1
|
Patel N, Rios J, Ganguly R, Mutafoglu C, Shalash N, Gallardo K, Saleh M, Chahine J, Kopecky E, Gujral G, Shah K, Suriano C. Toll-like receptor signaling in neurons modulates C. elegans feeding behavior in a hunger state-dependent manner. Brain Behav Immun 2025; 123:1103-1113. [PMID: 39532199 DOI: 10.1016/j.bbi.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Animals face the risk of encountering pathogenic microbes while foraging for resources. Assessing the risk of nutrition vs. infection can result in the behavioral regulation of immune processes. Behavioral immunity in the nematode roundworm Caenorhabditis elegans (C. elegans) is regulated, in part, by the innate immune molecule TOL-1: a homolog of vertebrate Toll-like Receptor (TLR) proteins that influences C. elegans pathogen avoidance behaviors by promoting the development of CO2-detecting chemosensory neurons. While TOL-1's role in pathogen avoidance is well established, its role in an opposing behavior - foraging - has not been examined. In addition to pathogenic bacteria, preferred food for C. elegans, such as Escherichia coli (E. coli), create significant and aversive environmental CO2 levels which may limit feeding behaviors in a tol-1 dependent manner. We have found that in addition to conferring antibacterial immunity, TOL-1 signals in neurons through the p38 MAPK PMK-1 to promote turning behavior and limit foraging when food is abundant and that the anorectic TOL-1/PMK-1 pathway is attenuated during starvation to promote foraging. These data highlight the dynamic role of a conserved innate immune cascade in neurons during both high and low hunger states and identify mechanisms underlying the neuro-immune control of feeding strategies.
Collapse
Affiliation(s)
- Neel Patel
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States
| | - Joseph Rios
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States
| | - Retwika Ganguly
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States
| | - Cindy Mutafoglu
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States
| | - Nour Shalash
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States
| | - Karla Gallardo
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States
| | - Malak Saleh
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States
| | - John Chahine
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States
| | - Emily Kopecky
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States
| | - Gursimran Gujral
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States
| | - Kamya Shah
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States
| | - Christos Suriano
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States; Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States.
| |
Collapse
|
2
|
Jolly A, Fernández B, Mundo SL, Elguezabal N. Modeling Paratuberculosis in Laboratory Animals, Cells, or Tissues: A Focus on Their Applications for Pathogenesis, Diagnosis, Vaccines, and Therapy Studies. Animals (Basel) 2023; 13:3553. [PMID: 38003170 PMCID: PMC10668694 DOI: 10.3390/ani13223553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Paratuberculosis is a chronic granulomatous enteritis caused by Mycobacterium avium subsp. Paratuberculosis that affects a wide variety of domestic and wild animals. It is considered one of the diseases with the highest economic impact on the ruminant industry. Despite many efforts and intensive research, paratuberculosis control still remains controversial, and the existing diagnostic and immunoprophylactic tools have great limitations. Thus, models play a crucial role in understanding the pathogenesis of infection and disease, and in testing novel vaccine candidates. Ruminant animal models can be restricted by several reasons, related to space requirements, the cost of the animals, and the maintenance of the facilities. Therefore, we review the potential and limitations of the different experimental approaches currently used in paratuberculosis research, focusing on laboratory animals and cell-based models. The aim of this review is to offer a vision of the models that have been used, and what has been achieved or discovered with each one, so that the reader can choose the best model to answer their scientific questions and prove their hypotheses. Also, we bring forward new approaches that we consider worth exploring in the near future.
Collapse
Affiliation(s)
- Ana Jolly
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
| | - Bárbara Fernández
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
- Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Silvia Leonor Mundo
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
- Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Natalia Elguezabal
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario-Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| |
Collapse
|
3
|
Du Y, Shi H, Guo Q, Liu C, Zhao K. Hirudomacin: a Protein with Dual Effects of Direct Bacterial Inhibition and Regulation of Innate Immunity. Appl Environ Microbiol 2023; 89:e0052723. [PMID: 37428035 PMCID: PMC10370334 DOI: 10.1128/aem.00527-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/29/2023] [Indexed: 07/11/2023] Open
Abstract
Hirudomacin (Hmc) belongs to the Macin family of antimicrobial peptides, which can be used for bactericidal purposes in vitro by cleaving cell membranes. Although the Macin family has broad-spectrum antibacterial properties, few studies have been reported on bacterial inhibition by enhancing innate immunity. To further investigate the mechanism of Hmc inhibition, we chose the classical innate immune model organism Caenorhabditis elegans as the study subject. In this investigation, we found that Hmc treatment directly reduced the number of Staphylococcus aureus and Escherichia coli in the intestine of infected wild-type nematodes and infected pmk-1 mutant nematodes. Hmc treatment significantly prolonged the life span of infected wild-type nematodes and increased the expression of antimicrobial effectors (clec-82, nlp-29, lys-1, lys-7), and Hmc treatment still significantly increased the expression of antimicrobial effectors (clec-82, nlp-29, lys-7) in wild-type nematodes in the absence of bacterial stimulation. In addition, Hmc treatment significantly increased the expression of key genes of the pmk-1/p38 MAPK pathway (pmk-1, tir-1, atf-7, skn-1) under both infected and uninfected conditions but failed to increase the life span of infected pmk-1 mutant nematodes as well as the expression of antimicrobial effector genes. Western blot results further demonstrated that Hmc treatment significantly elevated pmk-1 protein expression levels in infected wild-type nematodes. In conclusion, our data suggest that Hmc has both direct bacteriostatic and immunomodulatory effects and may upregulate antimicrobial peptides in response to infection via the pmk-1/p38 MAPK pathway. It has the potential to serve as a new antibacterial agent and immune modulator. IMPORTANCE In today's world, bacterial drug resistance is becoming increasingly serious, and natural antibacterial proteins are attracting attention because of advantages such as their diverse and complex antibacterial modes, lack of residue, and harder-to-develop drug resistance. Notably, there are few antibacterial proteins with multiple effects such as direct antibacterial and innate immunity enhancement at the same time. We believe that an ideal antimicrobial agent can be developed only through a more comprehensive and in-depth study of the bacteriostatic mechanism of natural antibacterial proteins. The significance of our study is that based on the known in vitro bacterial inhibition of Hirudomacin (Hmc), we further clarified its mechanism in vivo, which can be subsequently developed as a natural bacterial inhibitor for various applications in medicine, food, farming, and daily chemicals.
Collapse
Affiliation(s)
- Yu Du
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| | - Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| | - Chang Liu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| | - Kun Zhao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| |
Collapse
|
4
|
Asai M, Li Y, Newton SM, Robertson BD, Langford PR. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev 2023; 47:fuad011. [PMID: 36906279 PMCID: PMC10045907 DOI: 10.1093/femsre/fuad011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Galleria mellonella (greater wax moth) larvae are used widely as surrogate infectious disease models, due to ease of use and the presence of an innate immune system functionally similar to that of vertebrates. Here, we review G. mellonella-human intracellular bacteria pathogen infection models from the genera Burkholderia, Coxiella, Francisella, Listeria, and Mycobacterium. For all genera, G. mellonella use has increased understanding of host-bacterial interactive biology, particularly through studies comparing the virulence of closely related species and/or wild-type versus mutant pairs. In many cases, virulence in G. mellonella mirrors that found in mammalian infection models, although it is unclear whether the pathogenic mechanisms are the same. The use of G. mellonella larvae has speeded up in vivo efficacy and toxicity testing of novel antimicrobials to treat infections caused by intracellular bacteria: an area that will expand since the FDA no longer requires animal testing for licensure. Further use of G. mellonella-intracellular bacteria infection models will be driven by advances in G. mellonella genetics, imaging, metabolomics, proteomics, and transcriptomic methodologies, alongside the development and accessibility of reagents to quantify immune markers, all of which will be underpinned by a fully annotated genome.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Brian D Robertson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, South Kensington campus, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
5
|
Li Q, Xiao M, Li N, Cai W, Zhao C, Liu B, Zeng F. Application of
Caenorhabditis elegans
in the evaluation of food nutrition: A review. EFOOD 2023. [DOI: 10.1002/efd2.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Affiliation(s)
- Quancen Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Meifang Xiao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Na Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Wenwen Cai
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Chao Zhao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing Fujian Agriculture and Forestry University Fuzhou China
| | - Bin Liu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing Fujian Agriculture and Forestry University Fuzhou China
- National Engineering Research Center of JUNCAO Technology Fujian Agriculture and Forestry University Fuzhou China
| | - Feng Zeng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
6
|
Boos JR, Jandrain HN, Hagiuda E, Taguchi AT, Hasegawa K, Fedun BL, Taylor SJ, Elad SM, Faber SE, Kumasaka T, Iwasaki T, Geldenhuys WJ. Structure and biological evaluation of Caenorhabditis elegans CISD-1/mitoNEET, a KLP-17 tail domain homologue, supports attenuation of paraquat-induced oxidative stress through a p38 MAPK-mediated antioxidant defense response. ADVANCES IN REDOX RESEARCH : AN OFFICIAL JOURNAL OF THE SOCIETY FOR REDOX BIOLOGY AND MEDICINE AND THE SOCIETY FOR FREE RADICAL RESEARCH-EUROPE 2022; 6:100048. [PMID: 36533211 PMCID: PMC9757825 DOI: 10.1016/j.arres.2022.100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
CISD-1/mitoNEET is an evolutionarily conserved outer mitochondrial membrane [2Fe-2S] protein that regulates mitochondrial function and morphology. The [2Fe-2S] clusters are redox reactive and shown to mediate oxidative stress in vitro and in vivo. However, there is limited research studying CISD-1/mitoNEET mediation of oxidative stress in response to environmental stressors. In this study, we have determined the X-ray crystal structure of Caenorhabditis elegans CISD-1/mitoNEET homologue and evaluated the mechanisms of oxidative stress resistance to the pro-oxidant paraquat in age-synchronized populations by generating C. elegans gain and loss of function CISD-1 models. The structure of the C. elegans CISD-1/mitoNEET soluble domain refined at 1.70-Å resolution uniquely shows a reversible disulfide linkage at the homo-dimeric interface and also represents the N-terminal tail domain for dimerization of the cognate kinesin motor protein KLP-17 involved in chromosome segregation dynamics and germline development of the nematode. Moreover, overexpression of CISD-1/mitoNEET in C. elegans has revealed beneficial effects on oxidative stress resistance against paraquat-induced reactive oxygen species generation, corroborated by increased activation of the p38 mitogen-activated protein kinase (MAPK) signaling cascade.
Collapse
Affiliation(s)
- Jacob R. Boos
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Hanna N. Jandrain
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Emi Hagiuda
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Alexander T. Taguchi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Kazuya Hasegawa
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Bailey L. Fedun
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sarah J. Taylor
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sofhia M. Elad
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sarah E. Faber
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Toshio Iwasaki
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | - Werner J. Geldenhuys
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
7
|
The p38 MAPK/PMK-1 Pathway Is Required for Resistance to Nocardia farcinica Infection in Caenorhabditis elegance. Pathogens 2022; 11:pathogens11101071. [PMID: 36297128 PMCID: PMC9609018 DOI: 10.3390/pathogens11101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
Nocardia farcinica is an opportunistic pathogen that causes nocardiosis primarily in patients with compromised immune systems. In this study, we used the genetically tractable organism Caenorhabditis elegans as a model to study the innate immune responses to N. farcinica infection. We found that unlike other pathogenic bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus, N. farcinica failed to kill adult worms. In another words, adult worms exposed to N. farcinica exhibited a normal lifespan, compared with those fed the standard laboratory food bacterium Escherichia coli OP50. Interestingly, deletion of three core genes (pmk-1, nsy-1 and sek-1) in the p38 MAPK/PMK-1 pathway reduced the survival of worm exposure to N. farcinica, highlighting a crucial role of this pathway for C. elegans in resistance to N. farcinica. Furthermore, our results revealed that N. farcinica exposure up-regulated the level of PMK-1 phosphorylation. The activation of PMK-1 promoted nuclear translocation of a transcription factor SKN-1/Nrf2, which in turn mediated N. farcinica infection resistance in C. elegans. Our results provide an excellent example that the integrity of immune system is key aspect for counteract with pathogenesis of N. farcinica.
Collapse
|
8
|
Liu Z, Huang X, Yang Z, Peng C, Yu H, Cui C, Hu Y, Wang X, Xing Q, Hu J, Bao Z. Identification, Characterization, and Expression Analysis Reveal Diverse Regulated Roles of Three MAPK Genes in Chlamys farreri Under Heat Stress. Front Physiol 2021; 12:688626. [PMID: 34393814 PMCID: PMC8356821 DOI: 10.3389/fphys.2021.688626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are fundamental signal transduction modules in all eukaryotic organisms, participating growth and development, as well as stress response. In the present study, three MAPK genes were successfully identified from the genome of Chlamys farreri, respectively, named CfERK1/2, CfJNK, and Cfp38, and only one copy of ERK, JNK, and p38 were detected. Domain analysis indicated that CfMAPKs possessed the typical domains, including S_TKc, Pkinase, and PKc_like domain. Phylogenetic analysis showed that three CfMAPKs of MAPK subfamilies exists in the common ancestor of vertebrates and invertebrates. All CfMAPKs specifically expressed during larval development and in adult tissues, and the expression level of CfERK1/2 and Cfp38 was apparently higher than that of CfJNK. Under heat stress, the expression of CfERK1/2 and Cfp38 were significantly downregulated and then upregulated in four tissues, while the expression of CfJNK increased in all tissues; these different expression patterns suggested a different molecular mechanism of CfMAPKs for bivalves to adapt to temperature changes. The diversity of CfMAPKs and their specific expression patterns provide valuable information for better understanding of the functions of MAPK cascades in bivalves.
Collapse
Affiliation(s)
- Zhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Haitao Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chang Cui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuqing Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuefeng Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of CHINA, Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of CHINA, Sanya, China
| |
Collapse
|
9
|
Viri V, Arveiler M, Lehnert T, Gijs MAM. An In Vivo Microfluidic Study of Bacterial Load Dynamics and Absorption in the C. elegans Intestine. MICROMACHINES 2021; 12:832. [PMID: 34357242 PMCID: PMC8304684 DOI: 10.3390/mi12070832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023]
Abstract
Caenorhabditiselegans (C. elegans) has gained importance as a model for studying host-microbiota interactions and bacterial infections related to human pathogens. Assessing the fate of ingested bacteria in the worm's intestine is therefore of great interest, in particular with respect to normal bacterial digestion or intestinal colonization by pathogens. Here, we report an in vivo study of bacteria in the gut of C. elegans. We take advantage of a polydimethylsiloxane (PDMS) microfluidic device enabling passive immobilization of adult worms under physiological conditions. Non-pathogenic Escherichia coli (E. coli) bacteria expressing either pH-sensitive or pH-insensitive fluorescence reporters as well as fluorescently marked indigestible microbeads were used for the different assays. Dynamic fluorescence patterns of the bacterial load in the worm gut were conveniently monitored by time-lapse imaging. Cyclic motion of the bacterial load due to peristaltic activity of the gut was observed and biochemical digestion of E. coli was characterized by high-resolution fluorescence imaging of the worm's intestine. We could discriminate between individual intact bacteria and diffuse signals related to disrupted bacteria that can be digested. From the decay of the diffuse fluorescent signal, we determined a digestion time constant of 14 ± 4 s. In order to evaluate the possibility to perform infection assays with our platform, immobilized C. elegans worms were fed pathogenic Mycobacterium marinum (M. marinum) bacteria. We analyzed bacterial fate and accumulation in the gut of N2 worms and mitochondrial stress response in a hsp-6::gfp mutant.
Collapse
Affiliation(s)
| | | | | | - Martin A. M. Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (V.V.); (M.A.); (T.L.)
| |
Collapse
|
10
|
Evaluation of changes in C. elegans immune response during bacterial infection: A single nematode approach. Microbes Infect 2021; 23:104846. [PMID: 34091025 DOI: 10.1016/j.micinf.2021.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
Routinely, studies were performed using age-synchronized group of C. elegans as host which suggested a collective response by the host system. Here, we report the modulation of immune response in a single nematode against Staphylococcus aureus and Proteus mirabilis. Initially, the survival of wild-type N2 was tested and was found that S. aureus killed single nematode at 42 h while P. mirabilis failed to provoke infection but colonized the nematode's intestine. With this milieu, the pathogenicity of the bacteria was assessed by Fourier Transform Infra-Red (FTIR) spectroscopy and Cyclic Voltammetry (CV) and was found that S. aureus in the presence of host elicited its virulence while P. mirabilis and Escherichia coli OP50 did not show any alteration. Vertical transmission of infection was also deduced by colony forming unit assay using Cyanine dyes. The MALDI-TOF/TOF analysis was also performed to identify the proteome changes in the single nematode that showcased different proteins related to various immune pathways. This study suggested the importance of understanding the infection pathology and traits of individual nematode which could help our understanding on otherwise the disordered processes during host and microbe interactions.
Collapse
|
11
|
Gunasekera RS, Galbadage T, Ayala-Orozco C, Liu D, García-López V, Troutman BE, Tour JJ, Pal R, Krishnan S, Cirillo JD, Tour JM. Molecular Nanomachines Can Destroy Tissue or Kill Multicellular Eukaryotes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13657-13670. [PMID: 32091877 PMCID: PMC8189693 DOI: 10.1021/acsami.9b22595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Light-activated molecular nanomachines (MNMs) can be used to drill holes into prokaryotic (bacterial) cell walls and the membrane of eukaryotic cells, including mammalian cancer cells, by their fast rotational movement, leading to cell death. We examined how these MNMs function in multicellular organisms and investigated their use for treatment and eradication of specific diseases by causing damage to certain tissues and small organisms. Three model eukaryotic species, Caenorhabditis elegans, Daphnia pulex, and Mus musculus (mouse), were evaluated. These organisms were exposed to light-activated fast-rotating MNMs and their physiological and pathological changes were studied in detail. Slow rotating MNMs were used to control for the effects of rotation rate. We demonstrate that fast-rotating MNMs caused depigmentation and 70% mortality in C. elegans while reducing the movement as well as heart rate and causing tissue damage in Daphnia. Topically applied light-activated MNMs on mouse skin caused ulceration and microlesions in the epithelial tissue, allowing MNMs to localize into deeper epidermal tissue. Overall, this study shows that the nanomechanical action of light-activated MNMs is effective against multicellular organisms, disrupting cell membranes and damaging tissue in vivo. Customized MNMs that target specific tissues for therapy combined with spatial and temporal control could have broad clinical applications in a variety of benign and malignant disease states including treatment of cancer, parasites, bacteria, and diseased tissues.
Collapse
Affiliation(s)
| | - Thushara Galbadage
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas 77807, United States
| | - Ciceron Ayala-Orozco
- Department of Experimental Oncology, MD Anderson Cancer Center, Houston, Texas 77030, United States
| | | | | | | | - Josiah J Tour
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas 77807, United States
| | - Robert Pal
- Department of Chemistry, Durham University, South Road, DH1 3LE Durham, United Kingdom
| | - Sunil Krishnan
- Department of Experimental Oncology, MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas 77807, United States
| | | |
Collapse
|
12
|
Lipidomic insights to understand membrane dynamics in response to vanillin in Mycobacterium smegmatis. Int Microbiol 2019; 23:263-276. [DOI: 10.1007/s10123-019-00099-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/13/2019] [Accepted: 08/26/2019] [Indexed: 11/24/2022]
|
13
|
Williams AB, Heider F, Messling JE, Rieckher M, Bloch W, Schumacher B. Restoration of Proteostasis in the Endoplasmic Reticulum Reverses an Inflammation-Like Response to Cytoplasmic DNA in Caenorhabditis elegans. Genetics 2019; 212:1259-1278. [PMID: 31248887 PMCID: PMC6707470 DOI: 10.1534/genetics.119.302422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Innate immune responses protect organisms against various insults, but may lead to tissue damage when aberrantly activated. In higher organisms, cytoplasmic DNA can trigger inflammatory responses that can lead to tissue degeneration. Simpler metazoan models could shed new mechanistic light on how inflammatory responses to cytoplasmic DNA lead to pathologies. Here, we show that in a DNase II-defective Caenorhabditis elegans strain, persistent cytoplasmic DNA leads to systemic tissue degeneration and loss of tissue functionality due to impaired proteostasis. These pathological outcomes can be therapeutically alleviated by restoring protein homeostasis, either via ectopic induction of the ER unfolded protein response or N-acetylglucosamine treatment. Our results establish C. elegans as an ancestral metazoan model for studying the outcomes of inflammation-like conditions caused by persistent cytoplasmic DNA and provide insight into potential therapies for human conditions involving chronic inflammation.
Collapse
Affiliation(s)
- Ashley B Williams
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Germany
| | - Felix Heider
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Germany
| | - Jan-Erik Messling
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Germany
| | - Matthias Rieckher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, German Sports University, 50933 Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Germany
| |
Collapse
|
14
|
Brennan JJ, Gilmore TD. Evolutionary Origins of Toll-like Receptor Signaling. Mol Biol Evol 2019; 35:1576-1587. [PMID: 29590394 DOI: 10.1093/molbev/msy050] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptors (TLRs) are transmembrane pattern recognition receptors that are best known for their roles in innate immunity for the detection of and defense against microbial pathogens. However, TLRs also have roles in many nonimmune processes, most notably development. TLRs direct both immune and developmental programs by activation of downstream signaling pathways, often by activation of the NF-κB pathway. There are two primary TLR subtypes: 1) TLRs with multiple cysteine clusters in their ectodomain (mccTLRs) and 2) TLRs with a single cysteine cluster in their ectodomain (sccTLRs). For some time, it has been known that TLRs and the biological processes that they control are conserved in organisms from insects to mammals. However, genome and transcriptome sequencing has revealed that many basal metazoans also have TLRs and downstream NF-κB signaling components. In this review, we discuss what is known about the structure, biological function, and downstream signaling pathways of TLRs found in phyla from Porifera through Annelida. From these analyses, we hypothesize that mccTLRs emerged in the phylum Cnidaria, that sccTLRs evolved in the phylum Mollusca, and that TLRs have dual immune and developmental biological functions in organisms as ancient as cnidarians.
Collapse
|
15
|
Pal R, Hameed S, Kumar P, Singh S, Fatima Z. Understanding lipidomic basis of iron limitation induced chemosensitization of drug-resistant Mycobacterium tuberculosis. 3 Biotech 2019; 9:122. [PMID: 30863701 PMCID: PMC6401079 DOI: 10.1007/s13205-019-1645-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023] Open
Abstract
Under limited micronutrients condition, Mycobacterium tuberculosis (MTB) has to struggle for acquisition of the limited micronutrients available in the host. One such crucial micronutrient that MTB requires for the growth and sustenance is iron. The present study aimed to sequester the iron supply of MTB to control drug resistance in MTB. We found that iron restriction renders hypersensitivity to multidrug-resistant MTB strains against first-line anti-TB drugs. To decipher the effect of iron restriction on possible mechanisms of chemosensitization and altered cellular circuitry governing drug resistance and virulence of MTB, we explored MTB cellular architecture. We could identify non-intact cell envelope, tampered MTB morphology and diminished mycolic acid under iron restricted MDR-MTB cells. Deeper exploration unraveled altered lipidome profile observed through conventional TLC and advanced mass spectrometry-based LC-ESI-MS techniques. Lipidome analysis not only depicted profound alterations of various lipid classes which are crucial for pathogenecity but also exposed leads such as indispensability of iron to sustain metabolic, genotoxic and oxidative stresses. Furthermore, iron deprivation led to inhibited biofilm formation and capacity of MTB to adhere buccal epithelial cells. Lastly, we demonstrated enhanced survival of Mycobacterium-infected Caenorhabditis elegans model under iron limitation. The present study offers evidence and proposes alteration of lipidome profile and affected virulence traits upon iron chelation. Taken together, iron deprivation could be a potential strategy to rescue MDR and enhance the effectiveness of existing anti-TB drugs.
Collapse
Affiliation(s)
- Rahul Pal
- 0000 0004 1805 0217grid.444644.2Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| | - Saif Hameed
- 0000 0004 1805 0217grid.444644.2Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| | - Parveen Kumar
- 0000 0004 1767 6103grid.413618.9Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Sarman Singh
- 0000 0004 1767 6103grid.413618.9Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Zeeshan Fatima
- 0000 0004 1805 0217grid.444644.2Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| |
Collapse
|
16
|
Nie L, Cai SY, Shao JZ, Chen J. Toll-Like Receptors, Associated Biological Roles, and Signaling Networks in Non-Mammals. Front Immunol 2018; 9:1523. [PMID: 30034391 PMCID: PMC6043800 DOI: 10.3389/fimmu.2018.01523] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/19/2018] [Indexed: 01/18/2023] Open
Abstract
The innate immune system is the first line of defense against pathogens, which is initiated by the recognition of pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) by pattern recognition receptors (PRRs). Among all the PRRs identified, the toll-like receptors (TLRs) are the most ancient class, with the most extensive spectrum of pathogen recognition. Since the first discovery of Toll in Drosophila melanogaster, numerous TLRs have been identified across a wide range of invertebrate and vertebrate species. It seems that TLRs, the signaling pathways that they initiate, or related adaptor proteins are essentially conserved in a wide variety of organisms, from Porifera to mammals. Molecular structure analysis indicates that most TLR homologs share similar domain patterns and that some vital participants of TLR signaling co-evolved with TLRs themselves. However, functional specification and emergence of new signaling pathways, as well as adaptors, did occur during evolution. In addition, ambiguities and gaps in knowledge still exist regarding the TLR network, especially in lower organisms. Hence, a systematic review from the comparative angle regarding this tremendous signaling system and the scenario of evolutionary pattern across Animalia is needed. In the current review, we present overview and possible evolutionary patterns of TLRs in non-mammals, hoping that this will provide clues for further investigations in this field.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
17
|
Kamaladevi A, Balamurugan K. Global Proteomics Revealed Klebsiella pneumoniae Induced Autophagy and Oxidative Stress in Caenorhabditis elegans by Inhibiting PI3K/AKT/mTOR Pathway during Infection. Front Cell Infect Microbiol 2017; 7:393. [PMID: 28932706 PMCID: PMC5592217 DOI: 10.3389/fcimb.2017.00393] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/22/2017] [Indexed: 01/29/2023] Open
Abstract
The enterobacterium, Klebsiella pneumoniae invades the intestinal epithelium of humans by interfering with multiple host cell response. To uncover a system-level overview of host response during infection, we analyzed the global dynamics of protein profiling in Caenorhabditis elegans using quantitative proteomics approach. Comparison of protein samples of nematodes exposed to K. pneumoniae for 12, 24, and 36 h by 2DE revealed several changes in host proteome. A total of 266 host-encoded proteins were identified by 2DE MALDI-MS/MS and LC-MS/MS and the interacting partners of the identified proteins were predicted by STRING 10.0 analysis. In order to understand the interacting partners of regulatory proteins with similar or close pI ranges, a liquid IEF was performed and the isolated fractions containing proteins were identified by LC-MS/MS. Functional bioinformatics analysis on identified proteins deciphered that they were mostly related to the metabolism, dauer formation, apoptosis, endocytosis, signal transduction, translation, developmental, and reproduction process. Gene enrichment analysis suggested that the metabolic process as the most overrepresented pathway regulated against K. pneumoniae infection. The dauer-like formation in infected C. elegans along with intestinal atrophy and ROS during the physiological analysis indicated that the regulation of metabolic pathway is probably through the involvement of mTOR. Immunoblot analysis supported the above notion that the K. pneumoniae infection induced protein mis-folding in host by involving PI3Kinase/AKT-1/mTOR mediated pathway. Furthermore, the susceptibility of pdi-2, akt-1, and mTOR C. elegans mutants confirmed the role and involvement of PI3K/AKT/mTOR pathway in mediating protein mis-folding which appear to be translating the vulnerability of host defense toward K. pneumoniae infection.
Collapse
|
18
|
Galbadage T, Shepherd TF, Cirillo SLG, Gumienny TL, Cirillo JD. The Caenorhabditis elegans p38 MAPK Gene plays a key role in protection from mycobacteria. Microbiologyopen 2016; 5:436-52. [PMID: 26919641 PMCID: PMC4905996 DOI: 10.1002/mbo3.341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 12/17/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) are critical mediators of cellular responses to pathogens and are activated in response to infection, but investigation is difficult in multi-cell hosts due to developmental lethality of mutations. Mycobacterium marinum (Mm) is an established model for tuberculosis, a disease afflicting nearly one-third of the world's population. We found that Mm-infected Caenorhabditis elegans display >80% mortality, but nonpathogenic M. smegmatis cause <15% mortality. C. elegans display pathological changes when infected with Mm, whereas Mm mutants produce lower mortality, suggesting that C. elegans is a promising virulence model for detailed genetic analysis. C. elegans MAPK mutants are hypersusceptible to mycobacterial infection; however, the C. elegans TOL-like, TGF-β and insulin-like pathway genes do not play important roles in susceptibility. We show that pathogenic mycobacteria inhibit MAPK-mediated protection through the MAPK phosphatase gene and demonstrate that C. elegans provide a genetically tractable pathogenicity model of both the host and pathogen.
Collapse
Affiliation(s)
- Thushara Galbadage
- Departments of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, 77807-3260
| | - Tonya F Shepherd
- Departments of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, 77807-3260
| | - Suat L G Cirillo
- Departments of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, 77807-3260
| | - Tina L Gumienny
- Department of Biology, Texas Woman's University, Denton, Texas, 76204-5799
| | - Jeffrey D Cirillo
- Departments of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, 77807-3260
| |
Collapse
|