1
|
Gong B, Zhang K, Su M, Yang J, Peng C, Wang Y. Efficient nitrogen and phosphorus removal performance and microbial community in a pilot-scale anaerobic/anoxic/oxic (AOA) system with long sludge retention time: Significant roles of endogenous carbon source. ENVIRONMENTAL RESEARCH 2024; 263:120164. [PMID: 39414113 DOI: 10.1016/j.envres.2024.120164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Stringent wastewater discharge standards require wastewater treatment plants (WWTPs) to focus on enhancing nitrogen (N) and phosphorus (P) removal efficiency. Increasing sludge concentration by regulation of sludge retention time (SRT) would enhance wastewater treatment loads. However, phosphorus-accumulating organisms (PAOs) would be outcompeted by glycogen-accumulating organisms (GAOs) under long SRT, leading to a collapse of P removal. In this work, pilot-scale anaerobic-oxic-anoxic (AOA) and anaerobic-anoxic-oxic (AAO) systems with long SRT (30 d) were parallelly established for actual urban wastewater treatment. The results indicated that sludge reflux ratio, temperature, and C/N ratio significantly impact N and P removal performance of AOA and AAO systems with long SRT, and removal efficiency of AOA system significantly exceeded that of AAO system. AOA system with long SRT achieved the optimal performance at sludge reflux ratio of 200%, temperature of 25 °C, and C/N ratio of 8, with COD, NH4+-N, TN, and PO43--P removal ratio of 92.80±2.24%, 97.38±0.89%, 88.97±2.47%, and 94.33±3.27%, respectively. In addition, compared to AAO system, AOA system could save 23.08% of the aeration volume. This work highlighted that AOA system with long SRT included multiple coupled nitrogen and phosphorus removal pathways, such as autotrophic/heterotrophic nitrification, anoxic/oxic denitrification, endogenous denitrification, and denitrifying phosphorus removal. Among these, the synergistic effect of endogenous denitrification and denitrifying phosphorus removal driven by internal carbon sources contributed to satisfactory nitrogen and phosphorus removal efficiency in AOA system with long SRT.
Collapse
Affiliation(s)
- Benzhou Gong
- Changjiang Survey Planning Design and Research Co., Ltd, Wuhan 430010, PR China
| | - Kui Zhang
- Changjiang Survey Planning Design and Research Co., Ltd, Wuhan 430010, PR China
| | - Mubai Su
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Jun Yang
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Cuiyan Peng
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, PR China.
| |
Collapse
|
2
|
Li C, Ling Y, Zhang Y, Wang H, Wang H, Yan G, Dong W, Chang Y, Duan L. Insight into the microbial community of denitrification process using different solid carbon sources: Not only bacteria. J Environ Sci (China) 2024; 144:87-99. [PMID: 38802241 DOI: 10.1016/j.jes.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 05/29/2024]
Abstract
There is a lack of understanding about the bacterial, fungal and archaeal communities' composition of solid-phase denitrification (SPD) systems. We investigated four SPD systems with different carbon sources by analyzing microbial gene sequences based on operational taxonomic unit (OTU) and amplicon sequence variant (ASV). The results showed that the corncob-polyvinyl alcohol sodium alginate-polycaprolactone (CPSP, 0.86±0.04 mg NO3--N/(g·day)) and corncob (0.85±0.06 mg NO3--N/(g·day)) had better denitrification efficiency than polycaprolactone (PCL, 0.29±0.11 mg NO3--N/(g·day)) and polyvinyl alcohol-sodium alginate (PVA-SA, 0.24±0.07 mg NO3--N/(g·day)). The bacterial, fungal and archaeal microbial composition was significantly different among carbon source types such as Proteobacteria in PCL (OTU: 83.72%, ASV: 82.49%) and Rozellomycota in PVA-SA (OTU: 71.99%, ASV: 81.30%). ASV methods can read more microbial units than that of OTU and exhibit higher alpha diversity and classify some species that had not been identified by OTU such as Nanoarchaeota phylum, unclassified_ f_ Xanthobacteraceae genus, etc., indicating ASV may be more conducive to understand SPD microbial communities. The co-occurring network showed some correlation between the bacteria fungi and archaea species, indicating different species may collaborate in SPD systems. Similar KEGG function prediction results were obtained in two bioinformatic methods generally and some fungi and archaea functions should not be ignored in SPD systems. These results may be beneficial for understanding microbial communities in SPD systems.
Collapse
Affiliation(s)
- Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Singh A, T V A, Singh S, Saxena AK, Nain L. Application of fungal inoculants enhances colonization of secondary bacterial degraders during in situ paddy straw degradation: a genomic insights into cross-domain synergism. Int Microbiol 2024:10.1007/s10123-024-00570-2. [PMID: 39138687 DOI: 10.1007/s10123-024-00570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Rice cultivation generates huge amounts of on farm residues especially under mechanical harvesting. Paddy straw being recalcitrant hinders sowing of upcoming rabi crops like wheat and mustard. Non-environmental sustainable practice of on-farm burning of the paddy residues is being popularly followed for quick disposal of the agro-residues and land preparation. However, conservation agriculture involving in situ residue incorporation can be a sustainable option to utilize the residues for improvement of soil biological health. However, low temperature coupled with poor nitrogen status of soil reduces the decomposition rate of residues that may lead to nitrogen immobilization and hindrance in land preparation. In this direction, ecological impact of two approaches viz priming with urea and copiotrophic fungus-based bioformulation (CFB) consisting of Coprinopsis cinerea LA2 and Cyathus stercoreus ITCC3745 was studied for in situ degradation of residues. Succession of bacterial diversity was deciphered through high throughput whole metagenomic sequencing along with studies on dynamics of soil microbial enzymes. Treatments receiving CFB (T1) and urea (T2) when compared with bulk soil (absolute control) showed an increase in richness of the microbial diversity as compared to control straw retained treatment control (T3). The β diversity indices also indicated sufficient group variations among the treatments receiving CFB and urea as compared to only straw retained treatment and bulk soil. Priming of paddy straw with CFB and urea also induced significant rewiring of the bacterial co-occurrence networks. Quantification of soil ligno-cellulolytic activity as well as abundance of carbohydrate active enzymes (CAZy) genes indicated high activities of hydrolytic enzymes in CFB primed straw retention treatment as compared to urea primed straw retention treatment. The genomic insights on effectiveness of copiotrophic fungus bioformulation for in situ degradation of paddy straw will further help in developing strategies for management of crop residues in eco-friendly manner.
Collapse
Affiliation(s)
- Arjun Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Kushmaur, UP, India
- ICAR-Central Soil Salinity Research Institute, RRS Lucknow, Lucknow, UP, India
| | - Abiraami T V
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India.
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Kushmaur, UP, India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
4
|
Liang X, Wen X, Yang H, Lu H, Wang A, Liu S, Li Q. Incorporating microbial inoculants to reduce nitrogen loss during sludge composting by suppressing denitrification and promoting ammonia assimilation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170000. [PMID: 38242453 DOI: 10.1016/j.scitotenv.2024.170000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/21/2024]
Abstract
To address the challenge of increasing nitrogen retention in compost, this study investigated the effects of microbial communities on denitrification and ammonia assimilation during sludge composting by inoculating microbial inoculants. The results showed that the retention rates of total Kjeldahl nitrogen (TKN) and humic acid (HA) in MIs group (with microbial inoculants) were 4.94 % and 18.52 % higher than those in the control group (CK), respectively. Metagenomic analysis showed that Actinobacteria and Proteobacteria were identified as main microorganisms contributing to denitrification and ammonia assimilation. The addition of microbial agents altered the structure of the microbial community, which in turn stimulated the expression of functional genes. During cooling period, the ammonia assimilation genes glnA, gltB and gltD in MIs were 15.98 %, 24.84 % and 32.88 % higher than those in CK, respectively. Canonical correspondence analysis revealed a positive correlation between the dominant bacterial genera from the cooling stage to the maturity stage and the levels of NO3--N, NH4+-N, HA, and TKN contents. NH4+-N was positively correlated with HA, indicating NH4+-N might be incorporated into HA. Heat map and network analyses revealed NH4+-N as a key factor affecting functional genes of denitrification and ammonia assimilation, with Nitrospira identified as the core bacteria in the microbial network. Therefore, the addition of microbial agents could increase nitrogen retention and improve compost product quality.
Collapse
Affiliation(s)
- Xueling Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongmei Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Heng Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ao Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shuaipeng Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Pold G, Bonilla-Rosso G, Saghaï A, Strous M, Jones CM, Hallin S. Phylogenetics and environmental distribution of nitric oxide-forming nitrite reductases reveal their distinct functional and ecological roles. ISME COMMUNICATIONS 2024; 4:ycae020. [PMID: 38584645 PMCID: PMC10999283 DOI: 10.1093/ismeco/ycae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 04/09/2024]
Abstract
The two evolutionarily unrelated nitric oxide-producing nitrite reductases, NirK and NirS, are best known for their redundant role in denitrification. They are also often found in organisms that do not perform denitrification. To assess the functional roles of the two enzymes and to address the sequence and structural variation within each, we reconstructed robust phylogenies of both proteins with sequences recovered from 6973 isolate and metagenome-assembled genomes and identified 32 well-supported clades of structurally distinct protein lineages. We then inferred the potential niche of each clade by considering other functional genes of the organisms carrying them as well as the relative abundances of each nir gene in 4082 environmental metagenomes across diverse aquatic, terrestrial, host-associated, and engineered biomes. We demonstrate that Nir phylogenies recapitulate ecology distinctly from the corresponding organismal phylogeny. While some clades of the nitrite reductase were equally prevalent across biomes, others had more restricted ranges. Nitrifiers make up a sizeable proportion of the nitrite-reducing community, especially for NirK in marine waters and dry soils. Furthermore, the two reductases showed distinct associations with genes involved in oxidizing and reducing other compounds, indicating that the NirS and NirK activities may be linked to different elemental cycles. Accordingly, the relative abundance and diversity of NirS versus NirK vary between biomes. Our results show the divergent ecological roles NirK and NirS-encoding organisms may play in the environment and provide a phylogenetic framework to distinguish the traits associated with organisms encoding the different lineages of nitrite reductases.
Collapse
Affiliation(s)
- Grace Pold
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Germán Bonilla-Rosso
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Aurélien Saghaï
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Marc Strous
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Christopher M Jones
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
6
|
Shen Y, Xu L, Guo H, Ismail H, Ran X, Zhang C, Peng Y, Zhao Y, Liu W, Ding Y, Tang S. Mitigating the adverse effect of warming on rice canopy and rhizosphere microbial community by nitrogen application: An approach to counteract future climate change for rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167151. [PMID: 37730044 DOI: 10.1016/j.scitotenv.2023.167151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
The adverse impact of climate change on crop production continues to increase, necessitating the development of suitable strategies to mitigate these effects and improve food security. Several studies have revealed how global warming negatively impacts the grain-filling stage of rice and that this effect could be mitigated by nitrogen; however, the impact of nitrogen application on rice canopy and rhizosphere microbial communities remains unclear. We conducted a study using an open-field warming system. Results showed that warming influenced rice canopy by decreasing aboveground biomass and harvest index, whereas nitrogen application had positive effect on rice production under warming conditions by increasing the plant nitrogen content, biomass, harvest index and soil fertilities. Moreover, soil ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) contents were significantly decreased under warming, which were higher after nitrogen application. Notably, warming and nitrogen fertilizer caused 19 % (P < 0.01) and 7 % (P < 0.05) variations, respectively, in the β diversity of the microbial community, respectively. The impact of warming was significant on NH4+-N-related microorganisms; however, this impact was weakened by nitrogen application for microbes in the rhizosphere. This study demonstrated that enhanced nitrogen fertilizer can alleviate the adverse impact of warming by weakening its effects on rhizosphere microbes, improving soil fertility, promoting rice nitrogen uptake, and increasing the aboveground biomass and harvest index. These findings provide an important theoretical basis for developing practical, responsive cultivation strategies.
Collapse
Affiliation(s)
- Yingying Shen
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Lei Xu
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Hao Guo
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Hashmi Ismail
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Xuan Ran
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Chen Zhang
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Yuxuan Peng
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Yufei Zhao
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Wenzhe Liu
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, 210095 Nanjing, PR China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, 210095 Nanjing, PR China.
| |
Collapse
|
7
|
Zhang IH, Sun X, Jayakumar A, Fortin SG, Ward BB, Babbin AR. Partitioning of the denitrification pathway and other nitrite metabolisms within global oxygen deficient zones. ISME COMMUNICATIONS 2023; 3:76. [PMID: 37474642 PMCID: PMC10359470 DOI: 10.1038/s43705-023-00284-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Oxygen deficient zones (ODZs) account for about 30% of total oceanic fixed nitrogen loss via processes including denitrification, a microbially mediated pathway proceeding stepwise from NO3- to N2. This process may be performed entirely by complete denitrifiers capable of all four enzymatic steps, but many organisms possess only partial denitrification pathways, either producing or consuming key intermediates such as the greenhouse gas N2O. Metagenomics and marker gene surveys have revealed a diversity of denitrification genes within ODZs, but whether these genes co-occur within complete or partial denitrifiers and the identities of denitrifying taxa remain open questions. We assemble genomes from metagenomes spanning the ETNP and Arabian Sea, and map these metagenome-assembled genomes (MAGs) to 56 metagenomes from all three major ODZs to reveal the predominance of partial denitrifiers, particularly single-step denitrifiers. We find niche differentiation among nitrogen-cycling organisms, with communities performing each nitrogen transformation distinct in taxonomic identity and motility traits. Our collection of 962 MAGs presents the largest collection of pelagic ODZ microorganisms and reveals a clearer picture of the nitrogen cycling community within this environment.
Collapse
Affiliation(s)
- Irene H Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Xin Sun
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Amal Jayakumar
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | | | - Bess B Ward
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Andrew R Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Domańska M, Kuśnierz M, Mackiewicz K. Seasonal prevalence of bacteria in the outflow of two full-scale municipal wastewater treatment plants. Sci Rep 2023; 13:10608. [PMID: 37391517 PMCID: PMC10313732 DOI: 10.1038/s41598-023-37744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
Despite many modern wastewater treatment solutions, the most common is still the use of activated sludge (AS). Studies indicate that the microbial composition of AS is most often influenced by the raw sewage composition (especially influent ammonia), biological oxygen demand, the level of dissolved oxygen, technological solutions, as well as the temperature of wastewater related to seasonality. The available literature mainly refers to the relationship between AS parameters or the technology used and the composition of microorganisms in AS. However, there is a lack of data on the groups of microorganisms leaching into water bodies whose presence is a signal for possible changes in treatment technology. Moreover, sludge flocs in the outflow contain less extracellular substance (EPS) which interferes microbial identification. The novelty of this article concerns the identification and quantification of microorganisms in the AS and in the outflow by fluorescence in situ hybridization (FISH) method from two full-scale wastewater treatment plants (WWTPs) in terms of 4 key groups of microorganisms involved in the wastewater treatment process in the context of their potential technological usefulness. The results of the study showed that Nitrospirae, Chloroflexi and Ca. Accumulibacter phosphatis in treated wastewater reflect the trend in abundance of these bacteria in activated sludge. Increased abundance of betaproteobacterial ammonia-oxidizing bacteria and Nitrospirae in the outflow were observed in winter. Principal component analysis (PCA) showed that loadings obtained from abundance of bacteria in the outflow made larger contributions to the variance in the PC1 factorial axis, than loadings obtained from abundance of bacteria from activated sludge. PCA confirmed the reasonableness of conducting studies not only in the activated sludge, but also in the outflow to find correlations between technological problems and qualitative and quantitative changes in the outflow microorganisms.
Collapse
Affiliation(s)
- Magdalena Domańska
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363, Wrocław, Poland.
| | - Magdalena Kuśnierz
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363, Wrocław, Poland
| | - Katarzyna Mackiewicz
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363, Wrocław, Poland
| |
Collapse
|
9
|
Zheng S, Liu X, Yang X, Zhou H, Fang J, Gong S, Yang J, Chen J, Lu T, Zeng M, Qin Y. The nitrogen removal performance and microbial community on mixotrophic denitrification process. BIORESOURCE TECHNOLOGY 2022; 363:127901. [PMID: 36075349 DOI: 10.1016/j.biortech.2022.127901] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Sulfur autotrophic denitrifiers and heterotrophic denitrifiers widely exist in aquatic ecosystem, however, the response of sulfide to the microbial community structure in mixotrophic denitrification ecosystem is unknown yet. In this study, the denitrification performance and microbial community were explored by changing the molar ratio of influent C/N/S. From the level of genus, the joint action of Thauera, Pacacoccus, Fusibacter Pseudoxanthomonas, Thiobacillus, Sulfurovum and Sulfurimonas brought about the efficient denitrification performance in the mixotrophic system. Thauera increased from from 0.97% to more than 13%, and the relative abundances of Thiobacillus and Sulfurimonas were about 4.14% and 3.89% separately after adding S2-. The results of this study showed that the denitrification performance could be indeed intensified in the mixotrophic system, among which provided a theoretical basis for establishing an efficient biological nitrogen removal system.
Collapse
Affiliation(s)
- Shaohong Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiangyin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiangjing Yang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Hongen Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jin Fang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Siyuan Gong
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Junfeng Yang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jiannv Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Tiansheng Lu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Ming Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yujie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| |
Collapse
|