1
|
Honeder SE, Tomin T, Schinagl M, Pfleger R, Hoehlschen J, Darnhofer B, Schittmayer M, Birner‐Gruenberger R. Research Advances Through Activity‐Based Lipid Hydrolase Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sophie Elisabeth Honeder
- Research and Diagnostic Institute of Pathology Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Maximilian Schinagl
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Raphael Pfleger
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Julia Hoehlschen
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Barbara Darnhofer
- Core Facility Mass Spectrometry Center for Medical Research Medical University of Graz Neue Stiftingtalstraße 24 8036 Graz Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Ruth Birner‐Gruenberger
- Research and Diagnostic Institute of Pathology Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| |
Collapse
|
2
|
Schittmayer M, Vujic N, Darnhofer B, Korbelius M, Honeder S, Kratky D, Birner-Gruenberger R. Spatially Resolved Activity-based Proteomic Profiles of the Murine Small Intestinal Lipases. Mol Cell Proteomics 2020; 19:2104-2115. [PMID: 33023980 PMCID: PMC7710144 DOI: 10.1074/mcp.ra120.002171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/28/2020] [Indexed: 01/05/2023] Open
Abstract
Despite the crucial function of the small intestine in nutrient uptake our understanding of the molecular events underlying the digestive function is still rudimentary. Recent studies demonstrated that enterocytes do not direct the entire dietary triacylglycerol toward immediate chylomicron synthesis. Especially after high-fat challenges, parts of the resynthesized triacylglycerol are packaged into cytosolic lipid droplets for transient storage in the endothelial layer of the small intestine. The reason for this temporary storage of triacylglycerol is not completely understood. To utilize lipids from cytosolic lipid droplets for chylomicron synthesis in the endoplasmic reticulum, stored triacylglycerol has to be hydrolyzed either by cytosolic lipolysis or lipophagy. Interestingly, triacylglycerol storage and chylomicron secretion rates are unevenly distributed along the small intestine, with the proximal jejunum exhibiting the highest intermittent storage capacity. We hypothesize that correlating hydrolytic enzyme activities with the reported distribution of triacylglycerol storage and chylomicron secretion in different sections of the small intestine is a promising strategy to determine key enzymes in triacylglycerol remobilization. We employed a serine hydrolase specific activity-based labeling approach in combination with quantitative proteomics to identify and rank hydrolases based on their relative activity in 11 sections of the small intestine. Moreover, we identified several clusters of enzymes showing similar activity distribution along the small intestine. Merging our activity-based results with substrate specificity and subcellular localization known from previous studies, carboxylesterase 2e and arylacetamide deacetylase emerge as promising candidates for triacylglycerol mobilization from cytosolic lipid droplets in enterocytes.
Collapse
Affiliation(s)
- Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria; Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Sophie Honeder
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria; Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
3
|
Enzymes from Marine Polar Regions and Their Biotechnological Applications. Mar Drugs 2019; 17:md17100544. [PMID: 31547548 PMCID: PMC6835263 DOI: 10.3390/md17100544] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
The microorganisms that evolved at low temperatures express cold-adapted enzymes endowed with unique catalytic properties in comparison to their mesophilic homologues, i.e., higher catalytic efficiency, improved flexibility, and lower thermal stability. Cold environments are therefore an attractive research area for the discovery of enzymes to be used for investigational and industrial applications in which such properties are desirable. In this work, we will review the literature on cold-adapted enzymes specifically focusing on those discovered in the bioprospecting of polar marine environments, so far largely neglected because of their limited accessibility. We will discuss their existing or proposed biotechnological applications within the framework of the more general applications of cold-adapted enzymes.
Collapse
|
4
|
Synergism of proteomics and mRNA sequencing for enzyme discovery. J Biotechnol 2016; 235:132-8. [DOI: 10.1016/j.jbiotec.2015.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022]
|