, via in situ formation of alkylidene ketenimine.
Collapse
|
8
|
Ma Z, Zeng Y, He X, Pan S, Wei Y, Wang B, Tao L. Introducing the aza-Michael addition reaction between acrylate and dihydropyrimidin-2(1 H)-thione into polymer chemistry. Polym Chem 2022. [DOI: 10.1039/d2py01130a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aza-Michael addition reaction between dihydropyrimidin-2(1H)-thione and acrylate has been used to fabricate new polymers through different synthesis routes.
Collapse
Affiliation(s)
- Zeyu Ma
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Siyu Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Bo Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|