1
|
Wang S, Ling L, Ding CF. Integrating Chemoselective Labeling and Laser-Cleavable Mass Tagging for Determination of Sialic Acids in Glycoconjugates. Anal Chem 2025. [PMID: 39749466 DOI: 10.1021/acs.analchem.4c03591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Sialic acids are the terminal units of glycans in glycoproteins or glycolipids. The determination of sialic acids in glycoconjugates is crucial since they regulate essential biological functions and have a significant nutritional value. To achieve a specific and high-throughput in situ determination of sialic acids in glycoconjugates, a laser-desorption/ionization mass spectrometry (LDI-MS)-based strategy is reported by integrating chemoselective labeling and laser-cleavable mass tagging. 1-Pyrenebutyric hydrazide (PBH), a commercially available reagent that contains a pyrene moiety and a hydrazide group, has been developed as a novel laser-cleavable mass tag. For chemoselective labeling, an aldehyde group is introduced to the polyhydroxy side chain of sialic acids through mild periodate oxidation and then reacted with PBH, achieving the in situ determination of sialic acids. The quantitative determination of sialic acids in the range of 5-1000 μM (R2 = 0.99984) was achieved using an internal standard method. Thus, a specific, quantitative, and high-throughput method was developed for the in situ determination of sialic acids in glycoconjugates. Finally, this method has been successfully used to quantify the sialic acid content in EBN proteins and glycoprotein biopharmaceuticals, showing its practical application in the quality control of nutritional and therapeutic glycoprotein products. Additionally, the pyrene moiety, when linked to other reactive groups, can also be utilized to analyze other biomolecules, offering a new route for the rational design of mass tags.
Collapse
Affiliation(s)
- Shuyi Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ling Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Xu R, Balmer L, Chen G, Song M. Role of N-Glycosylation in Gastrointestinal Cancers. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:596-607. [PMID: 39514331 DOI: 10.1089/omi.2024.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Gastrointestinal cancers pose a significant global health challenge. N-glycosylation modulates various cellular processes, including key cancer-related mechanisms. Elucidating its involvement in the onset and advancement of these cancers can offer critical insights for enhancing diagnostic and therapeutic approaches. This review outlines the core process of protein N-glycosylation and highlights its contribution to the progression of gastrointestinal cancers, encompassing cell proliferation, survival, invasion, metastasis, and immune evasion, mainly through its impact on critical signaling pathways. Notably, aberrant N-glycosylation patterns have emerged as crucial biomarkers for the diagnosis and prognosis of various gastrointestinal cancers, providing the foundation for more personalized therapeutic approaches. Therapeutic strategies targeting N-glycosylation, such as glycosyltransferase inhibitors and glycoengineering, show significant promise in mitigating tumor aggressiveness and enhancing immune recognition. However, the clinical implementation of N-glycosylation biomarkers requires the standardization of glycosylation analysis techniques and solutions to challenges in sample processing and data interpretation. Future research efforts should concentrate on overcoming these obstacles to unlock the full potential of N-glycosylation in enhancing cancer management and advancing patient outcomes.
Collapse
Affiliation(s)
- Ruirui Xu
- Center for Precision Health, Edith Cowan University, Western Australia, Australia
- School of Medical and Health Science, Edith Cowan University, Western Australia, Australia
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Shantou University Medical College, Guangdong, China
| | - Lois Balmer
- Center for Precision Health, Edith Cowan University, Western Australia, Australia
- School of Medical and Health Science, Edith Cowan University, Western Australia, Australia
| | - Gengzhen Chen
- Digestive Disease Prevention and Treatment Center, Chenghai District People's Hospital, Guangdong, China
| | - Manshu Song
- School of Medical and Health Science, Edith Cowan University, Western Australia, Australia
| |
Collapse
|
3
|
Li Y, Wang J, Chen W, Lu H, Zhang Y. Comprehensive review of MS-based studies on N-glycoproteome and N-glycome of extracellular vesicles. Proteomics 2024; 24:e2300065. [PMID: 37474487 DOI: 10.1002/pmic.202300065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles that can be released by all type of cells. Whereas, as one of the most common post-translational modifications, glycosylation plays a vital role in various biological functions of EVs, such as EV biogenesis, sorting, and cellular recognition. Nevertheless, compared with studies on RNAs or proteins, those investigating the glycoconjugates of EVs are limited. An in-depth investigation of N-glycosylation of EVs can improve the understanding of the biological functions of EVs and help to exploit EVs from different perspectives. The general focus of studies on glycosylation of EVs primarily includes isolation and characterization of EVs, preparation of glycoproteome/glycome samples and MS analysis. However, the low content of EVs and non-standard separation methods for downstream analysis are the main limitations of these studies. In this review, we highlight the importance of glycopeptide/glycan enrichment and derivatization owing to the low abundance of glycoproteins and the low ionization efficiency of glycans. Diverse fragmentation patterns and professional analytical software are indispensable for analysing glycosylation via MS. Altogether, this review summarises recent studies on glycosylation of EVs, revealing the role of EVs in disease progression and their remarkable potential as biomarkers.
Collapse
Affiliation(s)
- Yang Li
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, P. R. China
| | - Jun Wang
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| | - Weiyu Chen
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| | - Haojie Lu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, P. R. China
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| | - Ying Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, P. R. China
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| |
Collapse
|
4
|
Pinkeova A, Kosutova N, Jane E, Lorencova L, Bertokova A, Bertok T, Tkac J. Medical Relevance, State-of-the-Art and Perspectives of "Sweet Metacode" in Liquid Biopsy Approaches. Diagnostics (Basel) 2024; 14:713. [PMID: 38611626 PMCID: PMC11011756 DOI: 10.3390/diagnostics14070713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This review briefly introduces readers to an area where glycomics meets modern oncodiagnostics with a focus on the analysis of sialic acid (Neu5Ac)-terminated structures. We present the biochemical perspective of aberrant sialylation during tumourigenesis and its significance, as well as an analytical perspective on the detection of these structures using different approaches for diagnostic and therapeutic purposes. We also provide a comparison to other established liquid biopsy approaches, and we mathematically define an early-stage cancer based on the overall prognosis and effect of these approaches on the patient's quality of life. Finally, some barriers including regulations and quality of clinical validations data are discussed, and a perspective and major challenges in this area are summarised.
Collapse
Affiliation(s)
- Andrea Pinkeova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
- Glycanostics, Ltd., Kudlakova 7, 841 08 Bratislava, Slovakia;
| | - Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Aniko Bertokova
- Glycanostics, Ltd., Kudlakova 7, 841 08 Bratislava, Slovakia;
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia; (A.P.); (N.K.); (E.J.); (L.L.)
- Glycanostics, Ltd., Kudlakova 7, 841 08 Bratislava, Slovakia;
| |
Collapse
|
5
|
Pinheiro I, Calo N, Paolini-Bertrand M, Hartley O. Arylsulfatases and neuraminidases modulate engagement of CCR5 by chemokines by removing key electrostatic interactions. Sci Rep 2024; 14:292. [PMID: 38167636 PMCID: PMC10762049 DOI: 10.1038/s41598-023-50944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
The chemokine receptor CCR5 is known to exist in cell surface subpopulations that differ in their capacity to engage ligands. One proposed explanation for this phenomenon is the presence of CCR5 species with different levels of post-translational modifications (PTMs). Tyrosine sulfation and O-glycan sialylation are PTMs that add negative charges to the extracellular domain of CCR5 and make strong contributions to chemokine binding but it is not known whether cellular mechanisms to control their levels exist. In this study we used a combination of sulfation-sensitive and sulfation-insensitive CCR5 ligands to show that the rate of turnover of CCR5 tyrosine sulfation is more rapid than the rate of turnover of the receptor itself. This suggests that the steady state level of CCR5 sulfation is maintained through the combination of tyrosine protein sulfotransferase (TPST), the trans-Golgi network (TGN)-resident 'source enzyme, and a 'sink' activity that removes tyrosine sulfation from CCR5. By measuring the effects on ligand binding of knockdown and overexpression experiments, we provided evidence that non-lysosomal cellular arylsulfatases, particularly ARSG, ARSI and ARSJ, are CCR5 sulfation 'sink' enzymes. We also used targeted knockdown and sialylation-sensitive and insensitive chemokines to identify the sialidase NEU3 as a candidate 'sink' enzyme for CCR5 O-glycan sialylation. This study provides the first experimental evidence of activity of sulfatase and sialidase 'sink' enzymes on CCR5, providing a potential mechanism for cells to control steady-state levels of these PTMs and thereby exert dynamic control over receptor-ligand interactions at the cell surface and during receptor desensitization.
Collapse
Affiliation(s)
- Inês Pinheiro
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Calo
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Orion Biotechnology, Campus Biotech Innovation Park, Geneva, Switzerland
| | - Marianne Paolini-Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Orion Biotechnology, Campus Biotech Innovation Park, Geneva, Switzerland.
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Fan T, Liao Q, Zhao Y, Dai H, Song S, He T, Wang Z, Huang J, Zeng Z, Guo H, Zhang H, Qiu X. Sialylated IgG in epithelial cancers inhibits antitumor function of T cells via Siglec-7. Cancer Sci 2022; 114:370-383. [PMID: 36310398 PMCID: PMC9899632 DOI: 10.1111/cas.15631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 02/07/2023] Open
Abstract
Although effective, immune checkpoint blockade induces response in only a subset of cancer patients. There is an urgent need to discover new immune checkpoint targets. Recently, it was found that a class of sialic acid-binding immunoglobulin-like lectins (Siglecs) expressed on the surface of T cells in cancer patients inhibit T cell activation through their intracellular immunosuppressive motifs by recognizing sialic acid-carrying glycans, sialoglycans. However, ligands of Siglecs remain elusive. Here, we report sialylated IgG (SIA-IgG), a ligand to Siglec-7, that is highly expressed in epithelial cancer cells. SIA-IgG binds Siglec-7 directly and inhibits TCR signals. Blocking of either SIA-IgG or Siglec-7 elicited potent antitumor immunity in T cells. Our study suggests that blocking of Siglec-7/SIA-IgG offers an opportunity to enhance immune function while simultaneously sensitizing cancer cells to immune attack.
Collapse
Affiliation(s)
- Tianrui Fan
- Department of Immunology, School of Basic Medical SciencesPeking UniversityBeijingChina,NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Qinyuan Liao
- Department of ImmunologyGuilin Medical UniversityGuilinChina
| | - Yang Zhao
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Hui Dai
- Department of Immunology, School of Basic Medical SciencesPeking UniversityBeijingChina,NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Shiyu Song
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tianhui He
- Department of Gynecology and ObstetricsThe Third Hospital of Peking UniversityBeijingChina
| | - Zihan Wang
- Department of Immunology, School of Basic Medical SciencesPeking UniversityBeijingChina,NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Jing Huang
- Department of Immunology, School of Basic Medical SciencesPeking UniversityBeijingChina,NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| | - Zexian Zeng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Hongyan Guo
- Department of Gynecology and ObstetricsThe Third Hospital of Peking UniversityBeijingChina
| | - Haizeng Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical SciencesPeking UniversityBeijingChina,NHC Key Laboratory of Medical ImmunologyPeking UniversityBeijingChina
| |
Collapse
|
8
|
Aguedo J, Pakanova Z, Lorencova L, Nemcovic M, Kasak P, Barath M, Farkas P, Tkac J. MXene as a novel cartridge for N-glycan enrichment. Anal Chim Acta 2022; 1234:340512. [DOI: 10.1016/j.aca.2022.340512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/01/2022]
|
9
|
Li M, Huang J, Ma M, Shi X, Li L. Selective Enrichment of Sialylglycopeptides Enabled by Click Chemistry and Dynamic Covalent Exchange. Anal Chem 2022; 94:6681-6688. [PMID: 35467842 DOI: 10.1021/acs.analchem.1c05158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite the important roles of protein sialylation in biological processes such as cellular interaction and cancer progression, simple and effective methods for the analysis of intact sialylglycopeptides (SGPs) are still limited. Analyses of low-abundance SGPs typically require efficient enrichment prior to comprehensive liquid chromatography-mass spectrometry (LC-MS)-based analysis. Here, a novel workflow combining mild periodate oxidation, hydrazide chemistry, copper-catalyzed azide/alkyne cycloaddition (CuAAC) click chemistry, and dynamic covalent exchange has been developed for selective enrichment of SGPs. The intact SGPs could be separated easily from protein tryptic digests, and the signature ions were produced during LC-MS/MS for unambiguous identification. The structure of the signature ions and corresponding dynamic covalent exchange were confirmed by using an isotopic reagent. Under the optimized condition, over 70% enrichment efficiency of SGPs was achieved using bovine fetuin digests, and the method was successfully applied to complex biological samples, such as a mouse lung tissue extract. The high enrichment efficiency, good reproducibility, and easily adopted procedure without the need to generate specialized materials make this method a promising tool for broad applications in SGP analysis.
Collapse
Affiliation(s)
- Miyang Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| | - Xudong Shi
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| |
Collapse
|
10
|
Demir R, Şahar U, Deveci R. Exploring the Candidate Terminal Glycan Profile in Neural Regeneration of the Sea Urchin Paracentrotus lividus, Using Lectin Blotting and Mass Spectrometry. THE BIOLOGICAL BULLETIN 2022; 242:118-126. [PMID: 35580027 DOI: 10.1086/718776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glycans are expressed as conjugates of glycoproteins, glycolipids, and proteoglycans. The huge diversity of glycans on glycoconjugates contributes to many biological processes, from glycan-based molecular recognition to developmental events, such as regeneration in the nervous system. Echinoderms, which have a close phylogenetic relationship with chordates, are an important group of marine invertebrates for body regeneration. Although many major roles of glycans on glycoconjugates are known, their role in the glycosylation profile of the nervous system in sea urchins is poorly understood. In this study, we aimed to determine the terminal glycan profile by lectin blotting and to quantify sialic acids by the capillary liquid chromatography electrospray ionization tandem mass spectrometry system in the nervous tissue of the sea urchin Paracentrotus lividus. We determined the N-acetyl-D-glucosamine, mannose, and sialic acids (mainly α2,3 linked) by lectin blotting and five types of sialic acids (N-glycolylneuraminic acid, N-acetylneuraminic acid, 9-O-acetyl-N-alycolylneuraminic acid, 5-N-acetyl-9-O-acetyl-N-acetylneuraminic acid, and di-O-acetylated-N-alycolylneuraminic acid) by capillary liquid chromatography electrospray ionization tandem mass spectrometry. This potential first description of the terminal glycan profile in the nervous system of the sea urchin is expected to help us understand its role in nervous system development and regeneration.
Collapse
|
11
|
Yuge S, Tateishi A, Numata K, Ohmae M. Chemoenzymatic Synthesis of Sialyl Sulfo-Oligosaccharides as Potent Siglec-8 Ligands via Transglycosylation Catalyzed by Keratanase II. Biomacromolecules 2021; 23:316-325. [PMID: 34914356 DOI: 10.1021/acs.biomac.1c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sialyl type-II sulfo-oligosaccharides are gaining much attention as bioactive ligands for Siglecs. In this study, we have achieved the first synthesis of sialyl type-II sulfo-oligosaccharides chemoenzymatically by utilizing the transglycosylation activity of keratanase II. The oxazoline derivative of α(2→3)-sialylated 6,6'-di-sulfo-LacNAc (3) was newly designed as the glycosyl donor for enzymatic transglycosylation. Keratanase II efficiently catalyzed the transglycosylation of 3 with two kinds of glycosyl acceptors, 6-sulfo-Lewis X and 6,6'-di-sulfo-LacNAc derivatives, providing sialyl sulfo-hexasaccharide (1) and sialyl sulfo-pentasaccharide (2) with 86 and 95% yields, respectively. The products 1 and 2 showed higher affinity to Siglec-8 with KD 70 and 25 μmol·L-1, respectively, compared to the known ligand of the α(2→3)-sialylated 6,6'-di-sulfo-Lewis X with KD 185 μmol·L-1. Thus, this study will advance not only the study of Siglec-8 biology but also the exploration of functions of sialyl sulfo-oligosaccharides having various microstructures.
Collapse
Affiliation(s)
- Shiori Yuge
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Ayaka Tateishi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Masashi Ohmae
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
12
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
13
|
Kuzyk VO, Somsen GW, Haselberg R. CE-MS for Proteomics and Intact Protein Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:51-86. [PMID: 34628627 DOI: 10.1007/978-3-030-77252-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This chapter aims to explore various parameters involved in achieving high-end capillary electrophoresis hyphenated to mass spectrometry (CE-MS) analysis of proteins, peptides, and their posttranslational modifications. The structure of the topics discussed in this book chapter is conveniently mapped on the scheme of the CE-MS system itself, starting from sample preconcentration and injection techniques and finishing with mass analyzer considerations. After going through the technical considerations, a variety of relevant applications for this analytical approach are presented, including posttranslational modifications analysis, clinical biomarker discovery, and its growing use in the biotechnological industry.
Collapse
Affiliation(s)
- Valeriia O Kuzyk
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Analysis of Intact Glycoproteins by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Methods Mol Biol 2021. [PMID: 33907998 DOI: 10.1007/978-1-0716-1241-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can be regarded as a key tool to rapidly obtain molecular mass information of intact glycoproteins in glycoproteomic studies and quality control of recombinant biopharmaceuticals. However, MALDI-TOF MS of these glycosylated compounds is a tricky task due to its low ionization efficiency and fragmentation of labile groups such as sialic acids.Here, we offer the reader a practical overview of the available methodologies for the confident analysis of intact glycoproteins with different glycosylation degree by MALDI-TOF MS. The three proposed methods fulfil the requirements of reproducibility and low extent of glycan fragmentation required to successfully analyze intact glycoproteins.
Collapse
|
15
|
Laguna A, Xicoy H, Tolosa E, Serradell M, Vilas D, Gaig C, Fernández M, Yanes O, Santamaria J, Amigó N, Iranzo A, Vila M. Serum metabolic biomarkers for synucleinopathy conversion in isolated REM sleep behavior disorder. NPJ PARKINSONS DISEASE 2021; 7:40. [PMID: 33986284 PMCID: PMC8119407 DOI: 10.1038/s41531-021-00184-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of Lewy-type synucleinopathies (LTS), which can present either with an initial predominant parkinsonism (Parkinson’s disease (PD)) or dementia (dementia with Lewy bodies (DLB)). To provide insights into the underlying pathogenic mechanisms, the lipoprotein and protein glycosylation profile of 82 iRBD patients, collected before and/or after their conversion to an overt LTS, and 29 matched control serum samples were assessed by nuclear magnetic resonance (NMR) spectroscopy. Data were statistically analyzed to identify altered metabolites and construct predictive models. Univariant analysis detected no differences between iRBD patients with an LTS compared to controls. However, significant differences were found when the analysis distinguished between iRBD patients that manifested initially predominant parkinsonism (pre-PD) or dementia (pre-DLB). Significant differences were also found in the analysis of paired iRBD samples pre- and post-LTS diagnosis. Predictive models were built and distinguished between controls and pre-DLB patients, and between pre-DLB and pre-PD patients. This allowed a prediction of the possible future clinical outcome of iRBD patients. We provide evidence of altered lipoprotein and glycosylation profiles in subgroups of iRBD patients. Our results indicate that metabolic alterations and inflammation are involved in iRBD pathophysiology, and suggest biological differences underlying the progression of LTS in iRBD patients. Our data also indicate that profiling of serum samples by NMR may be a useful tool for identifying short-term high-risk iRBD patients for conversion to parkinsonism or dementia.
Collapse
Affiliation(s)
- Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
| | - Helena Xicoy
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Neuroscience, Faculty of Science, Nijmegen, The Netherlands
| | - Eduardo Tolosa
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Mònica Serradell
- Center for Sleep Disorders, Neurology Service, Hospital Clinic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Dolores Vilas
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Carles Gaig
- Center for Sleep Disorders, Neurology Service, Hospital Clinic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Manel Fernández
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Oscar Yanes
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Tarragona, Spain
| | - Joan Santamaria
- Center for Sleep Disorders, Neurology Service, Hospital Clinic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain
| | - Núria Amigó
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Tarragona, Spain.,Biosfer Teslab, Reus, Spain
| | - Alex Iranzo
- Center for Sleep Disorders, Neurology Service, Hospital Clinic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain.
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain. .,Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain. .,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
16
|
Sun S, Liu W, Yang J, Wang H, Qian K. Nanoparticle‐Assisted Cation Adduction and Fragmentation of Small Metabolites. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shiyu Sun
- State Key Laboratory for Oncogenes and Related Genes School of Biomedical Engineering and Institute of Medical Robotics Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Wanshan Liu
- State Key Laboratory for Oncogenes and Related Genes School of Biomedical Engineering and Institute of Medical Robotics Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Jing Yang
- State Key Laboratory for Oncogenes and Related Genes School of Biomedical Engineering and Institute of Medical Robotics Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Hang Wang
- Instrumental Analysis Center Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes School of Biomedical Engineering and Institute of Medical Robotics Shanghai Jiao Tong University Shanghai 200030 P. R. China
| |
Collapse
|
17
|
Sun S, Liu W, Yang J, Wang H, Qian K. Nanoparticle‐Assisted Cation Adduction and Fragmentation of Small Metabolites. Angew Chem Int Ed Engl 2021; 60:11310-11317. [DOI: 10.1002/anie.202100734] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Shiyu Sun
- State Key Laboratory for Oncogenes and Related Genes School of Biomedical Engineering and Institute of Medical Robotics Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Wanshan Liu
- State Key Laboratory for Oncogenes and Related Genes School of Biomedical Engineering and Institute of Medical Robotics Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Jing Yang
- State Key Laboratory for Oncogenes and Related Genes School of Biomedical Engineering and Institute of Medical Robotics Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Hang Wang
- Instrumental Analysis Center Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes School of Biomedical Engineering and Institute of Medical Robotics Shanghai Jiao Tong University Shanghai 200030 P. R. China
| |
Collapse
|
18
|
A mass spectrometry-based glycotope-centric cellular glycomics is the more fruitful way forward to see the forest for the trees. Biochem Soc Trans 2021; 49:55-69. [PMID: 33492355 DOI: 10.1042/bst20190861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The nature of protein glycosylation renders cellular glycomics a very challenging task in having to deal with all the disparate glycans carried on membrane glycoproteins. Rapid mapping by mass spectrometry analysis provides only a coarse sketch of the glycomic complexity based primarily on glycosyl compositions, whereby the missing high-resolution structural details require a combination of multi-mode separations and multi-stages of induced fragmentation to gain sufficiently discriminative precision, often at the expenses of throughput and sensitivity. Given the available technology and foreseeable advances in the near future, homing in on resolving the terminal fucosylated, sialylated and/or sulfated structural units, or glycotopes, maybe a more pragmatic and ultimately more rewarding approach to gain insights into myriad biological processes mediated by these terminal coding units carried on important glycoproteins, to be decoded by a host of endogenous glycan-binding proteins and antibodies. A broad overview of recent technical advances and limitations in cellular glycomics is first provided as a backdrop to the propounded glycotope-centric approach based on advanced nanoLC-MS2/MS3 analysis of permethylated glycans. To prioritize analytical focus on the more tangible glycotopes is akin to first identifying the eye-catching and characteristic-defining flowers and fruits of the glyco-forest, to see the forest for the trees. It has the best prospects of attaining the much-needed balance in sensitivity, structural precision and analytical throughput to match advances in other omics.
Collapse
|
19
|
Separation based characterization methods for the N-glycosylation analysis of prostate-specific antigen. J Pharm Biomed Anal 2020; 194:113797. [PMID: 33288345 DOI: 10.1016/j.jpba.2020.113797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/13/2022]
Abstract
Prostate cancer has the highest malignancy rate diagnosed in men worldwide. Albeit, the gold standard serum prostate-specific antigen (PSA) assays reduced the mortality rate of the disease, the number of false positive diagnoses steeply increased. Therefore, there is an urgent need for complementary biomarkers to enhance the specificity and selectivity of current diagnostic methods. Information about PSA glycosylation can help to fulfill this gap as alterations of its carbohydrate moieties due to cancerous transformation may represent additional markers to distinguish malignant from benign tumors. However, development of suitable methods and instrumentations to investigate the N-glycosylation profile of PSA represents a challenge. In this paper, we critically review the current bioanalytical trends and strategies in the field of PSA glycobiomarker research focusing on separation based characterization methods.
Collapse
|
20
|
Unliganded and CMP-Neu5Ac bound structures of human α-2,6-sialyltransferase ST6Gal I at high resolution. J Struct Biol 2020; 212:107628. [DOI: 10.1016/j.jsb.2020.107628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/31/2020] [Accepted: 09/16/2020] [Indexed: 01/12/2023]
|
21
|
Harvey DJ. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS. MASS SPECTROMETRY REVIEWS 2020; 39:586-679. [PMID: 32329121 DOI: 10.1002/mas.21622] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 05/03/2023]
Abstract
N-glycans from glycoproteins are complex, branched structures whose structural determination presents many analytical problems. Mass spectrometry, usually conducted in positive ion mode, often requires extensive sample manipulation, usually by derivatization such as permethylation, to provide the necessary structure-revealing fragment ions. The newer but, so far, lesser used negative ion techniques, on the contrary, provide a wealth of structural information not present in positive ion spectra that greatly simplify the analysis of these compounds and can usually be conducted without the need for derivatization. This review describes the use of negative ion mass spectrometry for the structural analysis of N-linked glycans and emphasises the many advantages that can be gained by this mode of operation. Biosynthesis and structures of the compounds are described followed by methods for release of the glycans from the protein. Methods for ionization are discussed with emphasis on matrix-assisted laser desorption/ionization (MALDI) and methods for producing negative ions from neutral compounds. Acidic glycans naturally give deprotonated species under most ionization conditions. Fragmentation of negative ions is discussed next with particular reference to those ions that are diagnostic for specific features such as the branching topology of the glycans and substitution positions of moieties such as fucose and sulfate, features that are often difficult to identify easily by conventional techniques such as positive ion fragmentation and exoglycosidase digestions. The advantages of negative over positive ions for this structural work are emphasised with an example of a series of glycans where all other methods failed to produce a structure. Fragmentation of derivatized glycans is discussed next, both with respect to derivatives at the reducing terminus of the molecules, and to methods for neutralization of the acidic groups on sialic acids to both stabilize them for MALDI analysis and to produce the diagnostic fragments seen with the neutral glycans. The use of ion mobility, combined with conventional mass spectrometry is described with emphasis on its use to extract clean glycan spectra both before and after fragmentation, to separate isomers and its use to extract additional information from separated fragment ions. A section on applications follows with examples of the identification of novel structures from lower organisms and tables listing the use of negative ions for structural identification of specific glycoproteins, glycans from viruses and uses in the biopharmaceutical industry and in medicine. The review concludes with a summary of the advantages and disadvantages of the technique. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
22
|
Sénard T, Gargano AFG, Falck D, de Taeye SW, Rispens T, Vidarsson G, Wuhrer M, Somsen GW, Domínguez-Vega E. MS-Based Allotype-Specific Analysis of Polyclonal IgG-Fc N-Glycosylation. Front Immunol 2020; 11:2049. [PMID: 32973813 PMCID: PMC7472933 DOI: 10.3389/fimmu.2020.02049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Current approaches to study glycosylation of polyclonal human immunoglobulins G (IgG) usually imply protein digestion or glycan release. While these approaches allow in-depth characterization, they also result in a loss of valuable information regarding certain subclasses, allotypes and co-occuring post-translational modifications (PTMs). Unfortunately, the high variability of polyclonal IgGs makes their intact mass spectrometry (MS) analysis extremely challenging. We propose here a middle-up strategy for the analysis of the intact fragment crystallizable (Fc) region of human plasma IgGs, with the aim of acquiring integrated information of the N-glycosylation and other PTMs of subclasses and allotypes. Human plasma IgG was isolated using Fc-specific beads followed by an on-bead C H 2 domain digestion with the enzyme IdeS. The obtained mixture of Fc subunits was analyzed by capillary electrophoresis (CE) and hydrophilic interaction liquid chromatography (HILIC) hyphenated with MS. CE-MS provided separation of different IgG-subclasses and allotypes, while HILIC-MS allowed resolution of the different glycoforms and their oxidized variants. The orthogonality of these techniques was key to reliably assign Fc allotypes. Five individual donors were analyzed using this approach. Heterozygosis was observed in all the analyzed donors resulting in a total of 12 allotypes identified. The assignments were further confirmed using recombinant monoclonal IgG allotypes as standards. While the glycosylation patterns were similar within allotypes of the same subclass, clear differences were observed between IgG subclasses and donors, highlighting the relevance of the proposed approach. In a single analysis, glycosylation levels specific for each allotype, relative abundances of subclasses and information on co-occurring modifications are obtained. This middle-up method represents an important step toward a comprehensive analysis of immunoglobulin G-Fc variants.
Collapse
Affiliation(s)
- Thomas Sénard
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Andrea F G Gargano
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Analytical Chemistry Group, Amsterdam, Netherlands.,Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands.,Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Govert W Somsen
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
23
|
Xiong Y, Li X, Li M, Qin H, Chen C, Wang D, Wang X, Zheng X, Liu Y, Liang X, Qing G. What Is Hidden Behind Schiff Base Hydrolysis? Dynamic Covalent Chemistry for the Precise Capture of Sialylated Glycans. J Am Chem Soc 2020; 142:7627-7637. [DOI: 10.1021/jacs.0c01970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuting Xiong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Xiuling Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Cheng Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xue Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xintong Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yunhai Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
24
|
Zhou D, Xiao K, Tian Z. Separation and detection of minimal length glycopeptide neoantigen epitopes centering the GSTA region of MUC1 by liquid chromatography/mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8622. [PMID: 31658499 DOI: 10.1002/rcm.8622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE We previously isolated antibodies binding to glycopeptide neoantigen epitopes centering the GSTA sequence of the highly glycosylated tandem repeat region of MUC1. Epitopes centering the GSTA sequence are also predicted by NetMHC programs to bind to MHC molecules. Detecting MUC1 glycopeptide epitopes remains a challenge since antigenic epitopes are often shorter than 10 amino acids. METHODS In this study, we used pronase from Streptomyces griseus, which has no amino acid sequence preference for enzymatic cleavage sites, to digest synthetic glycopeptides RPAPGST (Tn)APPAHG and RPAPGS (Tn)TAPPAHG, and analyzed the digests by liquid chromatography/mass spectrometry (LC/MS) using electron transfer dissociation (ETD) and higher-energy collisional dissociation (HCD) methods with an Orbitrap Fusion Lumos Tribid mass spectrometer. RESULTS We found that short glycopeptides containing 8 to 11 amino acids could be efficiently generated by pronase digestion. Such glycopeptides of minimal epitope lengths were clearly distinguished by characteristic MS/MS ion patterns and LC elution profiles. A glycopeptide library was generated which may serve as a standard for measuring neoantigen epitopes centering the GSTA sequence. CONCLUSIONS Our data established the LC/MS/MS identities of a clinically relevant MUC1 glycopeptide neoantigen epitope centering the GSTA motif. A library of short MUC1 glycopeptides centered on the GSTA motif was created, which is a critical step for analysis of such antigen epitopes in real biological samples.
Collapse
Affiliation(s)
- Dapeng Zhou
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Kaijie Xiao
- School of Chemical Science and Engineering & Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Zhixin Tian
- School of Chemical Science and Engineering & Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| |
Collapse
|
25
|
Selective enrichment of sialylated glycopeptides with mesoporous poly-melamine-formaldehyde (mPMF) material. Anal Bioanal Chem 2020; 412:1497-1508. [PMID: 32025769 DOI: 10.1007/s00216-020-02415-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/31/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Analysis of glycoprotein sialylation is challenging due to the relatively low abundance of sialylated glycopeptides (SGPs) in complex biosamples and low signals of SGPs in mass spectrometry. In this study, a mesoporous poly-melamine-formaldehyde (mPMF) polymer was prepared and utilized as the high-efficiency sorbent for SGPs. The mPMF polymer featured high surface area (755.4 m2 g-1) and high density of amine and triazine functional groups. This polymer demonstrated high enrichment selectivity (resistant to 100 molar fold interference of BSA) and superior adsorption capacity (560 mg g-1) for SGPs. The high performance of mPMF toward SGPs ascribes to the unique physicochemical properties of mPMF and high density of accessible binding sites for glycopeptides. Further application of mPMF to HeLa S3 cell lysate resulted in 576 characterized glycopeptides with 218 unique glycosylation sites. This finding provides a new choice of promising extraction approach for characterization of protein glycosylation. Graphical abstract A mesoporous poly-melamine-formaldehyde (mPMF) polymer was prepared and utilized as the high-efficiency enrichment sorbent for sialylated glycopeptides (SGPs).
Collapse
|
26
|
Zhou X, Yang G, Guan F. Biological Functions and Analytical Strategies of Sialic Acids in Tumor. Cells 2020; 9:E273. [PMID: 31979120 PMCID: PMC7072699 DOI: 10.3390/cells9020273] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Sialic acids, a subset of nine carbon acidic sugars, often exist as the terminal sugars of glycans on either glycoproteins or glycolipids on the cell surface. Sialic acids play important roles in many physiological and pathological processes via carbohydrate-protein interactions, including cell-cell communication, bacterial and viral infections. In particular, hypersialylation in tumors, as well as their roles in tumor growth and metastasis, have been widely described. Recent studies have indicated that the aberrant sialylation is a vital way for tumor cells to escape immune surveillance and keep malignance. In this article, we outline the present state of knowledge on the metabolic pathway of human sialic acids, the function of hypersialylation in tumors, as well as the recent labeling and analytical techniques for sialic acids. It is expected to offer a brief introduction of sialic acid metabolism and provide advanced analytical strategies in sialic acid studies.
Collapse
Affiliation(s)
- Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ganglong Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feng Guan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
27
|
Cao WQ, Liu MQ, Kong SY, Wu MX, Huang ZZ, Yang PY. Novel methods in glycomics: a 2019 update. Expert Rev Proteomics 2020; 17:11-25. [PMID: 31914820 DOI: 10.1080/14789450.2020.1708199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Glycomics, which aims to define the glycome of a biological system to better assess the biological attributes of the glycans, has attracted increasing interest. However, the complexity and diversity of glycans present challenging barriers to glycome definition. Technological advances are major drivers in glycomics.Areas covered: This review summarizes the main methods and emphasizes the most recent advances in mass spectrometry-based methods regarding glycomics following the general workflow in glycomic analysis.Expert opinion: Recent mass spectrometry-based technological advances have significantly lowered the barriers in glycomics. The field of glycomics is moving toward both generic and precise analysis.
Collapse
Affiliation(s)
- Wei-Qian Cao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Ming-Qi Liu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Si-Yuan Kong
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meng-Xi Wu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Zheng-Ze Huang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng-Yuan Yang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
29
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
30
|
Emerging glycobiology tools: A renaissance in accessibility. Cell Immunol 2018; 333:2-8. [PMID: 29759530 DOI: 10.1016/j.cellimm.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Abstract
The glycobiology of the immune response is a topic that has garnered increased attention due to a number of key discoveries surrounding IgG function, the specificity of some broadly neutralizing anti-HIV antibodies, cancer immunoregulation by galectin molecules and others. This review is the opening article in a Special Edition of Cellular Immunology focused on glycoimmunology, and has the goal of setting the context for these articles by providing a mini-review of how glycans impact immunity. We also focus on some of the technological and methodological advances in the field of glycobiology that are being deployed to lower the barrier of entry into the glycosciences, and to more fully interrogate the glycome and its function.
Collapse
|