1
|
Gu CC, Ni CQ, Wu RJ, Deng L, Zou J, Li H, Tong CY, Xu FH, Weng BC, Zhu RL. Donor-acceptor moiety functionalized covalent organic frameworks for boosting charge separation and H 2 photogeneration. J Colloid Interface Sci 2024; 658:450-458. [PMID: 38118191 DOI: 10.1016/j.jcis.2023.12.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/22/2023]
Abstract
Covalent organic frameworks (COFs) have a broad prospect to be used as a photocatalytic platform to convert solar energy into valuable chemicals due to their tunable structures and rich active catalytic sites. However, constructing COFs with tuned sp2-carbon donor-acceptor moiety remains an enormous challenge. Herein, we synthesized two new fully π-conjugated cyano-ethylene-linked COFs containing benzotrithiophene as functional group by Knoevenagel polycondensation reaction. The accetpor 2,2'-bipyridine unit in BTT-BpyDAN-COF skeleton favored the formation of a intermolecular specific electron transport pathway with the donor benzotrithiophene, and thereby promoted charge separation and transfer efficiency. Specifically, a donor-acceptor (D-A) type BTT-BpyDAN-COF exhibited high hydrogen evolution rate of 10.1 mmol g-1h-1 and an excellent apparent quantum efficiency of 4.83 % under visible light irradiation.
Collapse
Affiliation(s)
- Chang-Cheng Gu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chen-Quan Ni
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Run-Juan Wu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lu Deng
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jun Zou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hao Li
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chun-Yi Tong
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Feng-Hua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Bai-Cheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Ri-Long Zhu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
2
|
Ren Y, Xu Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem Soc Rev 2024; 53:1823-1869. [PMID: 38192222 DOI: 10.1039/d3cs00782k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Two-dimensional polymers (2DPs) are a class of 2D crystalline polymer materials with definite structures, which have outstanding physical-chemical and electronic properties. They cleverly link organic building units through strong covalent bonds and can construct functional 2DPs through reasonable design and selection of different monomer units to meet various application requirements. As promising energy materials, 2DPs have developed rapidly in recent years. This review first introduces the basic overview of 2DPs, such as their historical development, inherent 2D characteristics and diversified topological advantages, followed by the summary of the typical 2DP synthesis methods recently (including "top-down" and "bottom-up" methods). The latest research progress in assembly and processing of 2DPs and the energy-related applications in energy storage and conversion are also discussed. Finally, we summarize and prospect the current research status, existing challenges, and future research directions of 2DPs.
Collapse
Affiliation(s)
- Yumei Ren
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
3
|
Shen ZQ, Zhang G, Yang K, Zhang YJ, Gong H, Liao G, Liu SY. Direct C-H Arylation Derived Ternary D-A Conjugated Polymers: Effects of Monomer Geometries, D/A Ratios, and Alkyl Side Chains on Photocatalytic Hydrogen Production and Pollutant Degradation. Macromol Rapid Commun 2024; 45:e2300566. [PMID: 37931779 DOI: 10.1002/marc.202300566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Donor-acceptor (D-A) conjugated polymer (CP) featuring high charge mobility and widely tunable energy bands have shown promising prospects in photocatalysis. In this work, a library of ternary D-A CPs (22 polymers) based on benzothiadiazole, bithiophene, and fluorene derivatives (i.e., fluorene [Fl], 9,9-dihexylfluorene [HF], and 9,9'-spirobifluorene [SF]) with and without alkyl side chains, and with 3D geometry are designed and synthesized via atom-economical direct C-H arylation polymerization to explore the synergetic effects of stereochemistry, D/A ratio, and alkyl chains on the properties and photocatalytic performances, which reveal that 1) the cross-shaped 3D spirobifluorene (SF) building block shows the highest hydrogen evolution rates (HER) owing to the sufficient photocatalytic active sites exposed, 2) the alkyl-free linear polymer (FlBtBT0.05 ) exhibit the highest photocatalytic pollutant degradation performance owing to its superior charge separation, and 3) the alkyl side chains are redundances that will exert detrimental effects on the aqueous photocatalysis owing to their insulating and hydrophobic property. The structure-property-performance correlation results obtained will provide a desirable guideline for the rational design of CP-based photocatalysts.
Collapse
Affiliation(s)
- Zhao-Qi Shen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Guang Zhang
- Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Kai Yang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yu-Jie Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Hao Gong
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Guangfu Liao
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shi-Yong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
4
|
Ajay Rakkesh R, Naveen TB, Durgalakshmi D, Balakumar S. Covalent organic frameworks: Pioneering remediation solutions for organic pollutants. CHEMOSPHERE 2024; 346:140655. [PMID: 37949178 DOI: 10.1016/j.chemosphere.2023.140655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Covalent Organic Frameworks (COFs) have emerged as a promising class of crystalline porous materials with customizable structures, high surface areas, and tunable functionalities. Their unique properties make them attractive candidates for addressing environmental contamination caused by pharmaceuticals, pesticides, industrial chemicals, persistent organic pollutants (POPs), and endocrine disruptors (EDCs). This review article provides a comprehensive overview of recent advancements and applications of COFs in removing and remedying various environmental contaminants. We delve into the synthesis, properties, and performance of COFs and their potential limitations and future prospects.
Collapse
Affiliation(s)
- R Ajay Rakkesh
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, TN, India.
| | - T B Naveen
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, TN, India
| | - D Durgalakshmi
- Department of Medical Physics, Anna University, Chennai, 600 025, TN, India
| | - S Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, 600 025, TN, India
| |
Collapse
|
5
|
Wan Y, Zhang J, Wang D, Sun P, Shi L, Li S, Zhang J, Yan X, Wu X. A Data-Driven Search of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Overall Water Splitting. J Phys Chem Lett 2023; 14:7421-7432. [PMID: 37578905 DOI: 10.1021/acs.jpclett.3c01956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Two-dimensional (2D) covalent organic frameworks (COFs) with versatile structural and optoelectronic properties that can be tuned with building blocks and topological structures have received widespread attention for photocatalytic water splitting in recent years. However, few of these have been reported for overall water splitting under visible light. Here, we present a data-driven search of 2D COFs capable of visible-light-driven overall water splitting by combining high-throughput first-principles computations and experimental validations. Seven 2D COFs were identified to be capable of overall water splitting from the CoRE COF database, and their photocatalytic activities were further verified and optimized by our preliminary experiments. The production rates of H2 and O2 reached 80 and 32 μmol g-1 h-1, respectively, without using sacrificial agents. This work represents an attempt to explore 2D COFs for visible-light-driven overall water splitting with a data-driven approach that could accelerate the discovery and design of COFs toward photocatalytic overall water splitting.
Collapse
Affiliation(s)
- Yangyang Wan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiaojiao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dayong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information and Quantum Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengting Sun
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lebin Shi
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shun Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Yan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information and Quantum Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Wan Y, Sun P, Shi L, Yan X, Zhang X. Three-Dimensional Fully Conjugated Covalent Organic Frameworks for Efficient Photocatalytic Water Splitting. J Phys Chem Lett 2023; 14:7411-7420. [PMID: 37578869 DOI: 10.1021/acs.jpclett.3c01850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Covalent organic frameworks (COFs) are promising photocatalysts for water splitting, but their efficiency lags behind that of inorganic counterparts partly due to the limited charge transport and optical absorption properties. To overcome this limitation, we proposed to employ three-dimensional (3D) fully conjugated (FC) COFs with a topological assembly of cyclooctatetraene derivatives for photocatalytic water splitting. On the basis of first-principles calculations, we demonstrated that these 3D FC-COFs are semiconductors with exceptional charge transport and optical absorption properties. The carrier mobilities are comparable to those of inorganic semiconductors and superior to the record mobility observed in two-dimensional COFs. Additionally, the 3D FC-COFs exhibit broad visible light absorption with direct band gaps and high optical absorption coefficients. Among them, two 3D FC-COFs are identified for overall water splitting, while three others can facilitate the hydrogen evolution half-reaction. This study pioneers the design of 3D FC-COF photocatalysts, potentially advancing their applications in photocatalysis and optoelectronics.
Collapse
Affiliation(s)
- Yangyang Wan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Pengting Sun
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lebin Shi
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Yan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xu Zhang
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330-8268, United States
| |
Collapse
|
7
|
Li X, Wang Y, Zhang F, Lang X. Benzothiadiazole covalent organic framework photocatalysis with an electron transfer mediator for selective aerobic sulfoxidation. J Colloid Interface Sci 2023; 648:683-692. [PMID: 37321087 DOI: 10.1016/j.jcis.2023.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Covalent organic frameworks (COFs) are promising visible light photocatalysts for aerobic oxidation reactions. However, COFs usually suffer from the assault of reactive oxygen species, leading to hindered electron transfer. This scenario could be addressed by integrating a mediator to promote photocatalysis. Starting with 4,4'-(benzo-2,1,3-thiadiazole-4,7-diyl)dianiline (BTD) and 2,4,6-triformylphloroglucinol (Tp), TpBTD-COF is developed as a photocatalyst for aerobic sulfoxidation. Adding an electron transfer mediator 2,2,6,6-tetramethylpiperidine-1‑oxyl (TEMPO), the conversions are radically accelerated, over 2.5 times of that without TEMPO. Moreover, the robustness of TpBTD-COF is preserved by TEMPO. Remarkably, TpBTD-COF could endure multiple cycles of sulfoxidation, even with higher conversions than the fresh one. TpBTD-COF photocatalysis with TEMPO implements diverse aerobic sulfoxidation by an electron transfer pathway. This work highlights that benzothiadiazole COFs are an avenue for tailor-made photocatalytic transformations.
Collapse
Affiliation(s)
- Xia Li
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yuexin Wang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|