1
|
Wang Q, Jin W, Zhou X, Chen C, Han W, Mahlia TMI, Li X, Jiang G, Liu H, Wang Q. Enhancing docosahexaenoic acid production in Aurantiochytrium species using atmospheric and room temperature plasma mutagenesis and comprehensive multi-omics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169217. [PMID: 38081429 DOI: 10.1016/j.scitotenv.2023.169217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Aurantiochytrium sp. belongs to marine heterotrophic single-cell protist, which is an important decomposer in marine ecosystem. Aurantiochytrium sp. has gained notoriety because of its ability to accumulate high-value docosahexaenoic acid (DHA), but the key factors of DHA synthesis were unclear at present. In this study, Atmospheric and Room Temperature Plasma technology was applied to the mutagenic breeding of Aurantiochytrium sp., and transcriptomics and proteomics were adopted to analyze the DHA-biosynthesis mechanism. According to the growth and DHA accumulation profiles, the mutant strain Aurantiochytrium sp. R2A35 was selected. The DHA content in total lipids was greatly improved from 49.39 % of the wild strain R2 to 63.69 % of the mutant strain. Moreover, the DHA content in the biomass of Aurantiochytrium sp. R2A35 as 39.72 % was the highest DHA productivity reported so far. The differentially expressed genes distinguished from transcriptome and the TMT-identified differential proteins distinguished from proteome confirmed that the expression of acetyl-CoA carboxylase and ketoacyl reductase was up-regulated by 4.78-fold and 6.95-fold, respectively and the fatty acid synthase was concurrently down-regulated by 2.79-fold, so that more precursor was transported to the polyketide synthase pathway, thereby increasing the DHA yield in Aurantiochytrium sp. R2A35. This research would provide reference for the DHA metabolism process and contribute to the understanding of the decomposer - Aurantiochytrium sp. in marine ecosystems.
Collapse
Affiliation(s)
- Qing Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China
| | - Wenbiao Jin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China.
| | - Xu Zhou
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China.
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wei Han
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, China
| | - T M Indra Mahlia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW 2522 Wollongong, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
2
|
Maldonado-Hernández R, Quesada O, González-Feliciano JA, Baerga-Ortiz A, Lasalde-Dominicci JA. Identification of the native Torpedo californica nicotinic acetylcholine receptor's glycan composition after a multi-step sequential purification method using MALDI-ToF MS. Proteomics 2024; 24:e2300151. [PMID: 37904306 DOI: 10.1002/pmic.202300151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
The Cys-loop pentameric ligand-gated ion channels comprise a dynamic group of proteins that have been extensively studied for decades, yielding a wealth of findings at both the structural and functional levels. The nicotinic acetylcholine receptor (nAChR) is no exception, as it is part of this large protein family involved in proper organismal function. Our efforts have successfully produced a highly pure nAChR in detergent complex (nAChR-DC), enabling more robust studies to be conducted on it, including beginning to experiment with high-throughput crystallization. Our homogeneous product has been identified and extensively characterized with 100% identity using Nano Lc MS/MS and MALDI ToF/ToF for each nAChR subunit. Additionally, the N-linked glycans in the Torpedo californica-nAChR (Tc-nAChR) subunits have been identified. To study this, the Tc-nAChR subunits were digested with PNGase F and the released glycans were analyzed by MALDI-ToF. The MS results showed the presence of high-mannose N-glycan in all native Tc-nAChR subunits. Specifically, the oligommanose population Man8-9GlcNac2 with peaks at m/z 1742 and 1904 ([M + Na]+ ions) were observed.
Collapse
Affiliation(s)
- Rafael Maldonado-Hernández
- Department of Biology, Ponce Campus, University of Puerto Rico, Ponce, Puerto Rico, USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Orestes Quesada
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico, USA
- Department of Physical Sciences, Río Piedras Campus, University of Puerto Rico, San Juan, Puerto Rico, USA
| | | | - Abel Baerga-Ortiz
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico, USA
- Clinical Bioreagent Center, University of Puerto Rico, San Juan, Puerto Rico, USA
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - José A Lasalde-Dominicci
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico, USA
- Clinical Bioreagent Center, University of Puerto Rico, San Juan, Puerto Rico, USA
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, Puerto Rico, USA
- Institute of Neurobiology, University of Puerto Rico Medical Science Campus, San Juan, Puerto Rico, USA
| |
Collapse
|
3
|
Pakhrin SC, Pokharel S, Pratyush P, Chaudhari M, Ismail HD, Kc DB. LMPhosSite: A Deep Learning-Based Approach for General Protein Phosphorylation Site Prediction Using Embeddings from the Local Window Sequence and Pretrained Protein Language Model. J Proteome Res 2023; 22:2548-2557. [PMID: 37459437 DOI: 10.1021/acs.jproteome.2c00667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Phosphorylation is one of the most important post-translational modifications and plays a pivotal role in various cellular processes. Although there exist several computational tools to predict phosphorylation sites, existing tools have not yet harnessed the knowledge distilled by pretrained protein language models. Herein, we present a novel deep learning-based approach called LMPhosSite for the general phosphorylation site prediction that integrates embeddings from the local window sequence and the contextualized embedding obtained using global (overall) protein sequence from a pretrained protein language model to improve the prediction performance. Thus, the LMPhosSite consists of two base-models: one for capturing effective local representation and the other for capturing global per-residue contextualized embedding from a pretrained protein language model. The output of these base-models is integrated using a score-level fusion approach. LMPhosSite achieves a precision, recall, Matthew's correlation coefficient, and F1-score of 38.78%, 67.12%, 0.390, and 49.15%, for the combined serine and threonine independent test data set and 34.90%, 62.03%, 0.298, and 44.67%, respectively, for the tyrosine independent test data set, which is better than the compared approaches. These results demonstrate that LMPhosSite is a robust computational tool for the prediction of the general phosphorylation sites in proteins.
Collapse
Affiliation(s)
- Subash C Pakhrin
- School of Computing, Wichita State University, 1845 Fairmount St., Wichita, Kansas 67260, United States
- Department of Computer Science & Engineering Technology, University of Houston-Downtown, 1 Main St., Houston, Texas 77002, United States
| | - Suresh Pokharel
- Department of Computer Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Pawel Pratyush
- Department of Computer Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Meenal Chaudhari
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Hamid D Ismail
- Department of Computer Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dukka B Kc
- Department of Computer Science, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
4
|
Tian J, Ji M, Liu J, Xia Y, Zhang K, Li H, Gong W, Li Z, Xie W, Wang G, Xie J, Yu E. N-glycosylomic analysis provides new insight into the molecular mechanism of firmness of fish fillet. Food Chem 2023; 424:136417. [PMID: 37244189 DOI: 10.1016/j.foodchem.2023.136417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Post-translational protein modification affects muscle physiochemistry. To understand the roles of N-glycosylation in this process, the muscle N-glycoproteomes of crisp grass carp (CGC) and ordinary grass carp (GC) were analyzed and compared. We identified 325 N-glycosylated sites with the NxT motif, classified 177 proteins, and identified 10 upregulated and 19 downregulated differentially glycosylated proteins (DGPs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations revealed that these DGPs participate in myogenesis, extracellular matrix content formation, and muscle function. The DGPs partially accounted for the molecular mechanisms associated with the relatively smaller fiber diameter and higher collagen content observed in CGC. Though the DGPs diverged from the identified differentially phosphorylated proteins and differentially expressed proteins detected in previous study, they all shared similar metabolic and signaling pathways. Thus, they might independently alter fish muscle texture. Overall, the present study provides novel insights into the mechanisms underlying fillet quality.
Collapse
Affiliation(s)
- Jingjing Tian
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Mengmeng Ji
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jie Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yun Xia
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Kai Zhang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Hongyan Li
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wangbao Gong
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhifei Li
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wenping Xie
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Guangjun Wang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jun Xie
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Ermeng Yu
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
5
|
Ramazi S, Zahiri J. Posttranslational modifications in proteins: resources, tools and prediction methods. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6214407. [PMID: 33826699 DOI: 10.1093/database/baab012] [Citation(s) in RCA: 318] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/20/2021] [Indexed: 12/21/2022]
Abstract
Posttranslational modifications (PTMs) refer to amino acid side chain modification in some proteins after their biosynthesis. There are more than 400 different types of PTMs affecting many aspects of protein functions. Such modifications happen as crucial molecular regulatory mechanisms to regulate diverse cellular processes. These processes have a significant impact on the structure and function of proteins. Disruption in PTMs can lead to the dysfunction of vital biological processes and hence to various diseases. High-throughput experimental methods for discovery of PTMs are very laborious and time-consuming. Therefore, there is an urgent need for computational methods and powerful tools to predict PTMs. There are vast amounts of PTMs data, which are publicly accessible through many online databases. In this survey, we comprehensively reviewed the major online databases and related tools. The current challenges of computational methods were reviewed in detail as well.
Collapse
Affiliation(s)
- Shahin Ramazi
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Pérez-Rodríguez J, Téllez-Jurado A, Álvarez-Cervantes J, Antonio Ibarra J, Jaramillo-Loranca BE, Anducho-Reyes MA, Mercado-Flores Y. Study of the intracellular xylanolytic activity of the phytopathogenic fungus Sporisorium reilianum. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2019.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Maitre P, Scuderi D, Corinti D, Chiavarino B, Crestoni ME, Fornarini S. Applications of Infrared Multiple Photon Dissociation (IRMPD) to the Detection of Posttranslational Modifications. Chem Rev 2019; 120:3261-3295. [PMID: 31809038 DOI: 10.1021/acs.chemrev.9b00395] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infrared multiple photon dissociation (IRMPD) spectroscopy allows for the derivation of the vibrational fingerprint of molecular ions under tandem mass spectrometry (MS/MS) conditions. It provides insight into the nature and localization of posttranslational modifications (PTMs) affecting single amino acids and peptides. IRMPD spectroscopy, which takes advantage of the high sensitivity and resolution of MS/MS, relies on a wavelength specific fragmentation process occurring on resonance with an IR active vibrational mode of the sampled species and is well suited to reveal the presence of a PTM and its impact in the molecular environment. IRMPD spectroscopy is clearly not a proteomics tool. It is rather a valuable source of information for fixed wavelength IRMPD exploited in dissociation protocols of peptides and proteins. Indeed, from the large variety of model PTM containing amino acids and peptides which have been characterized by IRMPD spectroscopy, specific signatures of PTMs such as phosphorylation or sulfonation can be derived. High throughput workflows relying on the selective fragmentation of modified peptides within a complex mixture have thus been proposed. Sequential fragmentations can be observed upon IR activation, which do not only give rise to rich fragmentation patterns but also overcome low mass cutoff limitations in ion trap mass analyzers. Laser-based vibrational spectroscopy of mass-selected ions holding various PTMs is an increasingly expanding field both in the variety of chemical issues coped with and in the technological advancements and implementations.
Collapse
Affiliation(s)
- Philippe Maitre
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - Debora Scuderi
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| |
Collapse
|
8
|
Ma S, Li Y, Ma C, Wang Y, Ou J, Ye M. Challenges and Advances in the Fabrication of Monolithic Bioseparation Materials and their Applications in Proteomics Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902023. [PMID: 31502719 DOI: 10.1002/adma.201902023] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/29/2019] [Indexed: 06/10/2023]
Abstract
High-performance liquid chromatography integrated with tandem mass spectrometry (HPLC-MS/MS) has become a powerful technique for proteomics research. Its performance heavily depends on the separation efficiency of HPLC, which in turn depends on the chromatographic material. As the "heart" of the HPLC system, the chromatographic material is required to achieve excellent column efficiency and fast analysis. Monolithic materials, fabricated as continuous supports with interconnected skeletal structure and flow-through pores, are regarded as an alternative to particle-packed columns. Such materials are featured with easy preparation, fast mass transfer, high porosity, low back pressure, and miniaturization, and are next-generation separation materials for high-throughput proteins and peptides analysis. Herein, the recent progress regarding the fabrication of various monolithic materials is reviewed. Special emphasis is placed on studies of the fabrication of monolithic capillary columns and their applications in separation of biomolecules by capillary liquid chromatography (cLC). The applications of monolithic materials in the digestion, enrichment, and separation of phosphopeptides and glycopeptides from biological samples are also considered. Finally, advances in comprehensive 2D HPLC separations using monolithic columns are also shown.
Collapse
Affiliation(s)
- Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Ya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Chen Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
MacRae CA. Closing the 'phenotype gap' in precision medicine: improving what we measure to understand complex disease mechanisms. Mamm Genome 2019; 30:201-211. [PMID: 31428846 DOI: 10.1007/s00335-019-09810-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
Abstract
The central concept underlying precision medicine is a mechanistic understanding of each disease and its response to therapy sufficient to direct a specific intervention. To execute on this vision requires parsing incompletely defined disease syndromes into discrete mechanistic subsets and developing interventions to precisely address each of these etiologically distinct entities. This will require substantial adjustment of traditional paradigms which have tended to aggregate high-level phenotypes with very different etiologies. In the current environment, where diagnoses are not mechanistic, drug development has become so expensive that it is now impractical to imagine the cost-effective creation of new interventions for many prevalent chronic conditions. The vision of precision medicine also argues for a much more seamless integration of research and development with clinical care, where shared taxonomies will enable every clinical interaction to inform our collective understanding of disease mechanisms and drug responses. Ideally, this would be executed in ways that drive real-time and real-world discovery, innovation, translation, and implementation. Only in oncology, where at least some of the biology is accessible through surgical excision of the diseased tissue or liquid biopsy, has "co-clinical" modeling proven feasible. In most common germline disorders, while genetics often reveal the causal mutations, there still remain substantial barriers to efficient disease modeling. Aggregation of similar disorders under single diagnostic labels has directly contributed to the paucity of etiologic and mechanistic understanding by directly reducing the resolution of any subsequent studies. Existing clinical phenotypes are typically anatomic, physiologic, or histologic, and result in a substantial mismatch in information content between the phenomes in humans or in animal 'models' and the variation in the genome. This lack of one-to-one mapping of discrete mechanisms between disease and animal models causes a failure of translation and is one form of 'phenotype gap.' In this review, we will focus on the origins of the phenotyping deficit and approaches that may be considered to bridge the gap, creating shared taxonomies between human diseases and relevant models, using cardiovascular examples.
Collapse
Affiliation(s)
- Calum A MacRae
- Cardiovascular Medicine, Genetics and Network Medicine Divisions, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Hale 7016, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Montacir O, Montacir H, Springer A, Hinderlich S, Mahboudi F, Saadati A, Parr MK. Physicochemical Characterization, Glycosylation Pattern and Biosimilarity Assessment of the Fusion Protein Etanercept. Protein J 2018; 37:164-179. [DOI: 10.1007/s10930-018-9757-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Li D, Yin D, Chen Y, Liu Z. Coupling of metal-organic frameworks-containing monolithic capillary-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for efficient analysis of protein phosphorylation. J Chromatogr A 2017; 1498:56-63. [DOI: 10.1016/j.chroma.2016.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/29/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022]
|
12
|
Wang Q, He XM, Chen X, Zhu GT, Wang RQ, Feng YQ. Pyridoxal 5'-phosphate mediated preparation of immobilized metal affinity material for highly selective and sensitive enrichment of phosphopeptides. J Chromatogr A 2017; 1499:30-37. [PMID: 28390667 DOI: 10.1016/j.chroma.2017.03.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 01/02/2023]
Abstract
Phosphorylation is a crucial post-translational modification, which plays pivotal roles in various biological processes. Analysis of phosphopeptides by mass spectrometry (MS) is intractable on account of their low stoichiometry and the ion suppression from non-phosphopeptides. Thus, enrichment of phosphopeptides before MS analysis is indispensable. In this work, we employed pyridoxal 5'-phosphate (PLP), as an immobilized metal affinity chromatography (IMAC) ligand for the enrichment of phosphopeptides. PLP was grafted onto several substrates such as silica (SiO2), oxidized carbon nanotube (OCNT) and silica coated magnetic nanoparticles (Fe3O4@SiO2). Then the metal ions Fe3+, Ga3+ and Ti4+ were incorporated for the selective enrichment of phosphopeptides. It is indicated that Fe3O4@SiO2-PLP-Ti4+ has a superior selectivity towards phosphopeptides under as much as 1000-fold interferences of non-phosphopeptides. Further, Fe3O4@SiO2-PLP-Ti4+ exhibited high efficiency in selective enrichments of phosphopeptides from complex biological samples, including human serum and tryptic digested non-fat milk. Finally, Fe3O4@SiO2-PLP-Ti4+ was successfully employed in the sample pretreatment for profiling phosphopeptides in a tryptic digest of rat brain proteins. Our experimental results evidenced a great potential of this new chelator-based material in phosphoproteomics study.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Mei He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xi Chen
- Wuhan Institute of Biotechnology, Wuhan 430072, PR China
| | - Gang-Tian Zhu
- Key Laboratory of Tectonics and Petroleum Resources (Ministry of Education), China University of Geosciences, Wuhan 430075, PR China
| | - Ren-Qi Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
13
|
He XM, Chen X, Yuan BF, Feng YQ. Graft modification of cotton with phosphate group and its application to the enrichment of phosphopeptides. J Chromatogr A 2017; 1484:49-57. [DOI: 10.1016/j.chroma.2017.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/15/2016] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
|
14
|
|
15
|
Li D, Bie Z. Metal–organic framework incorporated monolithic capillary for selective enrichment of phosphopeptides. RSC Adv 2017. [DOI: 10.1039/c7ra00263g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein phosphorylation is a major post-translational modification, which plays a central role in the cellular signaling of numerous biological processes.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Fuction-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| | - Zijun Bie
- Department of Chemistry
- Bengbu Medical College
- China
| |
Collapse
|
16
|
Engaging challenges in glycoproteomics: recent advances in MS-based glycopeptide analysis. Bioanalysis 2015; 7:113-31. [PMID: 25558940 DOI: 10.4155/bio.14.272] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The proteomic analysis of glycosylation is uniquely challenging. The numerous and varied biological roles of protein-linked glycans have fueled a tremendous demand for technologies that enable rapid, in-depth structural examination of glycosylated proteins in complex biological systems. In turn, this demand has driven many innovations in wide ranging fields of bioanalytical science. This review will summarize key developments in glycoprotein separation and enrichment, glycoprotein proteolysis strategies, glycopeptide separation and enrichment, the role of mass measurement accuracy in glycopeptide detection, glycopeptide ion dissociation methods for MS/MS, and informatic tools for glycoproteomic analysis. In aggregate, this selection of topics serves to encapsulate the present status of MS-based analytical technologies for engaging the challenges of glycoproteomic analysis.
Collapse
|
17
|
Shrivastava DC, Kisku AV, Saxena M, Deswal R, Sarin NB. Stress inducible cytosolic ascorbate peroxidase (Ahcapx) from Arachis hypogaea cell lines confers salinity and drought stress tolerance in transgenic tobacco. THE NUCLEUS 2015. [DOI: 10.1007/s13237-015-0134-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
18
|
PhosphoHunter: An Efficient Software Tool for Phosphopeptide Identification. Adv Bioinformatics 2015; 2015:382869. [PMID: 25653679 PMCID: PMC4309027 DOI: 10.1155/2015/382869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation is a protein posttranslational modification. It is responsible of the activation/inactivation of disease-related pathways, thanks to its role of “molecular switch.” The study of phosphorylated proteins becomes a key point for the proteomic analyses focused on the identification of diagnostic/therapeutic targets. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is the most widely used analytical approach. Although unmodified peptides are automatically identified by consolidated algorithms, phosphopeptides still require automated tools to avoid time-consuming manual interpretation. To improve phosphopeptide identification efficiency, a novel procedure was developed and implemented in a Perl/C tool called PhosphoHunter, here proposed and evaluated. It includes a preliminary heuristic step for filtering out the MS/MS spectra produced by nonphosphorylated peptides before sequence identification. A method to assess the statistical significance of identified phosphopeptides was also formulated. PhosphoHunter performance was tested on a dataset of 1500 MS/MS spectra and it was compared with two other tools: Mascot and Inspect. Comparisons demonstrated that a strong point of PhosphoHunter is sensitivity, suggesting that it is able to identify real phosphopeptides with superior performance. Performance indexes depend on a single parameter (intensity threshold) that users can tune according to the study aim. All the three tools localized >90% of phosphosites.
Collapse
|
19
|
Borgognoni CF, Mormann M, Qu Y, Schäfer M, Langer K, Öztürk C, Wagner S, Chen C, Zhao Y, Fuchs H, Riehemann K. Reaction of human macrophages on protein corona covered TiO2 nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:275-82. [DOI: 10.1016/j.nano.2014.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/12/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
|
20
|
He XM, Zhu GT, Zhu YY, Chen X, Zhang Z, Wang ST, Yuan BF, Feng YQ. Facile preparation of biocompatible sulfhydryl cotton fiber-based sorbents by "thiol-ene" click chemistry for biological analysis. ACS APPLIED MATERIALS & INTERFACES 2014; 6:17857-17864. [PMID: 25268138 DOI: 10.1021/am505876b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sulfhydryl cotton fiber (SCF) has been widely used as adsorbent for a variety of metal ions since 1971. Thanks to the abundant thiols on SCF, in this study, we reported a universal method for the facile preparation of SCF-based materials using "thiol-ene" click chemistry for the first time. With the proposed method, two types of SCF-based materials, phenylboronic acid grafted sulfhydryl cotton fiber (SCF-PBA) and zirconium phosphonate-modified sulfhydryl cotton fiber (SCF-pVPA-Zr(4+)), were successfully prepared. The grafted functional groups onto the thiol group of SCF were demonstrated by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX). The prepared fibrous materials exhibited excellent fiber strength, good stability in aqueous or nonaqueous solutions, and great biocompatibility. Moreover, we developed filter-free in-pipet-tip SPE using these SCF-based materials as adsorbent for the enrichment of ribonucleosides, glycopeptides and phosphopeptides. Our results showed that SCF-PBA adsorbent can selectively capture ribonucleosides and glycopeptides from complex biological samples. And SCF-pVPA-Zr(4+) adsorbent exhibited high selectivity and capacity in the enrichment of phosphopeptides from the digestion mixture of β-casein and bovine serum albumin (BSA), as well as human serum and nonfat milk digest. Generally, the preparation strategy can be a universal method for the synthesis of other functionalized cotton-based adsorbents with special requirement in microscale biological analysis.
Collapse
Affiliation(s)
- Xiao-Mei He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Shi C, Deng C, Zou S, Zhang X. Polydopamine-coated eppendorf tubes for Ti4+ immobilization for selective enrichment of phosphopeptides. Talanta 2014; 127:88-93. [DOI: 10.1016/j.talanta.2014.03.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 01/12/2023]
|
22
|
Chen CYA, Shyu AB. Emerging mechanisms of mRNP remodeling regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:713-22. [PMID: 24923990 DOI: 10.1002/wrna.1241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022]
Abstract
The assembly and remodeling of the components of messenger ribonucleoprotein particles (mRNPs) are important in determining the fate of a messenger RNA (mRNA). A combination of biochemical and cell biology research, recently complemented by genome-wide high-throughput approaches, has led to significant progress on understanding the formation, dynamics, and function of mRNPs. These studies also advanced the challenging process of identifying the evolving constituents of individual mRNPs at various stages during an mRNA's lifetime. While research on mRNP remodeling in general has been gaining momentum, there has been relatively little attention paid to the regulatory aspect of mRNP remodeling. Here, we discuss the results of some new studies and potential mechanisms for regulation of mRNP remodeling.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical School at Houston, Houston, TX, USA
| | | |
Collapse
|
23
|
Marín M, Ott T. Intrinsic disorder in plant proteins and phytopathogenic bacterial effectors. Chem Rev 2014; 114:6912-32. [PMID: 24697726 DOI: 10.1021/cr400488d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Macarena Marín
- Genetics Institute, Faculty of Biology, Ludwig-Maximilians-University of Munich , Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| | | |
Collapse
|
24
|
Tran T, Park JM, Kim OH, Kim B, Choi DY, Lee J, Kim K, Oh BC, Lee H. Combined phospho- and glycoproteome enrichment in nephrocalcinosis tissues of phytate-fed rats. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2767-2776. [PMID: 24214862 DOI: 10.1002/rcm.6742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/27/2013] [Accepted: 09/18/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Protein post-translational modifications (PTMs) are directly involved in protein function and cellular activities. Among them, glycosylation and phosphorylation are particularly important modifications on proteins located at extracellular and intracellular domains, respectively. However, the combined detection using phospho- and glycoproteomics is limited mainly due to protocol differences. METHODS In this study, we developed a novel method for both phospho- and glycoproteome detection from a single sample batch, in which a titanium dioxide cartridge was used to capture the phosphoproteome, and the flow-through solution was processed for capturing N-linked glycopeptides using hydrazide resin. RESULTS By using 1 mg of protein from kidney tissue lysates from normal and diseased rats, we concurrently identified 437 glycosites/358 phosphosites and 468 glycosites/369 phosphosites in normal and disease kidneys, respectively, by liquid chromatography/tandem mass spectrometric analysis. CONCLUSIONS Compared with individual PTM analyses, the combined PTM analysis clearly provides more broad implications for PTMs related to the pathological status and discovery of biomarker candidates. Furthermore, the combined protocol thoroughly showed its advantages in enrichment efficiency and biological interpretation compared with current methods.
Collapse
Affiliation(s)
- TrangHuyen Tran
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Online Microreactor Titanium Dioxide RPLC-LTQ-Orbitrap MS Automated Platform for Shotgun Analysis of (Phospho) Proteins in Human Amniotic Fluid. Chromatographia 2013. [DOI: 10.1007/s10337-013-2567-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Huang KL, Chadee AB, Chen CYA, Zhang Y, Shyu AB. Phosphorylation at intrinsically disordered regions of PAM2 motif-containing proteins modulates their interactions with PABPC1 and influences mRNA fate. RNA (NEW YORK, N.Y.) 2013; 19:295-305. [PMID: 23340509 PMCID: PMC3677241 DOI: 10.1261/rna.037317.112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cytoplasmic poly(A)-binding protein (PABP) C1 recruits different interacting partners to regulate mRNA fate. The majority of PABP-interacting proteins contain a PAM2 motif to mediate their interactions with PABPC1. However, little is known about the regulation of these interactions or the corresponding functional consequences. Through in silico analysis, we found that PAM2 motifs are generally embedded within an extended intrinsic disorder region (IDR) and are located next to cluster(s) of potential serine (Ser) or threonine (Thr) phosphorylation sites within the IDR. We hypothesized that phosphorylation at these Ser/Thr sites regulates the interactions between PAM2-containing proteins and PABPC1. In the present study, we have tested this hypothesis using complementary approaches to increase or decrease phosphorylation. The results indicate that changing the extent of phosphorylation of three PAM2-containing proteins (Tob2, Pan3, and Tnrc6c) alters their ability to interact with PABPC1. Results from experiments using phospho-blocking or phosphomimetic mutants in PAM2-containing proteins further support our hypothesis. Moreover, the phosphomimetic mutations appreciably affected the functions of these proteins in mRNA turnover and gene silencing. Taken together, these results provide a new framework for understanding the roles of intrinsically disordered proteins in the dynamic and signal-dependent control of cytoplasmic mRNA functions.
Collapse
|
27
|
Switzar L, Giera M, Niessen WMA. Protein Digestion: An Overview of the Available Techniques and Recent Developments. J Proteome Res 2013; 12:1067-77. [DOI: 10.1021/pr301201x] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Linda Switzar
- AIMMS Division of BioMolecular
Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Martin Giera
- Division of Molecular Cell Physiology,
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry
Unit, Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Wilfried M. A. Niessen
- AIMMS Division of BioMolecular
Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
- hyphen MassSpec, de Wetstraat 8, 2332 XT Leiden, The Netherlands
| |
Collapse
|
28
|
Zhou H, Ye M, Dong J, Corradini E, Cristobal A, Heck AJR, Zou H, Mohammed S. Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography. Nat Protoc 2013; 8:461-80. [PMID: 23391890 DOI: 10.1038/nprot.2013.010] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mass spectrometry (MS)-based proteomics has become the preferred tool for the analysis of protein phosphorylation. To be successful at such an endeavor, there is a requirement for an efficient enrichment of phosphopeptides. This is necessary because of the substoichiometric nature of phosphorylation at a given site and the complexity of the cell. Recently, new alternative materials have emerged that allow excellent and robust enrichment of phosphopeptides. These monodisperse microsphere-based immobilized metal ion affinity chromatography (IMAC) resins incorporate a flexible linker terminated with phosphonate groups that chelate either zirconium or titanium ions. The chelated zirconium or titanium ions bind specifically to phosphopeptides, with an affinity that is similar to that of other widely used metal oxide affinity chromatography materials (typically TiO(2)). Here we present a detailed protocol for the preparation of monodisperse microsphere-based Ti(4+)-IMAC adsorbents and the subsequent enrichment process. Furthermore, we discuss general pitfalls and crucial steps in the preparation of phosphoproteomics samples before enrichment and, just as importantly, in the subsequent mass spectrometric analysis. Key points such as lysis, preparation of the chromatographic system for analysis and the most appropriate methods for sequencing phosphopeptides are discussed. Bioinformatics analysis specifically relating to site localization is also addressed. Finally, we demonstrate how the protocols provided are appropriate for both single-protein analysis and the screening of entire phosphoproteomes. It takes ∼2 weeks to complete the protocol: 1 week to prepare the Ti(4+)-IMAC material, 2 d for sample preparation, 3 d for MS analysis of the enriched sample and 2 d for data analysis.
Collapse
Affiliation(s)
- Houjiang Zhou
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
He XM, Zhu GT, Li XS, Yuan BF, Shi ZG, Feng YQ. Rapid enrichment of phosphopeptides by SiO2–TiO2 composite fibers. Analyst 2013; 138:5495-502. [DOI: 10.1039/c3an01091k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Ou J, Lin H, Zhang Z, Huang G, Dong J, Zou H. Recent advances in preparation and application of hybrid organic-silica monolithic capillary columns. Electrophoresis 2012; 34:126-40. [PMID: 23161325 DOI: 10.1002/elps.201200344] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/13/2012] [Accepted: 10/13/2012] [Indexed: 01/19/2023]
Abstract
Hybrid organic-silica monolithic columns, regarded as a second generation of silica-based monoliths, have received much interest due to their unique properties over the pure silica-based monoliths. This review mainly focuses on development in the fields of preparation of hybrid monolithic columns in a capillary and their application for CEC and capillary liquid chromatography separation, as well as for sample pretreatment of solid-phase microextraction and immobilized enzyme reactor since July 2010. The preparation approaches are comprehensively summarized with three routes: (i) general sol-gel process using trialkoxysilanes and tetraalkoxysilanes as coprecursors; (ii) "one-pot" process of alkoxysilanes and organic monomers concomitantly proceeding sol-gel chemistry and free radical polymerization; and (iii) other polymerization approaches of organic monomers containing silanes. The modification of hybrid monoliths containing reactive groups to acquire the desired surface functionality is also described.
Collapse
Affiliation(s)
- Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | | | | | | | | | | |
Collapse
|
31
|
Dodds ED. Gas-phase dissociation of glycosylated peptide ions. MASS SPECTROMETRY REVIEWS 2012; 31:666-82. [PMID: 22407588 DOI: 10.1002/mas.21344] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 05/15/2023]
Abstract
Among the myriad of protein post-translational modifications (PTMs), glycosylation presents a singular analytical challenge. On account of the extraordinary diversity of protein-linked carbohydrates and the great complexity with which they decorate glycoproteins, the rigorous establishment of glycan-protein connectivity is often an arduous experimental venture. Consequently, elaborating the interplay between structures of oligosaccharides and functions of proteins they modify is usually not a straightforward task. A more mature biochemical appreciation of carbohydrates as PTMs will significantly hinge upon analytical advances in the field of glycoproteomics. Undoubtedly, the analysis of glycosylated peptides by tandem mass spectrometry (MS/MS) will play a pivotal role in this regard. The goal of this review is to summarize, from an analytical and tutorial perspective, the present state of knowledge regarding the dissociation of glycopeptide ions as accomplished by various MS/MS methods. In addition, this review will endeavor to harmonize some seemingly disparate findings to provide a more complete and broadly applicable description of glycopeptide ion fragmentation. A fuller understanding of the rich variety of glycopeptide dissociation behaviors will allow glycoproteomic researchers to maximize the information yielded by MS/MS experiments, while also paving the way to new innovations in MS-based glycoproteomics.
Collapse
Affiliation(s)
- Eric D Dodds
- Department of Chemistry, University of Nebraska-Lincoln, 711 Hamilton Hall, Lincoln, Nebraska 68588-0304, USA.
| |
Collapse
|
32
|
Tan HT, Lee YH, Chung MCM. Cancer proteomics. MASS SPECTROMETRY REVIEWS 2012; 31:583-605. [PMID: 22422534 DOI: 10.1002/mas.20356] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/16/2011] [Accepted: 11/16/2011] [Indexed: 05/31/2023]
Abstract
Cancer presents high mortality and morbidity globally, largely due to its complex and heterogenous nature, and lack of biomarkers for early diagnosis. A proteomics study of cancer aims to identify and characterize functional proteins that drive the transformation of malignancy, and to discover biomarkers to detect early-stage cancer, predict prognosis, determine therapy efficacy, identify novel drug targets, and ultimately develop personalized medicine. The various sources of human samples such as cell lines, tissues, and plasma/serum are probed by a plethora of proteomics tools to discover novel biomarkers and elucidate mechanisms of tumorigenesis. Innovative proteomics technologies and strategies have been designed for protein identification, quantitation, fractionation, and enrichment to delve deeper into the oncoproteome. In addition, there is the need for high-throughput methods for biomarker validation, and integration of the various platforms of oncoproteome data to fully comprehend cancer biology.
Collapse
Affiliation(s)
- Hwee Tong Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|
33
|
Song B, Zhang L, Liu XJ, Ding C, Wu LL, Gan YH, Yu GY. Proteomic analysis of secretion from human transplanted submandibular gland replacing lacrimal gland with severe keratoconjunctivitis sicca. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:550-60. [DOI: 10.1016/j.bbapap.2012.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/15/2012] [Accepted: 01/19/2012] [Indexed: 12/17/2022]
|
34
|
Ellouze OE, Loukil S, Marzouki MN. Cloning and molecular characterization of a new fungal xylanase gene from Sclerotinia sclerotiorum S2. BMB Rep 2012; 44:653-8. [PMID: 22026998 DOI: 10.5483/bmbrep.2011.44.10.653] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sclerotinia sclerotiorum fungus has three endoxylanases induced by wheat bran. In the first part, a partial xylanase sequence gene (90 bp) was isolated by PCR corresponding to catalytic domains (β 5 and β 6 strands of this protein). The high homology of this sequence with xylanase of Botryotinia fuckeliana has permitted in the second part to amplify the XYN1 gene. Sequence analysis of DNA and cDNA revealed an ORF of 746 bp interrupted by a 65 bp intron, thus encoding a predicted protein of 226 amino acids. The mature enzyme (20.06 kDa), is coded by 188 amino acid (pI 9.26). XYN1 belongs to G/11 glycosyl hydrolases family with a conserved catalytic domain containing E(86) and E(178) residues. Bioinformatics analysis revealed that there was no Asn-X-Ser/Thr motif required for N-linked glycosylation in the deduced sequence however, five O-glycosylation sites could intervene in the different folding of xylanses isoforms and in their secretary pathway.
Collapse
Affiliation(s)
- Olfa Elleuch Ellouze
- Biological Engineering Unit, National Institute of Applied Sciences and Technology (I.N.S.A.T.), Tunis Cedex, Tunisia.
| | | | | |
Collapse
|
35
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
36
|
Hart-Smith G, Raftery MJ. Detection and characterization of low abundance glycopeptides via higher-energy C-trap dissociation and orbitrap mass analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:124-140. [PMID: 22083589 DOI: 10.1007/s13361-011-0273-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
Broad-scale mass spectrometric analyses of glycopeptides are constrained by the considerable complexity inherent to glycoproteomics, and techniques are still being actively developed to address the associated analytical difficulties. Here we apply Orbitrap mass analysis and higher-energy C-trap dissociation (HCD) to facilitate detailed insights into the compositions and heterogeneity of complex mixtures of low abundance glycopeptides. By generating diagnostic oxonium product ions at mass measurement errors of <5 ppm, highly selective glycopeptide precursor ion detections are made at sub-fmol limits of detection: analyses of proteolytic digests of a hen egg glycoprotein mixture detect 88 previously uncharacterized glycopeptides from 666 precursor ions selected for MS/MS, with only one false positive due to co-fragmentation of a non-glycosylated peptide with a glycopeptide. We also demonstrate that by (1) identifying multiple series of glycoforms using high mass accuracy single stage MS spectra, and (2) performing product ion scans at optimized HCD collision energies, the identification of peptide + N-acetylhexosamine (HexNAc) ions (Y1 ions) can be readily achieved at <5 ppm mass measurement errors. These data allow base peptide sequences and glycan compositional information to be attained with high confidence, even for glycopeptides that produce weak precursor ion signals and/or low quality MS/MS spectra. The glycopeptides characterized from low fmol abundances using these methods allow two previously unreported glycosylation sites on the Gallus gallus protein ovoglycoprotein (amino acids 82 and 90) to be confirmed; considerable glycan heterogeneities at amino acid 90 of ovoglycoprotein, and amino acids 34 and 77 of Gallus gallus ovomucoid are also revealed.
Collapse
Affiliation(s)
- Gene Hart-Smith
- NSW Systems Biology Initiative, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | |
Collapse
|
37
|
Marín M, Ott T. Phosphorylation of intrinsically disordered regions in remorin proteins. FRONTIERS IN PLANT SCIENCE 2012; 3:86. [PMID: 22639670 PMCID: PMC3355724 DOI: 10.3389/fpls.2012.00086] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/18/2012] [Indexed: 05/20/2023]
Abstract
Plant-specific remorin proteins reside in subdomains of plasma membranes, originally termed membrane rafts. They probably facilitate cellular signal transduction by direct interaction with signaling proteins such as receptor-like kinases and may dynamically modulate their lateral segregation within plasma membranes. Recent evidence suggests such functions of remorins during plant-microbe interactions and innate immune responses, where differential phosphorylation of some of these proteins has been described to be dependent on the perception of the microbe-associated molecular pattern (MAMP) flg22 and the presence of the NBS-LRR resistance protein RPM1. A number of specifically phosphorylated residues in their highly variable and intrinsically disordered N-terminal regions have been identified. Sequence diversity of these evolutionary distinct domains suggests that remorins may serve a wide range of biological functions. Here, we describe patterns and features of intrinsic disorder in remorin protein and discuss possible functional implications of phosphorylation within these rapidly evolving domains.
Collapse
Affiliation(s)
- Macarena Marín
- Institute of Genetics, Ludwig-Maximilians University MunichMunich, Germany
| | - Thomas Ott
- Institute of Genetics, Ludwig-Maximilians University MunichMunich, Germany
- *Correspondence: Thomas Ott, Institute of Genetics, Ludwig-Maximilians University Munich, Grosshaderner Strasse 2-4, Munich, 82152 Martinsried, Germany. e-mail:
| |
Collapse
|
38
|
Deng X, Hahne T, Schröder S, Redweik S, Nebija D, Schmidt H, Janssen O, Lachmann B, Wätzig H. The challenge to quantify proteins with charge trains due to isoforms or conformers. Electrophoresis 2011; 33:263-9. [DOI: 10.1002/elps.201100321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/30/2011] [Accepted: 08/05/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Xi Deng
- Institute of Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Hahne
- Institute of Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Simone Schröder
- Institute of Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sabine Redweik
- Institute of Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dashnor Nebija
- Department of Medicinal and Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Hendrik Schmidt
- Laboratory for Molecular Immunology, Institute for Immunology, University Hospital Schleswig‐Holstein, Kiel, Germany
| | - Ottmar Janssen
- Laboratory for Molecular Immunology, Institute for Immunology, University Hospital Schleswig‐Holstein, Kiel, Germany
| | - Bodo Lachmann
- Department of Medicinal and Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Hermann Wätzig
- Institute of Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
39
|
Wang W, Liu H, Li Z. Tandem Mass Spectrometric Characterization of Fetuin Sialylated Glycopeptides Enriched by TiO2 Microcolumn. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201180385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
El Idrissi K, Eddarir S, Tokarski C, Rolando C. Immobilized metal affinity chromatography using open tubular capillary for phosphoprotein analysis: Comparison between polymer brush coating and surface functionalization. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2852-9. [DOI: 10.1016/j.jchromb.2011.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 11/27/2022]
|
41
|
Wan H, Yan J, Yu L, Sheng Q, Zhang X, Xue X, Li X, Liang X. Zirconia layer coated mesoporous silica microspheres as HILIC SPE materials for selective glycopeptide enrichment. Analyst 2011; 136:4422-30. [PMID: 21897947 DOI: 10.1039/c1an15554g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Characterization of protein glycosylation requires highly specific methods for the enrichment of glycopeptides because of their sub-stoichiometric glycosylation-site occupancy. The hydrophilic affinity based strategy has attracted more attention, owing to its broad glycan specificity, good reproducibility, and compatibility with mass spectrometric (MS) analysis. Several polar matrices have emerged for hydrophilic interaction chromatography (HILIC) approaches, including sepharose, cellulose, ZIC-HILIC and titania. Here, we present the solid-phase extraction (SPE) utility of zirconia coated mesoporous silica (ZrO(2)/MPS) microspheres for glycopeptide isolation prior to MS analysis. The high specificity of this SPE approach was demonstrated by the enrichment of glycopeptides from the digests of model glycoproteins in HILIC mode. ZrO(2)/MPS microspheres show superior selectivity and glycosylation heterogeneity coverage for glycopeptide enrichment to conventional sepharose. Furthermore, digested mixtures of the phosphoprotein α-casein and IgG were also treated with ZrO(2)/MPS HILIC SPE materials, which exhibited that glycopeptides could be effectively enriched with interference from phosphorylated peptides.
Collapse
Affiliation(s)
- Huihui Wan
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Remmerie N, De Vijlder T, Laukens K, Dang TH, Lemière F, Mertens I, Valkenborg D, Blust R, Witters E. Next generation functional proteomics in non-model plants: A survey on techniques and applications for the analysis of protein complexes and post-translational modifications. PHYTOCHEMISTRY 2011; 72:1192-218. [PMID: 21345472 DOI: 10.1016/j.phytochem.2011.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/21/2010] [Accepted: 01/03/2011] [Indexed: 05/11/2023]
Abstract
The congruent development of computational technology, bioinformatics and analytical instrumentation makes proteomics ready for the next leap. Present-day state of the art proteomics grew from a descriptive method towards a full stake holder in systems biology. High throughput and genome wide studies are now made at the functional level. These include quantitative aspects, functional aspects with respect to protein interactions as well as post translational modifications and advanced computational methods that aid in predicting protein function and mapping these functionalities across the species border. In this review an overview is given of the current status of these aspects in plant studies with special attention to non-genomic model plants.
Collapse
Affiliation(s)
- Noor Remmerie
- Center for Proteomics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hao P, Guo T, Sze SK. Simultaneous analysis of proteome, phospho- and glycoproteome of rat kidney tissue with electrostatic repulsion hydrophilic interaction chromatography. PLoS One 2011; 6:e16884. [PMID: 21373199 PMCID: PMC3044146 DOI: 10.1371/journal.pone.0016884] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/15/2011] [Indexed: 12/11/2022] Open
Abstract
Protein post-translational modifications (PTMs) are regulated separately from protein expression levels. Thus, simultaneous characterization of the proteome and its PTMs is pivotal to an understanding of protein regulation, function and activity. However, concurrent analysis of the proteome and its PTMs by mass spectrometry is a challenging task because the peptides bearing PTMs are present in sub-stoichiometric amounts and their ionization is often suppressed by unmodified peptides of high abundance. We describe here a method for concurrent analysis of phosphopeptides, glycopeptides and unmodified peptides in a tryptic digest of rat kidney tissue with a sequence of ERLIC and RP-LC-MS/MS in a single experimental run, thereby avoiding inter-experimental variation. Optimization of loading solvents and elution gradients permitted ERLIC to be performed with totally volatile solvents. Two SCX and four ERLIC gradients were compared in details, and one ERLIC gradient was found to perform the best, which identified 2929 proteins, 583 phosphorylation sites in 338 phosphoproteins and 722 N-glycosylation sites in 387 glycoproteins from rat kidney tissue. Two hundred low-abundance proteins with important functions were identified only from the glyco- or phospho-subproteomes, reflecting the importance of the enrichment and separation of modified peptides by ERLIC. In addition, this strategy enables identification of unmodified and corresponding modified peptides (partial phosphorylation and N-glycosylation) from the same protein. Interestingly, partially modified proteins tend to occur on proteins involved in transport. Moreover, some membrane or extracellular proteins, such as versican core protein and fibronectin, were found to have both phosphorylation and N-glycosylation, which may permit an assessment of the potential for cross talk between these two vital PTMs and their roles in regulation.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Tiannan Guo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
45
|
Lazar IM, Lazar AC, Cortes DF, Kabulski JL. Recent advances in the MS analysis of glycoproteins: Theoretical considerations. Electrophoresis 2010; 32:3-13. [PMID: 21171109 DOI: 10.1002/elps.201000393] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 01/19/2023]
Abstract
Protein glycosylation is involved in a broad range of biological processes that regulate protein function and control cell fate. As aberrant glycosylation has been found to be implicated in numerous diseases, the study and large-scale characterization of protein glycosylation is of great interest not only to the biological and biomedical research community, but also to the pharmaceutical and biotechnology industry. Due to the complex chemical structure and differing chemical properties of the protein/peptide and glycan moieties, the analysis and structural characterization of glycoproteins has been proven to be a difficult task. Large-scale endeavors have been further limited by the dynamic outcome of the glycosylation process itself, and, occasionally, by the low abundance of glycoproteins in biological samples. Recent advances in MS instrumentation and progress in miniaturized technologies for sample handling, enrichment and separation, have resulted in robust and compelling analysis strategies that effectively address the challenges of the glycoproteome. This review summarizes the key steps that are involved in the development of efficient glycoproteomic analysis methods, and the latest innovations that led to successful strategies for the characterization of glycoproteins and their corresponding glycans. As a follow-up to this work, we review innovative capillary and microfluidic-MS workflows for the identification, sequencing and characterization of glycoconjugates.
Collapse
Affiliation(s)
- Iulia M Lazar
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | | | | | | |
Collapse
|
46
|
Chang YC, Huang CN, Lin CH, Chang HC, Wu CC. Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: An integrated approach to explore the cysteine oxidation. Proteomics 2010; 10:2961-71. [DOI: 10.1002/pmic.200900850] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Characterisation of N-glycans bound to IGFBP-3 in sera from healthy adults. Biochimie 2010; 92:97-101. [DOI: 10.1016/j.biochi.2009.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 09/25/2009] [Indexed: 11/23/2022]
|
48
|
Forné I, Abián J, Cerdà J. Fish proteome analysis: Model organisms and non-sequenced species. Proteomics 2009; 10:858-72. [DOI: 10.1002/pmic.200900609] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Abstract
A variety of post-translational protein modifications (PTMs) are known to be altered as a result of cancer development. Thus, these PTMs are potentially useful biomarkers for breast cancer. Mass spectrometry, antibody microarrays and immunohistochemistry techniques have shown promise for identifying changes in PTMs. In this review, we summarize the current literature on PTMs identified in the plasma and tumor tissue of breast-cancer patients or in breast cell lines. We also discuss some of the analytical techniques currently being used to evaluate PTMs.
Collapse
Affiliation(s)
- Hongjun Jin
- Cell Biology and Biochemistry Group, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, PO Box 999, 902 Battelle Blvd, Richland, WA 99352
| | | |
Collapse
|
50
|
Mischak H, Coon JJ, Novak J, Weissinger EM, Schanstra JP, Dominiczak AF. Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. MASS SPECTROMETRY REVIEWS 2009; 28:703-24. [PMID: 18973238 PMCID: PMC2720435 DOI: 10.1002/mas.20205] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Proteome analysis has emerged as a powerful technology to decipher biological processes. One of the main goals is to discover biomarkers for diseases from tissues and body fluids. However, the complexity and wide dynamic range of protein expression present an enormous challenge to separation technologies and mass spectrometry (MS). In this review, we examine the limitations of proteomics, and aim towards the definition of the current key prerequisites. We focus on capillary electrophoresis coupled to mass spectrometry (CE-MS), because this technique continues to show great promise. We discuss CE-MS from an application point of view, and evaluate its merits and vices for biomarker discovery and clinical applications. Finally, we present several examples on the use of CE-MS to determine urinary biomarkers and implications for disease diagnosis, prognosis, and therapy evaluation.
Collapse
Affiliation(s)
- Harald Mischak
- Mosaiques Diagnostics & Therapeutics, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|