1
|
Chao MR, Chang YJ, Cooke MS, Hu CW. Multi-adductomics: Advancing mass spectrometry techniques for comprehensive exposome characterization. Trends Analyt Chem 2024; 180:117900. [PMID: 39246549 PMCID: PMC11375889 DOI: 10.1016/j.trac.2024.117900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Adductomics, an emerging field within the 'omics sciences, focuses on the formation and prevalence of DNA, RNA, and protein adducts induced by endogenous and exogenous agents in biological systems. These modifications often result from exposure to environmental pollutants, dietary components, and xenobiotics, impacting cellular functions and potentially leading to diseases such as cancer. This review highlights advances in mass spectrometry (MS) that enhance the detection of these critical modifications and discusses current and emerging trends in adductomics, including developments in MS instrument use, screening techniques, and the study of various biomolecular modifications from mono-adducts to complex hybrid crosslinks between different types of biomolecules. The review also considers challenges, including the need for specialized MS spectra databases and multi-omics integration, while emphasizing techniques to distinguish between exogenous and endogenous modifications. The future of adductomics possesses significant potential for enhancing our understanding of health in relation to environmental exposures and precision medicine.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
3
|
Lai Y, Koelmel JP, Walker DI, Price EJ, Papazian S, Manz KE, Castilla-Fernández D, Bowden JA, Nikiforov V, David A, Bessonneau V, Amer B, Seethapathy S, Hu X, Lin EZ, Jbebli A, McNeil BR, Barupal D, Cerasa M, Xie H, Kalia V, Nandakumar R, Singh R, Tian Z, Gao P, Zhao Y, Froment J, Rostkowski P, Dubey S, Coufalíková K, Seličová H, Hecht H, Liu S, Udhani HH, Restituito S, Tchou-Wong KM, Lu K, Martin JW, Warth B, Godri Pollitt KJ, Klánová J, Fiehn O, Metz TO, Pennell KD, Jones DP, Miller GW. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12784-12822. [PMID: 38984754 PMCID: PMC11271014 DOI: 10.1021/acs.est.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
Collapse
Affiliation(s)
- Yunjia Lai
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Jeremy P. Koelmel
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Douglas I. Walker
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Stefano Papazian
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Katherine E. Manz
- Department
of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Delia Castilla-Fernández
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - John A. Bowden
- Center for
Environmental and Human Toxicology, Department of Physiological Sciences,
College of Veterinary Medicine, University
of Florida, Gainesville, Florida 32611, United States
| | | | - Arthur David
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Vincent Bessonneau
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Bashar Amer
- Thermo
Fisher Scientific, San Jose, California 95134, United States
| | | | - Xin Hu
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth Z. Lin
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Akrem Jbebli
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Brooklynn R. McNeil
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Dinesh Barupal
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marina Cerasa
- Institute
of Atmospheric Pollution Research, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Hongyu Xie
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vrinda Kalia
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Renu Nandakumar
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Randolph Singh
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Peng Gao
- Department
of Environmental and Occupational Health, and Department of Civil
and Environmental Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- UPMC Hillman
Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| | - Yujia Zhao
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands
| | | | | | - Saurabh Dubey
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Kateřina Coufalíková
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Hana Seličová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Sheng Liu
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Hanisha H. Udhani
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sophie Restituito
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kam-Meng Tchou-Wong
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kun Lu
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan W. Martin
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Krystal J. Godri Pollitt
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Oliver Fiehn
- West Coast
Metabolomics Center, University of California−Davis, Davis, California 95616, United States
| | - Thomas O. Metz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Kurt D. Pennell
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Dean P. Jones
- Department
of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W. Miller
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| |
Collapse
|
4
|
Chen YC, Wu HY, Wu WS, Hsu JY, Chang CW, Lee YH, Liao PC. Identification of Xenobiotic Biotransformation Products Using Mass Spectrometry-Based Metabolomics Integrated with a Structural Elucidation Strategy by Assembling Fragment Signatures. Anal Chem 2023; 95:14279-14287. [PMID: 37713273 PMCID: PMC10538286 DOI: 10.1021/acs.analchem.3c02419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
The identification of xenobiotic biotransformation products is crucial for delineating toxicity and carcinogenicity that might be caused by xenobiotic exposures and for establishing monitoring systems for public health. However, the lack of available reference standards and spectral data leads to the generation of multiple candidate structures during identification and reduces the confidence in identification. Here, a UHPLC-HRMS-based metabolomics strategy integrated with a metabolite structure elucidation approach, namely, FragAssembler, was proposed to reduce the number of false-positive structure candidates. biotransformation product candidates were filtered by mass defect filtering (MDF) and multiple-group comparison. FragAssembler assembled fragment signatures from the MS/MS spectra and generated the modified moieties corresponding to the identified biotransformation products. The feasibility of this approach was demonstrated by the three biotransformation products of di(2-ethylhexyl)phthalate (DEHP). Comprehensive identification was carried out, and 24 and 13 biotransformation products of two xenobiotics, DEHP and 4'-Methoxy-α-pyrrolidinopentiophenone (4-MeO-α-PVP), were annotated, respectively. The number of 4-MeO-α-PVP biotransformation product candidates in the FragAssembler calculation results was approximately 2.1 times lower than that generated by BioTransformer 3.0. Our study indicates that the proposed approach has great potential for efficiently and reliably identifying xenobiotic biotransformation products, which is attributed to the fact that FragAssembler eliminates false-positive reactions and chemical structures and distinguishes modified moieties on isomeric biotransformation products. The FragAssembler software and associated tutorial are freely available at https://cosbi.ee.ncku.edu.tw/FragAssembler/ and the source code can be found at https://github.com/YuanChihChen/FragAssembler.
Collapse
Affiliation(s)
- Yuan-Chih Chen
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hsin-Yi Wu
- Instrumentation
Center, National Taiwan University, Taipei 106, Taiwan
| | - Wei-Sheng Wu
- Department
of Electrical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Jen-Yi Hsu
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Chih-Wei Chang
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yuan-Han Lee
- Department
of Electrical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Pao-Chi Liao
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
5
|
Chen YC, Hsu JY, Chang CW, Chen PY, Lin YC, Hsu IL, Chu CJ, Lin YP, Liao PC. Investigation of New Psychoactive Substances (NPS), Other Illicit Drugs, and Drug-Related Compounds in a Taiwanese Wastewater Sample Using High-Resolution Mass-Spectrometry-Based Targeted and Suspect Screening. Molecules 2023; 28:5040. [PMID: 37446702 DOI: 10.3390/molecules28135040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The proliferation of new psychoactive substances (NPSs) in recent years has posed a significant challenge to public health. Traditional monitoring methods have proven insufficient in tracking these constantly evolving substances, leading to the development of alternative approaches such as wastewater-based epidemiology (WBE). The present study aims to utilize high-resolution mass spectrometry (HRMS)-based targeted and suspect screening to profile NPS, other illicit drugs, and drug-related compounds in a Taiwanese wastewater sample. For the targeted analysis, 8 out 18 standards of illicit drugs have been identified. The suspect screening approach based on approximately 3600 substances in the SWGDRUG library can further identify 92 compounds, including opiate analgesics, synthetic cathinones, phenylalkylamines derivatives, phenethylamine derivatives, tryptamine derivatives, steroids, and ephedrine-related compounds. Additionally, the presence of 5-methoxy-2-aminoindane (MEAI) in the wastewater indicates that drug dealers have recently sold this potential NPS to evade drug regulations. This study firstly reports the HRMS-based comprehensive profile of NPS, other illicit drugs, and drug-related compounds in Taiwan, which could be applied as biomarkers for estimating the consumption of drugs.
Collapse
Affiliation(s)
- Yuan-Chih Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Yi Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pin-Yu Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yung-Chieh Lin
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - I-Lin Hsu
- Public Health Bureau, Tainan City Government, Tainan 704, Taiwan
| | - Chiau-Jun Chu
- Public Health Bureau, Tainan City Government, Tainan 704, Taiwan
| | - Yen-Ping Lin
- Public Health Bureau, Tainan City Government, Tainan 704, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|