1
|
Razaq N, Asghar A, Mumtaz A, Al-Mijalli SH, Nisa MU, Riaz T, Iqbal M, Shahid B. Synthesis of biologically active cefpodoxime and vanillin-based schiff base metal complexes with the detailed biological evaluations. Biometals 2024; 37:1201-1224. [PMID: 38864936 DOI: 10.1007/s10534-024-00601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/25/2024] [Indexed: 06/13/2024]
Abstract
Schiff bases of existing antimicrobial drugs are an area, which is still to be comprehensively explored to improve drug efficiency against consistently resisting bacterial species. In this study, we have targeted a new and eco-friendly method of condensation reaction that allows the "green synthesis" as well as improved biological efficacy. The transition metal complexes of cefpodoxime with well-enhanced biological activities were synthesized. The condensation reaction product of cefpodoxime and vanillin was further reacted with suitable metal salts of [Mn (II), Cu (II), Fe (II), Zn (II), and Ni (II)] with 1:2 molar ratio (metal: ligand). The characterization of all the products were carried out by using UV-Visible, elemental analyzer, FTIR, 1H-NMR, ICP-OES, and LC-MS. Electronic data obtained by UV-Visible proved the octahedral geometry of metal complexes. The biological activities Schiff base ligand and its transition metal complexes were tested by using in-vitro anti-bacterial analysis against various Gram-negative, as well as Gram-positive bacterial strains. Proteinase and protein denaturation inhibition assays were utilized to evaluate the products in-vitro anti-inflammatory activities. The in vitro antioxidant activity of the ligand and its complexes was evaluated by utilizing the 2,2-diphenyl-1-picrylhydrazyl (DPPH) in-vitro method. The final results proved metal complexes to be more effective against bacterial microorganisms as compared to respective parent drug as well as their free ligands. Patch Dock, a molecular docking tool, was used to dock complexes 1a-5e with the crystal structure of GlcN-6-P synthase (ID: 1MOQ). According to the docking results, complex 2b exhibited a highest score (8,882; ACE = -580.43 kcal/mol) that is well correlated with a high inhibition as compared to other complexes which corresponds to the antibacterial screening outcomes.
Collapse
Affiliation(s)
- Naeem Razaq
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan
| | - Amina Asghar
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan.
| | - Amna Mumtaz
- ACRC PCSIR Laboratories Lahore, Lahore, Pakistan
| | - Samiah H Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mehr Un Nisa
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Tauheeda Riaz
- Department of Chemistry, Government College Women University Sialkot, Sialkot, 51310, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Bilal Shahid
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan.
| |
Collapse
|
2
|
Abo-Salem HM, Ali EA, Abdelmegeed H, El Souda SSM, Abdel-Aziz MS, Ahmed KM, Fawzy NM. Chitosan nanoparticles of new chromone-based sulfonamide derivatives as effective anti-microbial matrix for wound healing acceleration. Int J Biol Macromol 2024; 272:132631. [PMID: 38810852 DOI: 10.1016/j.ijbiomac.2024.132631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
A new series of chromone and furochromone-based sulfonamide Schiff's base derivatives 3-12 were synthesized and evaluated for their antimicrobial activity against S. aureus, E. coli, C. albicans, and A. niger using agar diffusion method. Compound 3a demonstrated potent antimicrobial activities with MIC values of 9.76 and 19.53 μg/mL against S. aureus, E. coli and C. albicans, which is 2-fold and 4-fold more potent than neomycin (MIC = 19.53, 39.06 μg/mL respectively). To improve the effectiveness of 3a, it was encapsulated into chitosan nanoparticles (CS-3aNPs). The CS-3aNPs size was 32.01 nm, as observed by transmission electron microscope (TEM) images and the zeta potential value was 14.1 ± 3.07 mV. Encapsulation efficiency (EE) and loading capacity (LC) were 91.5 % and 1.6 %, respectively as indicated by spectral analysis. The CS-3aNPs extremely inhibited bacterial growth utilizing the colony-forming units (CFU). The ability of CS-3aNPs to protect skin wounds was evaluated in vivo. CS-3aNPs showed complete wound re-epithelialization, hyperplasia of the epidermis, well-organized granulation tissue formation, and reduced signs of wound infection, as seen through histological assessment which showed minimal inflammatory cells in comparison with untreated wound. Overall, these findings suggest that CS-3aNPs has a positive impact on protecting skin wounds from infection due to their antimicrobial activity.
Collapse
Affiliation(s)
- Heba M Abo-Salem
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt.
| | - Eman AboBakr Ali
- Polymers and Pigments Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Heba Abdelmegeed
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Sahar S M El Souda
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Khadiga M Ahmed
- Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Nagwa M Fawzy
- Chemistry of Natural and Microbial Products Department, National Research Center, 12622 Dokki, Giza, Egypt.
| |
Collapse
|
3
|
Jaromin A, Zarnowski R, Markowski A, Zagórska A, Johnson CJ, Etezadi H, Kihara S, Mota-Santiago P, Nett JE, Boyd BJ, Andes DR. Liposomal formulation of a new antifungal hybrid compound provides protection against Candida auris in the ex vivo skin colonization model. Antimicrob Agents Chemother 2024; 68:e0095523. [PMID: 38092678 PMCID: PMC10777852 DOI: 10.1128/aac.00955-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/28/2023] [Indexed: 01/11/2024] Open
Abstract
The newly emerged pathogen, Candida auris, presents a serious threat to public health worldwide. This multidrug-resistant yeast often colonizes and persists on the skin of patients, can easily spread from person to person, and can cause life-threatening systemic infections. New antifungal therapies are therefore urgently needed to limit and control both superficial and systemic C. auris infections. In this study, we designed a novel antifungal agent, PQA-Az-13, that contains a combination of indazole, pyrrolidine, and arylpiperazine scaffolds substituted with a trifluoromethyl moiety. PQA-Az-13 demonstrated antifungal activity against biofilms of a set of 10 different C. auris clinical isolates, representing all four geographical clades distinguished within this species. This compound showed strong activity, with MIC values between 0.67 and 1.25 µg/mL. Cellular proteomics indicated that PQA-Az-13 partially or completely inhibited numerous enzymatic proteins in C. auris biofilms, particularly those involved in both amino acid biosynthesis and metabolism processes, as well as in general energy-producing processes. Due to its hydrophobic nature and limited aqueous solubility, PQA-Az-13 was encapsulated in cationic liposomes composed of soybean phosphatidylcholine (SPC), 1,2-dioleoyloxy-3-trimethylammonium-propane chloride (DOTAP), and N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt (DSPE-PEG 2000), and characterized by biophysical and spectral techniques. These PQA-Az-13-loaded liposomes displayed a mean size of 76.4 nm, a positive charge of +45.0 mV, a high encapsulation efficiency of 97.2%, excellent stability, and no toxicity to normal human dermal fibroblasts. PQA-Az-13 liposomes demonstrated enhanced antifungal activity levels against both C. auris in in vitro biofilms and ex vivo skin colonization models. These initial results suggest that molecules like PQA-Az-13 warrant further study and development.
Collapse
Affiliation(s)
- Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Robert Zarnowski
- Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam Markowski
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Chad J. Johnson
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Haniyeh Etezadi
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Shinji Kihara
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | - Jeniel E. Nett
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Ben J. Boyd
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Victoria, Australia
| | - David R. Andes
- Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Azzouzi M, Azougagh O, Ouchaoui AA, El hadad SE, Mazières S, Barkany SE, Abboud M, Oussaid A. Synthesis, Characterizations, and Quantum Chemical Investigations on Imidazo[1,2- a]pyrimidine-Schiff Base Derivative: ( E)-2-Phenyl- N-(thiophen-2-ylmethylene)imidazo[1,2- a]pyrimidin-3-amine. ACS OMEGA 2024; 9:837-857. [PMID: 38222514 PMCID: PMC10785637 DOI: 10.1021/acsomega.3c06841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 01/16/2024]
Abstract
In this study, (E)-2-phenyl-N-(thiophen-2-ylmethylene)imidazo[1,2-a]pyrimidin-3-amine (3) is synthesized, and detailed spectral characterizations using 1H NMR, 13C NMR, mass, and Fourier transform infrared (FT-IR) spectroscopy were performed. The optimized geometry was computed using the density functional theory method at the B3LYP/6-311++G(d,p) basis set. The theoretical FT-IR and NMR (1H and 13C) analysis are agreed to validate the structural assignment made for (3). Frontier molecular orbitals, molecular electrostatic potential, Mulliken atomic charge, electron localization function, localized orbital locator, natural bond orbital, nonlinear optical, Fukui functions, and quantum theory of atoms in molecules analyses are undertaken and meticulously interpreted, providing profound insights into the molecular nature and behaviors. In addition, ADMET and drug-likeness studies were carried out and investigated. Furthermore, molecular docking and molecular dynamics simulations have been studied, indicating that this is an ideal molecule to develop as a potential vascular endothelial growth factor receptor-2 inhibitor.
Collapse
Affiliation(s)
- Mohamed Azzouzi
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Omar Azougagh
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Abderrahim Ait Ouchaoui
- Laboratory
of Medical Biotechnology (MedBiotech), Bionova Research Center, Medical
and Pharmacy School, Mohammed V University, Agdal, Rabat B.P 8007, Morocco
| | - Salah eddine El hadad
- Laboratory
of Medical Biotechnology (MedBiotech), Bionova Research Center, Medical
and Pharmacy School, Mohammed V University, Agdal, Rabat B.P 8007, Morocco
| | - Stéphane Mazières
- Laboratory
of IMRCP, University Paul Sabatier, CNRS
UMR 5623, 118 route de Narbonne, Toulouse 31062, France
| | - Soufian El Barkany
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| | - Mohamed Abboud
- Catalysis
Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Adyl Oussaid
- Laboratory
of Molecular Chemistry, Materials and Environment (LCM2E), Department
of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, Nador 60700, Morocco
| |
Collapse
|
5
|
Synthesis and Biological Evaluation of New Schiff Bases Derived from 4-Amino-5-(3-fluorophenyl)-1,2,4-triazole-3-thione. Molecules 2023; 28:molecules28062718. [PMID: 36985690 PMCID: PMC10057893 DOI: 10.3390/molecules28062718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The treatment of infectious diseases is a challenging issue faced by the medical community. The emergence of drug-resistant strains of bacteria and fungi is a major concern. Researchers and medical professionals are working to develop new and innovative treatments for infectious diseases. Schiff bases are one a promising class of compounds. In this work, new derivatives were obtained of the 4-amino-5-(3-fluorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione reaction, with corresponding benzaldehydes with various substituents at position 4. The antibacterial and antifungal activities of all synthesized compounds were tested. Several new substances have shown moderate antifungal activity against Candida spp. The highest activity directed against C. albicans was shown by compound RO4, with a 4-methoxyphenyl moiety and an MIC value of 62.5 µg/mL. In order to check the toxicity of the synthesized compounds, their effect on cell lines was examined. Additionally, we tried to elucidate the mechanism of the antibacterial and antifungal activity of the tested compounds using molecular docking to topoisomerase IV, D-Alanyl-D-Alanine Ligase, and dihydrofolate reductase.
Collapse
|
6
|
Khan M, Gohar H, Alam A, Wadood A, Shareef A, Ali M, Khalid A, Abdalla AN, Ullah F. Para-Substituted Thiosemicarbazones as Cholinesterase Inhibitors: Synthesis, In Vitro Biological Evaluation, and In Silico Study. ACS OMEGA 2023; 8:5116-5123. [PMID: 36777613 PMCID: PMC9910069 DOI: 10.1021/acsomega.2c08108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The current research reports the synthesis of 14 para-substituted thiosemicarbazone derivatives in good to excellent yields using standard procedures. Initially, 4-ethoxybenzaldehyde (1) and 4-nitrobenzaldehyde (2) were refluxed with thiosemicarbazide in the presence of acetic acid in ethanol for 4-5 h. Then, various substituted phenacyl bromides were treated with the desired thiosemicarbazones (3 and 4) in the presence of triethylamine in ethanol with constant stirring for 5-6 h. The resulting derivatives were confirmed through electron impact mass spectrometry and 1H NMR spectroscopy and evaluated for anticholinesterase inhibitory activity. Among the series, four compounds, 19, 17, 7, and 6, showed potent inhibitory activity against the acetylcholinesterase (AChE) enzyme, having IC50 values of 110.19 ± 2.32, 114.57 ± 0.15, 140.52 ± 0.11, and 160.04 ± 0.02 μM, respectively, compared with standard galantamine (IC50 = 104.5 ± 1.20 μM). Similarly, compounds 19 (IC50 = 145.11 ± 1.03 μM), 9 (IC50 = 147.20 ± 0.09 μM), 17 (IC50 = 150.36 ± 0.18 μM), and 6 (IC50 = 190.21 ± 0.13 μM) were the most excellent inhibitors of butyrylcholinesterase (BChE) when compared with the standard drug galantamine (IC50 = 156.8 ± 1.50 μM). In silico studies were accomplished on the produced derivatives in order to explain the binding interface of compounds with the active sites of AChE and BChE enzymes.
Collapse
Affiliation(s)
- Momin Khan
- Department
of Chemistry, Abdul Wali Khan University, Mardan23200, Pakistan
| | - Hina Gohar
- Department
of Chemistry, Abdul Wali Khan University, Mardan23200, Pakistan
| | - Aftab Alam
- Department
of Chemistry, University of Malakand, Lower Dir, Chakdara18800, Pakistan
| | - Abdul Wadood
- Department
of Biochemistry, Abdul Wali Khan University, Mardan23200, Pakistan
| | - Azam Shareef
- Department
of Biochemistry, Abdul Wali Khan University, Mardan23200, Pakistan
| | - Mahboob Ali
- Department
of Chemistry, Abdul Wali Khan University, Mardan23200, Pakistan
| | - Asaad Khalid
- Substance
Abuse and Toxicology Research Center, Jazan
University, P.O. Box: 114, Jazan45142, Saudi Arabia
- National
Center for Research, Medicinal and Aromatic
Plants and Traditional Medicine Research Institute, P.O. Box 2404, Khartoum11111, Sudan
| | - Ashraf N. Abdalla
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah21955, Saudi Arabia
| | - Farhat Ullah
- Department
of Pharmacy, University of Malakand, Dir Lower, Chakdara, Khyber
Pakhtunkhwa18800, Pakistan
| |
Collapse
|
7
|
Sinicropi MS, Ceramella J, Iacopetta D, Catalano A, Mariconda A, Rosano C, Saturnino C, El-Kashef H, Longo P. Metal Complexes with Schiff Bases: Data Collection and Recent Studies on Biological Activities. Int J Mol Sci 2022; 23:14840. [PMID: 36499170 PMCID: PMC9739361 DOI: 10.3390/ijms232314840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Metal complexes play a crucial role in pharmaceutical sciences owing to their wide and significant activities. Schiff bases (SBs) are multifaceted pharmacophores capable of forming chelating complexes with various metals in different oxidation states. Complexes with SBs are extensively studied for their numerous advantages, including low cost and simple synthetic strategies. They have been reported to possess a variety of biological activities, including antimicrobial, anticancer, antioxidant, antimalarial, analgesic, antiviral, antipyretic, and antidiabetic ones. This review summarizes the most recent studies on the antimicrobial and antiproliferative activities of SBs-metal complexes. Moreover, recent studies regarding mononuclear and binuclear complexes with SBs are described, including antioxidant, antidiabetic, antimalarial, antileishmanial, anti-Alzheimer, and catecholase activities.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | | | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Hussein El-Kashef
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
8
|
Antibacterial and antifungal activities in vitro of a novel silver(I) complex with sulfadoxine-salicylaldehyde Schiff base. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Moghimi S, Shafiei M, Foroumadi A. Drug design strategies for the treatment azole-resistant candidiasis. Expert Opin Drug Discov 2022; 17:879-895. [PMID: 35793245 DOI: 10.1080/17460441.2022.2098949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite the availability of novel antifungals and therapeutic strategies, the rate of global mortality linked to invasive fungal diseases from fungal infection remains high. Candida albicans account for the most invasive mycosis produced by yeast. Thus, the current arsenal of medicinal chemists is focused on finding new effective agents with lower toxicity and broad-spectrum activity. In this review article, recent efforts to find effective agents against azole-resistant candidiasis, a common fungal infection, are covered. AREAS COVERED Herein, the authors outlined all azole-based compounds, dual target, and new scaffolds (non-azole-based compounds) which were effective against azole-resistant candidiasis. In addition, the mechanism of action and SAR studies were also discussed, if the data were available. EXPERT OPINION The current status of fungal infections and the drawbacks of existing drugs have encouraged scientists to find novel scaffolds based on different methods like virtual screening and fragment-based drug discovery. Machine learning and in-silico methods have found their role in this field and experts are hopeful to find novel scaffolds/compounds by using these methods.
Collapse
Affiliation(s)
- Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shafiei
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Aloe emodin-conjugated sulfonyl hydrazones as novel type of antibacterial modulators against S. aureus 25923 through multifaceted synergistic effects. Bioorg Chem 2022; 127:106035. [PMID: 35870413 DOI: 10.1016/j.bioorg.2022.106035] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
Aloe emodin-conjugated sulfonyl hydrazones were designed and synthesized as novel type of antibacterial modulators. Aloe emodin benzenesulfonyl hydrazone 5a (AEBH-5a) was preponderant for the treatment of S. aureus 25923 (MIC = 0.5 μg/mL) over norfloxacin and presented high selectivity between bacterial membranes and mammalian membranes. Especially, AEBH-5a could eliminate the formed biofilms and relieve the development of S. aureus 25923 resistance. The antibacterial mechanism of AEBH-5a from extracellularity to intracellularity illustrated that AEBH-5a could destroy bacterial membrane integrity, leading to the leakage of protein and nucleic acid. Besides, AEBH-5a could not only interact with DNA and induce oxidative stress but also inhibit lactate dehydrogenase (LDH) activity as well as render metabolic inactivation. In silico ADME studies prediction of AEBH-5a revealed a favorable bioavailability score and prominent drug-likeness profile. This research showed that the multifaceted synergistic effect initiated by aloe emodin-conjugated sulfonyl hydrazones is a reasonable and effective tactic to combat menacing bacterial infections.
Collapse
|
11
|
Ceramella J, Iacopetta D, Catalano A, Cirillo F, Lappano R, Sinicropi MS. A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. Antibiotics (Basel) 2022; 11:191. [PMID: 35203793 PMCID: PMC8868340 DOI: 10.3390/antibiotics11020191] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Schiff bases (SBs) have extensive applications in different fields such as analytical, inorganic and organic chemistry. They are used as dyes, catalysts, polymer stabilizers, luminescence chemosensors, catalyzers in the fixation of CO2 biolubricant additives and have been suggested for solar energy applications as well. Further, a wide range of pharmacological and biological applications, such as antimalarial, antiproliferative, analgesic, anti-inflammatory, antiviral, antipyretic, antibacterial and antifungal uses, emphasize the need for SB synthesis. Several SBs conjugated with chitosan have been studied in order to enhance the antibacterial activity of chitosan. Moreover, the use of the nanoparticles of SBs may improve their antimicrobial effects. Herein, we provide an analytical overview of the antibacterial and antifungal properties of SBs and chitosan-based SBs as well as SBs-functionalized nanoparticles. The most relevant and recent literature was reviewed for this purpose.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| |
Collapse
|