1
|
Liu C, Fu Y, Zhou J, Wang L, Guo C, Cheng J, Sun W, Chen C, Zhou J, Liu D, Li W, Wang T. Alkoxythiophene-Directed Fibrillization of Polymer Donor for Efficient Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308608. [PMID: 37996989 DOI: 10.1002/adma.202308608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Realizing fibrillar molecular framework is highly encouraged in organic solar cells (OSCs) due to the merit of efficient charge carrier transport. This is however mainly achieved via the chemical structural design of photovoltaic semiconductors. In this work, through the utilization of three alkoxythiophene additives, T-2OMe, T-OEH, and T-2OEH, the intermolecular interactions among a series of BDT-type polymer donors, i.e., PM6, D18, PBDB-T, and PTB7-Th, are tuned to self-assemble into nanofibrils during solution casting. X-ray technique and molecular dynamics simulation reveal that the alkoxythiophene with (2-ethylhexyl)oxy (─OEH) chains can attach on the 2-ethylhexyl (EH) chains of these polymer donors and promote their self-assembly into 1D nanofibrils, in their neat films as well as photovoltaic blends with L8-BO. By adapting these fibrillar polymer donors to construct pseudo-bulk heterojunction (P-BHJ) OSCs via layer-by-layer deposition, generally improved device performance is seen, with power conversion efficiencies enhanced from 18.2% to 19.2% (certified 18.96%) and from 17.9% to 18.7% for the PM6/L8-BO and D18/L8-BO devices, respectively. This work provides a physical approach to promote the fibrillar charge transport channels for efficient photovoltaics.
Collapse
Affiliation(s)
- Chenhao Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yiwei Fu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinpeng Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingchao Cheng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
2
|
Wang L, Zhan JZ, Zhong WK, Zhu L, Zhou GQ, Hao TY, Zou YC, Wang ZH, Wei G, Zhang YM, Liu F. The Role of Processing Solvent on Morphology Optimization for Slot-Die Printed Organic Photovoltaics. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Lu H, Chen K, Bobba RS, Shi J, Li M, Wang Y, Xue J, Xue P, Zheng X, Thorn KE, Wagner I, Lin CY, Song Y, Ma W, Tang Z, Meng Q, Qiao Q, Hodgkiss JM, Zhan X. Simultaneously Enhancing Exciton/Charge Transport in Organic Solar Cells by an Organoboron Additive. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205926. [PMID: 36027579 DOI: 10.1002/adma.202205926] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Efficient exciton diffusion and charge transport play a vital role in advancing the power conversion efficiency (PCE) of organic solar cells (OSCs). Here, a facile strategy is presented to simultaneously enhance exciton/charge transport of the widely studied PM6:Y6-based OSCs by employing highly emissive trans-bis(dimesitylboron)stilbene (BBS) as a solid additive. BBS transforms the emissive sites from a more H-type aggregate into a more J-type aggregate, which benefits the resonance energy transfer for PM6 exciton diffusion and energy transfer from PM6 to Y6. Transient gated photoluminescence spectroscopy measurements indicate that addition of BBS improves the exciton diffusion coefficient of PM6 and the dissociation of PM6 excitons in the PM6:Y6:BBS film. Transient absorption spectroscopy measurements confirm faster charge generation in PM6:Y6:BBS. Moreover, BBS helps improve Y6 crystallization, and current-sensing atomic force microscopy characterization reveals an improved charge-carrier diffusion length in PM6:Y6:BBS. Owing to the enhanced exciton diffusion, exciton dissociation, charge generation, and charge transport, as well as reduced charge recombination and energy loss, a higher PCE of 17.6% with simultaneously improved open-circuit voltage, short-circuit current density, and fill factor is achieved for the PM6:Y6:BBS devices compared to the devices without BBS (16.2%).
Collapse
Affiliation(s)
- Heng Lu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kai Chen
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Raja Sekhar Bobba
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Jiangjian Shi
- CAS Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mengyang Li
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yilin Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peiyao Xue
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiaojian Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Karen E Thorn
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Isabella Wagner
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Chao-Yang Lin
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Yin Song
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qingbo Meng
- CAS Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Quinn Qiao
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Justin M Hodgkiss
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Xiaowei Zhan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Eco-functional Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|