1
|
Chu J, Ye Y, Wu YH. A glimpse of microbial potential in metal metabolism in the Clarion-Clipperton Fracture Zone in the eastern Pacific Ocean based on metagenomic analysis. Mar Genomics 2024; 79:101159. [PMID: 39536492 DOI: 10.1016/j.margen.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The polymetallic nodules distributed in the abyssal ocean floor are full of economic value, rich in manganese, iron, copper and rare-earth elements. Little is currently known about the diversity and the metabolic potential of microorganisms inhabiting the Clarion-Clipperton Fracture Zone (CCFZ) in eastern Pacific Ocean. In this study, the surface sediments (0-8 cm), which were divided into eight parts at 1 cm intervals were collected from the CCFZ. The microbial diversity and the metabolic potential of metal were examined by metagenomic sequencing and binning. The metal redox genes and metal transporter genes also showed a certain trend at different depths, the highest in the surface layer, about the same at 0-6 cm, and greater changes after >6 cm. 58 high- and medium metagenome-assembled genomes (MAGs) were recovered and assigned to 14 bacterial phyla and 1 archaeal phylum after dereplication. Alphaproteobacteria mainly carried out the oxidation of Fe/Mn and the reduction of Hg, Gammaproteobacteria mainly for the oxidation of Mn/Cu and the reduction of Cr/Hg and Methylomirabilota mainly for the oxidation of Mn and the reduction of As/Cr/Hg. Among the five Thermoproteota MAGs identified, only one had genes annotated for Mn oxidation, suggesting a limited but potentially significant role in this process at the bottom layer. By identifying the microbial diversity and the metabolic potential of metal in different depth, our study strengthens the understanding of metal metabolism in CCFZ and provides the foundation for further analyses of metal metabolism in such ecosystems.
Collapse
Affiliation(s)
- Jiayi Chu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Yonglian Ye
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Yue-Hong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| |
Collapse
|
2
|
Danovaro R, Levin LA, Fanelli G, Scenna L, Corinaldesi C. Microbes as marine habitat formers and ecosystem engineers. Nat Ecol Evol 2024; 8:1407-1419. [PMID: 38844822 DOI: 10.1038/s41559-024-02407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/12/2024] [Indexed: 08/10/2024]
Abstract
Despite their small individual size, marine prokaryotic and eukaryotic microbes can form large 3D structures and complex habitats. These habitats contribute to seafloor heterogeneity, facilitating colonization by animals and protists. They also provide food and refuge for a variety of species and promote novel ecological interactions. Here we illustrate the role of microbes as ecosystem engineers and propose a classification based on five types of habitat: microbial mats, microbial forests, microbial-mineralized habitats, microbial outcrops and microbial nodules. We also describe the metabolic processes of microbial habitat formers and their ecological roles, highlighting current gaps in knowledge. Their biogeography indicates that these habitats are widespread in all oceans and are continuously being discovered across latitudes and depths. These habitats are also expected to expand under future global change owing to their ability to exploit extreme environmental conditions. Given their high ecological relevance and their role in supporting endemic species and high biodiversity levels, microbial habitats should be included in future spatial planning, conservation and management measures.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
- National Biodiversity Future Center, Palermo, Italy.
| | - Lisa A Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Ginevra Fanelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lorenzo Scenna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cinzia Corinaldesi
- National Biodiversity Future Center, Palermo, Italy.
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
3
|
Tominaga K, Takebe H, Murakami C, Tsune A, Okamura T, Ikegami T, Onishi Y, Kamikawa R, Yoshida T. Population-level prokaryotic community structures associated with ferromanganese nodules in the Clarion-Clipperton Zone (Pacific Ocean) revealed by 16S rRNA gene amplicon sequencing. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13224. [PMID: 38146681 PMCID: PMC10866075 DOI: 10.1111/1758-2229.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Although deep-sea ferromanganese nodules are a potential resource for exploitation, their formation mechanisms remain unclear. Several nodule-associated prokaryotic species have been identified by amplicon sequencing of 16S rRNA genes and are assumed to contribute to nodule formation. However, the recent development of amplicon sequence variant (ASV)-level monitoring revealed that closely related prokaryotic populations within an operational taxonomic unit often exhibit distinct ecological properties. Thus, conventional species-level monitoring might have overlooked nodule-specific populations when distinct populations of the same species were present in surrounding environments. Herein, we examined the prokaryotic community diversity of nodules and surrounding environments at the Clarion-Clipperton Zone in Japanese licensed areas by 16S rRNA gene amplicon sequencing with ASV-level resolution for three cruises from 2017 to 2019. Prokaryotic community composition and diversity were distinct by habitat type: nodule, nodule-surface mud, sediment, bottom water and water column. Most ASVs (~80%) were habitat-specific. We identified 178 nodule-associated ASVs and 41 ASVs associated with nodule-surface mud via linear discriminant effect size analysis. Moreover, several ASVs, such as members of SAR324 and Woeseia, were highly specific to nodules. These nodule-specific ASVs are promising targets for future investigation of the nodule formation process.
Collapse
Affiliation(s)
- Kento Tominaga
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Hiroaki Takebe
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | | | - Akira Tsune
- Deep Ocean Resources Development Co., Ltd.TokyoJapan
| | | | | | | | - Ryoma Kamikawa
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | | |
Collapse
|
4
|
Zhang D, Li X, Wu Y, Xu X, Liu Y, Shi B, Peng Y, Dai D, Sha Z, Zheng J. Microbe-driven elemental cycling enables microbial adaptation to deep-sea ferromanganese nodule sediment fields. MICROBIOME 2023; 11:160. [PMID: 37491386 PMCID: PMC10367259 DOI: 10.1186/s40168-023-01601-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Ferromanganese nodule-bearing deep-sea sediments cover vast areas of the ocean floor, representing a distinctive habitat in the abyss. These sediments harbor unique conditions characterized by high iron concentration and low degradable nutrient levels, which pose challenges to the survival and growth of most microorganisms. While the microbial diversity in ferromanganese nodule-associated sediments has been surveyed several times, little is known about the functional capacities of the communities adapted to these unique habitats. RESULTS Seven sediment samples collected adjacent to ferromanganese nodules from the Clarion-Clipperton Fracture Zone (CCFZ) in the eastern Pacific Ocean were subjected to metagenomic analysis. As a result, 179 high-quality metagenome-assembled genomes (MAGs) were reconstructed and assigned to 21 bacterial phyla and 1 archaeal phylum, with 88.8% of the MAGs remaining unclassified at the species level. The main mechanisms of resistance to heavy metals for microorganisms in sediments included oxidation (Mn), reduction (Cr and Hg), efflux (Pb), synergy of reduction and efflux (As), and synergy of oxidation and efflux (Cu). Iron, which had the highest content among all metallic elements, may occur mainly as Fe(III) that potentially functioned as an electron acceptor. We found that microorganisms with a diverse array of CAZymes did not exhibit higher community abundance. Instead, microorganisms mainly obtained energy from oxidation of metal (e.g., Mn(II)) and sulfur compounds using oxygen or nitrate as an electron acceptor. Chemolithoautotrophic organisms (Thaumarchaeota and Nitrospirota phyla) were found to be potential manganese oxidizers. The functional profile analysis of the dominant microorganisms further indicated that utilization of inorganic nutrients by redox reactions (rather than organic nutrient metabolism) is a major adaptive strategy used by microorganisms to support their survival in the ferromanganese nodule sediments. CONCLUSIONS This study provides a comprehensive metagenomic analysis of microbes inhabiting metal-rich ferromanganese nodule sediments. Our results reveal extensive redundancy across taxa for pathways of metal resistance and transformation, the highly diverse mechanisms used by microbes to obtain nutrition, and their participation in various element cycles in these unique environments. Video Abstract.
Collapse
Affiliation(s)
- Dechao Zhang
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuehong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
| | - Xuewei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
| | - Yanxia Liu
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Benze Shi
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dadong Dai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongli Sha
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Shulga N, Abramov S, Klyukina A, Ryazantsev K, Gavrilov S. Fast-growing Arctic Fe-Mn deposits from the Kara Sea as the refuges for cosmopolitan marine microorganisms. Sci Rep 2022; 12:21967. [PMID: 36539439 PMCID: PMC9768204 DOI: 10.1038/s41598-022-23449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022] Open
Abstract
The impact of biomineralization and redox processes on the formation and growth of ferromanganese deposits in the World Ocean remains understudied. This problem is particularly relevant for the Arctic marine environment where sharp seasonal variations of temperature, redox conditions, and organic matter inflow significantly impact the biogenic and abiotic pathways of ferromanganese deposits formation. The microbial communities of the fast-growing Arctic Fe-Mn deposits have not been reported so far. Here, we describe the microbial diversity, structure and chemical composition of nodules, crust and their underlying sediments collected from three different sites of the Kara Sea. Scanning electron microscopy revealed a high abundance of microfossils and biofilm-like structures within the nodules. Phylogenetic profiling together with redundancy and correlation analyses revealed a positive selection for putative metal-reducers (Thermodesulfobacteriota), iron oxidizers (Hyphomicrobiaceae and Scalinduaceae), and Fe-scavenging Nitrosopumilaceae or Magnetospiraceae in the microenvironments of the Fe-Mn deposits from their surrounding benthic microbial populations. We hypothesize that in the Kara Sea, the nodules provide unique redox-stable microniches for cosmopolitan benthic marine metal-cycling microorganisms in an unsteady environment, thus focusing the overall geochemical activity of nodule-associated microbial communities and accelerating processes of ferromanganese deposits formation to uniquely high rates.
Collapse
Affiliation(s)
- Natalia Shulga
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia.
| | - Sergey Abramov
- Department of Environmental Microbiology, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Stuttgart, Germany
| | - Alexandra Klyukina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Ryazantsev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Gavrilov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Marimuthu J, Rangamaran VR, Subramanian SHS, Balachandran KRS, Thenmozhi Kulasekaran N, Vasudevan D, Lee JK, Ramalingam K, Gopal D. Deep-sea sediment metagenome from Bay of Bengal reveals distinct microbial diversity and functional significance. Genomics 2022; 114:110524. [PMID: 36423774 DOI: 10.1016/j.ygeno.2022.110524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/06/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Bay of Bengal (BoB) has immense significance with respect to ecological diversity and natural resources. Studies on microbial profiling and their functional significance at sediment level of BoB remain poorly represented. Herein, we describe the microbial diversity and metabolic potentials of BOB deep-sea sediment samples by subjecting the metagenomes to Nanopore sequencing. Taxonomic diversity ascertained at various levels revealed that bacteria belonging to phylum Proteobacteria predominantly represented in sediment samples NIOT_S7 and NIOT_S9. A comparative study with 16S datasets from similar ecological sites revealed depth as a crucial factor in determining taxonomic diversity. KEGG annotation indicated that bacterial communities possess sequence reads corresponding to carbon dioxide fixation, sulfur, nitrogen metabolism, but at varying levels. Additionally, gene sequences related to bioremediation of dyes, plastics, hydrocarbon, antibiotic resistance, secondary metabolite synthesis and metal resistance from both the samples as studied indicate BoB to represent a highly diverse environmental niche for further exploration.
Collapse
Affiliation(s)
- Jeya Marimuthu
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India.
| | | | | | | | | | - Dinakaran Vasudevan
- KMCH Research Foundation, Coimbatore Medical Center and Hospital, Coimbatore 641014, India
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 143 701, Republic of Korea
| | - Kirubagaran Ramalingam
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India
| | - Dharani Gopal
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India.
| |
Collapse
|
7
|
Bergo NM, Torres-Ballesteros A, Signori CN, Benites M, Jovane L, Murton BJ, da Rocha UN, Pellizari VH. Spatial patterns of microbial diversity in Fe-Mn deposits and associated sediments in the Atlantic and Pacific oceans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155792. [PMID: 35550892 DOI: 10.1016/j.scitotenv.2022.155792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Mining of deep-sea Fe-Mn deposits will remove crusts and nodules from the seafloor. The growth of these minerals takes millions of years, yet little is known about their microbiome. Besides being key elements of the biogeochemical cycles and essential links of food and energy to deep-sea, microbes have been identified to affect manganese oxide formation. In this study, we determined the composition and diversity of Bacteria and Archaea in deep-sea Fe-Mn crusts, nodules, and associated sediments from two areas in the Atlantic Ocean, the Tropic Seamount and the Rio Grande Rise. Samples were collected using ROV and dredge in 2016 and 2018 oceanographic campaigns, and the 16S rRNA gene was sequenced using Illumina platform. Additionally, we compared our results with microbiome data of Fe-Mn crusts, nodules, and sediments from Clarion-Clipperton Zone and Takuyo-Daigo Seamount in the Pacific Ocean. We found that Atlantic seamounts harbor an unusual and unknown Fe-Mn deposit microbiome with lower diversity and richness compared to Pacific areas. Crusts and nodules from Atlantic seamounts have unique taxa (Alteromonadales, Nitrospira, and Magnetospiraceae) and a higher abundance of potential metal-cycling bacteria, such as Betaproteobacteriales and Pseudomonadales. The microbial beta-diversity from Atlantic seamounts was clearly grouped into microhabitats according to sediments, crusts, nodules, and geochemistry. Despite the time scale of million years for these deposits to grow, a combination of environmental settings played a significant role in shaping the microbiome of crusts and nodules. Our results suggest that microbes of Fe-Mn deposits are key in biogeochemical reactions in deep-sea ecosystems. These findings demonstrate the importance of microbial community analysis in environmental baseline studies for areas within the potential of deep-sea mining.
Collapse
Affiliation(s)
| | | | | | - Mariana Benites
- Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil
| | - Luigi Jovane
- Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil
| | - Bramley J Murton
- National Oceanography Centre, Southampton, England, United Kingdom of Great Britain and Northern Ireland
| | | | | |
Collapse
|
8
|
The “Infernaccio” Gorges: Microbial Diversity of Black Deposits and Isolation of Manganese-Solubilizing Bacteria. BIOLOGY 2022; 11:biology11081204. [PMID: 36009831 PMCID: PMC9404752 DOI: 10.3390/biology11081204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary “Infernaccio” gorges are one of the Earth’s hidden habitats in Central Italy. Beyond the deep incisions and high slopes, these gorges are characterized by black deposits in gorge walls and covering rock surfaces. Several geological events have shaped these unique geological formations and their microbiota. This study investigated microbial contribution to black deposit formation and isolating Mn-oxide-solubilizing bacteria. Our results provided evidence of the putative role of Bacteria and Archaea in forming manganese oxide deposits. Findings also showed that these deposits are a source of valuable strains with manganese oxide bioleaching properties, essential for bioremediation and metal recovery. Abstract The present study explored the microbial diversity of black deposits found in the “Infernaccio” gorge. X-ray Powdered Diffraction (XRPD) was used to investigate the crystallinity of the samples and to identify the minerals. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDS) were used to detect the bacterial imprints, analyze microbe–mineral interactions, and highlight the chemical element distribution in the black deposits. 16S rRNA gene metabarcoding allowed the study of Archaea and Bacteria communities. Mn-oxide-solubilizing isolates were also obtained and characterized by culturable and molecular approaches. The multidisciplinary approach showed the occurrence of deposits composed of birnessite, diopside, halloysite, and leucite. Numerous bacterial imprints confirmed the role of microorganisms in forming these deposits. The Bacteria and Archaea communities associated with these deposits and runoff waters are dynamic and shaped by seasonal changes. The uncultured and unknown taxa are the most common and abundant. These amplicon sequence variants (ASVs) were mainly assigned to Proteobacteria and Bacteroidetes phyla. Six isolates showed interesting Mn solubilization abilities under microaerophilic conditions. Molecular characterization associated isolates to Brevibacterium, Bacillus, Neobacillus, and Rhodococcus genera. The findings enriched our knowledge of geomicrobiological aspects of one of the Earth’s hidden habitats. The study also unveiled the potential of this environment as an isolation source of biotechnologically relevant bacteria.
Collapse
|
9
|
Zhu D, Sethupathy S, Gao L, Nawaz MZ, Zhang W, Jiang J, Sun J. Microbial diversity and community structure in deep-sea sediments of South Indian Ocean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45793-45807. [PMID: 35152353 DOI: 10.1007/s11356-022-19157-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Microbial communities composed of bacteria, archaea and fungi play a pivotal role in driving the biogeochemical cycles in the marine ecosystem. Despite the vastness of the South Indian Ocean, only a few studies reported the simultaneous analysis of bacterial, archaeal and fungal diversity therein, particularly archaeal and fungal communities in deep-sea environments received less attention previously. In this study, microbial diversity, community composition and dynamics in microbial community structure in eight deep-sea sediment samples collected from different sites at varying depths of the South Indian Ocean were explored using Next-Generation Sequencing. In total, 21 bacterial phyla representing 541 OTUs were identified from the eight samples, where phylum Proteobacteria was found as the most abundant bacterial phylum in five out of eight samples. Firmicutes and Chloroflexi were the dominant phyla in the rest of the three samples. In the case of archaea, uncultured species belonging to the phyla Thaumarchaeota and Euryarchaeota were the abundant taxa in all the samples. Similarly, Ascomycota and Basidiomycota were the most abundant fungal phyla present therein. In all the eight samples studied here, about 10-58% and 19-26% OTUs in archaeal and fungal communities were mapped to unclassified taxa respectively, suggesting the lack of representation in databases. Co-occurrence network analysis further revealed that bacterial communities tend to be more dynamic than archaeal and fungal communities. This study provides interesting insights into the microbial diversity, community composition and dynamics in microbial community structure in the deep-sea sediments of the South Indian Ocean.
Collapse
Affiliation(s)
- Daochen Zhu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Sivasamy Sethupathy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Lu Gao
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Muhammad Zohaib Nawaz
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jianxiong Jiang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
10
|
Le JT, Levin LA, Lejzerowicz F, Cordier T, Gooday AJ, Pawlowski J. Scientific and budgetary trade-offs between morphological and molecular methods for deep-sea biodiversity assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:655-663. [PMID: 34019727 DOI: 10.1002/ieam.4466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/22/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Deep-sea biodiversity, a source of critical ecological functions and ecosystem services, is increasingly subject to the threat of disturbance from existing practices (e.g., fishing, waste disposal, oil and gas extraction) as well as emerging industries such as deep-seabed mining. Current scientific tools may not be adequate for monitoring and assessing subsequent changes to biodiversity. In this paper, we evaluate the scientific and budgetary trade-offs associated with morphology-based taxonomy and metabarcoding approaches to biodiversity surveys in the context of nascent deep-seabed mining for polymetallic nodules in the Clarion-Clipperton Zone, the area of most intense interest. For the dominant taxa of benthic meiofauna, we discuss the types of information produced by these methods and use cost-effectiveness analysis to compare their abilities to yield biological and ecological data for use in environmental assessment and management. On the basis of our evaluation, morphology-based taxonomy is less cost-effective than metabarcoding but offers scientific advantages, such as the generation of density, biomass, and size structure data. Approaches that combine the two methods during the environmental assessment phase of commercial activities may facilitate future biodiversity monitoring and assessment for deep-seabed mining and for other activities in remote deep-sea habitats, for which taxonomic data and expertise are limited. Integr Environ Assess Manag 2022;18:655-663. © 2021 SETAC.
Collapse
Affiliation(s)
- Jennifer T Le
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Lisa A Levin
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Franck Lejzerowicz
- Jacobs School of Engineering, University of California San Diego, La Jolla, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, USA
- Department of Pediatrics, University of California San Diego, La Jolla, USA
| | - Tristan Cordier
- Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- NORCE Climate, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Bergen, Norway
| | - Andrew J Gooday
- National Oceanography Centre, Southampton, UK
- Life Sciences Department, Natural History Museum, London, UK
| | - Jan Pawlowski
- Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, Geneva, Switzerland
| |
Collapse
|
11
|
Gollner S, Haeckel M, Janssen F, Lefaible N, Molari M, Papadopoulou S, Reichart G, Trabucho Alexandre J, Vink A, Vanreusel A. Restoration experiments in polymetallic nodule areas. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:682-696. [PMID: 34677903 PMCID: PMC9299087 DOI: 10.1002/ieam.4541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/14/2023]
Abstract
Deep-seabed polymetallic nodule mining can have multiple adverse effects on benthic communities, such as permanent loss of habitat by removal of nodules and habitat modification of sediments. One tool to manage biodiversity risks is the mitigation hierarchy, including avoidance, minimization of impacts, rehabilitation and/or restoration, and offset. We initiated long-term restoration experiments at sites in polymetallic nodule exploration contract areas in the Clarion-Clipperton Zone that were (i) cleared of nodules by a preprototype mining vehicle, (ii) disturbed by dredge or sledge, (iii) undisturbed, and (iv) naturally devoid of nodules. To accommodate for habitat loss, we deployed >2000 artificial ceramic nodules to study the possible effect of substrate provision on the recovery of biota and its impact on sediment biogeochemistry. Seventy-five nodules were recovered after eight weeks and had not been colonized by any sessile epifauna. All other nodules will remain on the seafloor for several years before recovery. Furthermore, to account for habitat modification of the top sediment layer, sediment in an epibenthic sledge track was loosened by a metal rake to test the feasibility of sediment decompaction to facilitate soft-sediment recovery. Analyses of granulometry and nutrients one month after sediment decompaction revealed that sand fractions are proportionally lower within the decompacted samples, whereas total organic carbon values are higher. Considering the slow natural recovery rates of deep-sea communities, these experiments represent the beginning of a ~30-year study during which we expect to gain insights into the nature and timing of the development of hard-substrate communities and the influence of nodules on the recovery of disturbed sediment communities. Results will help us understand adverse long-term effects of nodule removal, providing an evidence base for setting criteria for the definition of "serious harm" to the environment. Furthermore, accompanying research is needed to define a robust ecosystem baseline in order to effectively identify restoration success. Integr Environ Assess Manag 2022;18:682-696. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Sabine Gollner
- Department of Ocean SystemsRoyal Netherlands Institute for Sea Research (NIOZ)Den Burgthe Netherlands
| | | | - Felix Janssen
- HGF MPG Joint Research Group for Deep Sea Ecology and TechnologyAlfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI)BremerhavenGermany
- HGF MPG Joint Research Group for Deep Sea Ecology and TechnologyMax Planck Institute for Marine Microbiology (MPI)BremenGermany
| | - Nene Lefaible
- Marine Biology Research GroupGhent UniversityGhentBelgium
| | - Massimiliano Molari
- HGF MPG Joint Research Group for Deep Sea Ecology and TechnologyMax Planck Institute for Marine Microbiology (MPI)BremenGermany
| | | | - Gert‐Jan Reichart
- Department of Ocean SystemsRoyal Netherlands Institute for Sea Research (NIOZ)Den Burgthe Netherlands
| | | | - Annemiek Vink
- Federal Institute for Geosciences and Natural Resources (BGR)HannoverGermany
| | - Ann Vanreusel
- Marine Biology Research GroupGhent UniversityGhentBelgium
| |
Collapse
|
12
|
Cordier T, Angeles IB, Henry N, Lejzerowicz F, Berney C, Morard R, Brandt A, Cambon-Bonavita MA, Guidi L, Lombard F, Arbizu PM, Massana R, Orejas C, Poulain J, Smith CR, Wincker P, Arnaud-Haond S, Gooday AJ, de Vargas C, Pawlowski J. Patterns of eukaryotic diversity from the surface to the deep-ocean sediment. SCIENCE ADVANCES 2022; 8:eabj9309. [PMID: 35119936 PMCID: PMC8816347 DOI: 10.1126/sciadv.abj9309] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Remote deep-ocean sediment (DOS) ecosystems are among the least explored biomes on Earth. Genomic assessments of their biodiversity have failed to separate indigenous benthic organisms from sinking plankton. Here, we compare global-scale eukaryotic DNA metabarcoding datasets (18S-V9) from abyssal and lower bathyal surficial sediments and euphotic and aphotic ocean pelagic layers to distinguish plankton from benthic diversity in sediment material. Based on 1685 samples collected throughout the world ocean, we show that DOS diversity is at least threefold that in pelagic realms, with nearly two-thirds represented by abundant yet unknown eukaryotes. These benthic communities are spatially structured by ocean basins and particulate organic carbon (POC) flux from the upper ocean. Plankton DNA reaching the DOS originates from abundant species, with maximal deposition at high latitudes. Its seafloor DNA signature predicts variations in POC export from the surface and reveals previously overlooked taxa that may drive the biological carbon pump.
Collapse
Affiliation(s)
- Tristan Cordier
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- NORCE Climate, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, 5007 Bergen, Norway
- Corresponding author. (T.C.); (A.J.G.); (C.d.V.); (J.P.)
| | - Inès Barrenechea Angeles
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
| | - Nicolas Henry
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP,, 29680 Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Franck Lejzerowicz
- Center for Microbiome Innovation, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cédric Berney
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP,, 29680 Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Raphaël Morard
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
| | - Angelika Brandt
- Department of Marine Zoology, Section Crustacea, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute for Ecology, Evolution, and Diversity, Goethe-University of Frankfurt, FB 15, Max-von-Laue-Str. 13, 60439 Frankfurt am Main, Germany
| | | | - Lionel Guidi
- Laboratoire d’océanographie de Villefranche (LOV), Observatoire Océanologique, Sorbonne Universités, UPMC Université Paris 06, CNRS, Villefranche-sur-Mer, 06230 Nice, France
| | - Fabien Lombard
- Laboratoire d’océanographie de Villefranche (LOV), Observatoire Océanologique, Sorbonne Universités, UPMC Université Paris 06, CNRS, Villefranche-sur-Mer, 06230 Nice, France
- Institut Universitaire de France (IUF), Paris, France
| | - Pedro Martinez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research, Südstrand 44, 26382 Wilhelmshaven, Germany
- FK V IBU, AG Marine Biodiversität, Universität Oldenburg, 26129 Oldenburg, Germany
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Covadonga Orejas
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Gijón,, Avda Príncipe de Asturias 70 bis, 33212 Gijón, Spain
| | - Julie Poulain
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University Evry, University Paris-Saclay, 91057 Evry, France
| | - Craig R. Smith
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Patrick Wincker
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University Evry, University Paris-Saclay, 91057 Evry, France
| | | | - Andrew J. Gooday
- National Oceanography Centre, Southampton, European Way, Southampton SO14 3ZH, UK
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Corresponding author. (T.C.); (A.J.G.); (C.d.V.); (J.P.)
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP,, 29680 Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
- Corresponding author. (T.C.); (A.J.G.); (C.d.V.); (J.P.)
| | - Jan Pawlowski
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- ID-Gene ecodiagnostics, Confignon, 1232 Geneva, Switzerland
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
- Corresponding author. (T.C.); (A.J.G.); (C.d.V.); (J.P.)
| |
Collapse
|
13
|
Bergo NM, Bendia AG, Ferreira JCN, Murton BJ, Brandini FP, Pellizari VH. Microbial Diversity of Deep-Sea Ferromanganese Crust Field in the Rio Grande Rise, Southwestern Atlantic Ocean. MICROBIAL ECOLOGY 2021; 82:344-355. [PMID: 33452896 DOI: 10.1007/s00248-020-01670-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Seamounts are often covered with Fe and Mn oxides, known as ferromanganese (Fe-Mn) crusts. Future mining of these crusts is predicted to have significant effects on biodiversity in mined areas. Although microorganisms have been reported on Fe-Mn crusts, little is known about the role of crusts in shaping microbial communities. Here, we investigated microbial communities based on 16S rRNA gene sequences retrieved from Fe-Mn crusts, coral skeleton, calcarenite, and biofilm at crusts of the Rio Grande Rise (RGR). RGR is a prominent topographic feature in the deep southwestern Atlantic Ocean with Fe-Mn crusts. Our results revealed that crust field of the RGR harbors a usual deep-sea microbiome. No differences were observed on microbial community diversity among Fe-Mn substrates. Bacterial and archaeal groups related to oxidation of nitrogen compounds, such as Nitrospirae, Nitrospinae phyla, Candidatus Nitrosopumilus within Thaumarchaeota group, were present on those substrates. Additionally, we detected abundant assemblages belonging to methane oxidation, i.e., Methylomirabilales (NC10) and SAR324 (Deltaproteobacteria). The chemolithoautotrophs associated with ammonia-oxidizing archaea and nitrite-oxidizing bacteria potentially play an important role as primary producers in the Fe-Mn substrates from RGR. These results provide the first insights into the microbial diversity and potential ecological processes in Fe-Mn substrates from the Atlantic Ocean. This may also support draft regulations for deep-sea mining in the region.
Collapse
|
14
|
Lyu J, Yu X, Jiang M, Cao W, Saren G, Chang F. The Mechanism of Microbial-Ferromanganese Nodule Interaction and the Contribution of Biomineralization to the Formation of Oceanic Ferromanganese Nodules. Microorganisms 2021; 9:microorganisms9061247. [PMID: 34201233 PMCID: PMC8227974 DOI: 10.3390/microorganisms9061247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022] Open
Abstract
Ferromanganese nodules are an important mineral resource in the seafloor; however, the genetic mechanism is still unknown. The biomineralization of microorganisms appears to promote ferromanganese nodule formation. To investigate the possible mechanism of microbial–ferromanganese nodule interaction, to test the possibility of marine microorganisms as deposition template for ferromanganese nodules minerals, the interactions between Jeotgalibacillus campisalis strain CW126-A03 and ferromanganese nodules were studied. The results showed that strain CW126-A03 increased ion concentrations of Fe, Mn, and other metal elements in solutions at first. Then, metal ions were accumulated on the cells’ surface and formed ultra-micro sized mineral particles, even crystalline minerals. Strain CW126-A03 appeared to release major elements in ferromanganese nodules, and the cell surface may be a nucleation site for mineral precipitation. This finding highlights the potentially important role of biologically induced mineralization (BIM) in ferromanganese nodule formation. This BIM hypothesis provides another perspective for understanding ferromanganese nodules’ genetic mechanism, indicating the potential of microorganisms in nodule formation.
Collapse
Affiliation(s)
- Jing Lyu
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Xinke Yu
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mingyu Jiang
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence:
| | - Wenrui Cao
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Gaowa Saren
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fengming Chang
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.L.); (X.Y.); (W.C.); (G.S.); (F.C.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
15
|
Kong J, Liu X, Wang L, Huang H, Ou D, Guo J, Laws EA, Huang B. Patterns of Relative and Quantitative Abundances of Marine Bacteria in Surface Waters of the Subtropical Northwest Pacific Ocean Estimated With High-Throughput Quantification Sequencing. Front Microbiol 2021; 11:599614. [PMID: 33552014 PMCID: PMC7859494 DOI: 10.3389/fmicb.2020.599614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 01/23/2023] Open
Abstract
Bacteria play a pivotal role in shaping ecosystems and contributing to elemental cycling and energy flow in the oceans. However, few studies have focused on bacteria at a trans-basin scale, and studies across the subtropical Northwest Pacific Ocean (NWPO), one of the largest biomes on Earth, have been especially lacking. Although the recently developed high-throughput quantitative sequencing methodology can simultaneously provide information on relative abundance, quantitative abundance, and taxonomic affiliations, it has not been thoroughly evaluated. We collected surface seawater samples for high-throughput, quantitative sequencing of 16S rRNA genes on a transect across the subtropical NWPO to elucidate the distribution of bacterial taxa, patterns of their community structure, and the factors that are potentially important regulators of that structure. We used the quantitative and relative abundances of bacterial taxa to test hypotheses related to their ecology. Total 16S rRNA gene copies ranged from 1.86 × 108 to 1.14 × 109 copies L-1. Bacterial communities were distributed in distinct geographical patterns with spatially adjacent stations clustered together. Spatial considerations may be more important determinants of bacterial community structures than measured environmental variables. The quantitative and relative abundances of bacterial communities exhibited similar distribution patterns and potentially important determinants at the whole-community level, but inner-community connections and correlations with variables differed at subgroup levels. This study advanced understanding of the community structure and distribution patterns of marine bacteria as well as some potentially important determinants thereof in a subtropical oligotrophic ocean system. Results highlighted the importance of considering both the quantitative and relative abundances of members of marine bacterial communities.
Collapse
Affiliation(s)
- Jie Kong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xin Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lei Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Hao Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Danyun Ou
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jiayu Guo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Edward A Laws
- Department of Environmental Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, United States
| | - Bangqin Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Laroche O, Kersten O, Smith CR, Goetze E. Environmental DNA surveys detect distinct metazoan communities across abyssal plains and seamounts in the western Clarion Clipperton Zone. Mol Ecol 2020; 29:4588-4604. [PMID: 32452072 PMCID: PMC7754508 DOI: 10.1111/mec.15484] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023]
Abstract
The deep seafloor serves as a reservoir of biodiversity in the global ocean, with >80% of invertebrates at abyssal depths still undescribed. These diverse and remote deep-sea communities are critically under-sampled and increasingly threatened by anthropogenic impacts, including future polymetallic nodule mining. Using a multigene environmental DNA (eDNA) metabarcoding approach, we characterized metazoan communities sampled from sediments, polymetallic nodules and seawater in the western Clarion Clipperton Zone (CCZ) to test the hypotheses that deep seamounts (a) are species richness hotspots in the abyss, (b) have structurally distinct communities in comparison to other deep-sea habitats, and (c) that seafloor particulate organic carbon (POC) flux and polymetallic nodule density are positively correlated with metazoan diversity. eDNA metabarcoding was effective at characterizing distinct biotas known to occur in association with different abyssal substrate types (e.g., nodule- and sediment-specific fauna), with distinct community composition and few taxa shared across substrates. Seamount faunas had higher overall taxonomic richness, and different community composition and biogeography than adjacent abyssal plains, with seamount communities displaying less connectivity between regions than comparable assemblages on the abyssal plains. Across an estimated gradient of low to moderate POC flux, we find lowest taxon richness at the lowest POC flux, as well as an effect of nodule size on community composition. Our results suggest that while abyssal seamounts are important reservoirs of metazoan diversity in the CCZ, given limited taxonomic overlap between seamount and plains fauna, conservation of seamount assemblages will be insufficient to protect biodiversity and ecosystem function in regions targeted for mining.
Collapse
Affiliation(s)
- Olivier Laroche
- Department of OceanographySchool of Ocean and Earth Science and TechnologyUniversity of Hawaii at MānoaHonoluluHIUSA
| | - Oliver Kersten
- Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | - Craig R. Smith
- Department of OceanographySchool of Ocean and Earth Science and TechnologyUniversity of Hawaii at MānoaHonoluluHIUSA
| | - Erica Goetze
- Department of OceanographySchool of Ocean and Earth Science and TechnologyUniversity of Hawaii at MānoaHonoluluHIUSA
| |
Collapse
|
17
|
Smith CR, Tunnicliffe V, Colaço A, Drazen JC, Gollner S, Levin LA, Mestre NC, Metaxas A, Molodtsova TN, Morato T, Sweetman AK, Washburn T, Amon DJ. Deep-Sea Misconceptions Cause Underestimation of Seabed-Mining Impacts. Trends Ecol Evol 2020; 35:853-857. [DOI: 10.1016/j.tree.2020.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
|
18
|
Gooday AJ, Schoenle A, Dolan JR, Arndt H. Protist diversity and function in the dark ocean - Challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur J Protistol 2020; 75:125721. [PMID: 32575029 DOI: 10.1016/j.ejop.2020.125721] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 11/27/2022]
Abstract
The dark ocean and the underlying deep seafloor together represent the largest environment on this planet, comprising about 80% of the oceanic volume and covering more than two-thirds of the Earth's surface, as well as hosting a major part of the total biosphere. Emerging evidence suggests that these vast pelagic and benthic habitats play a major role in ocean biogeochemistry and represent an "untapped reservoir" of high genetic and metabolic microbial diversity. Due to its huge volume, the water column of the dark ocean is the largest reservoir of organic carbon in the biosphere and likely plays a major role in the global carbon budget. The dark ocean and the seafloor beneath it are also home to a largely enigmatic food web comprising little-known and sometimes spectacular organisms, mainly prokaryotes and protists. This review considers the globally important role of pelagic and benthic protists across all protistan size classes in the deep-sea realm, with a focus on their taxonomy, diversity, and physiological properties, including their role in deep microbial food webs. We argue that, given the important contribution that protists must make to deep-sea biodiversity and ecosystem processes, they should not be overlooked in biological studies of the deep ocean.
Collapse
Affiliation(s)
- Andrew J Gooday
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK; Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Alexandra Schoenle
- University of Cologne, Institute of Zoology, General Ecology, 50674 Cologne, Germany
| | - John R Dolan
- Sorbonne Université, CNRS UMR 7093, Laboratoroire d'Océanographie de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Hartmut Arndt
- University of Cologne, Institute of Zoology, General Ecology, 50674 Cologne, Germany.
| |
Collapse
|
19
|
Laroche O, Kersten O, Smith CR, Goetze E. Environmental DNA surveys detect distinct metazoan communities across abyssal plains and seamounts in the western Clarion Clipperton Zone. Mol Ecol 2020. [PMID: 32452072 DOI: 10.1111/mec.15484[epub] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The deep seafloor serves as a reservoir of biodiversity in the global ocean, with >80% of invertebrates at abyssal depths still undescribed. These diverse and remote deep-sea communities are critically under-sampled and increasingly threatened by anthropogenic impacts, including future polymetallic nodule mining. Using a multigene environmental DNA (eDNA) metabarcoding approach, we characterized metazoan communities sampled from sediments, polymetallic nodules and seawater in the western Clarion Clipperton Zone (CCZ) to test the hypotheses that deep seamounts (a) are species richness hotspots in the abyss, (b) have structurally distinct communities in comparison to other deep-sea habitats, and (c) that seafloor particulate organic carbon (POC) flux and polymetallic nodule density are positively correlated with metazoan diversity. eDNA metabarcoding was effective at characterizing distinct biotas known to occur in association with different abyssal substrate types (e.g., nodule- and sediment-specific fauna), with distinct community composition and few taxa shared across substrates. Seamount faunas had higher overall taxonomic richness, and different community composition and biogeography than adjacent abyssal plains, with seamount communities displaying less connectivity between regions than comparable assemblages on the abyssal plains. Across an estimated gradient of low to moderate POC flux, we find lowest taxon richness at the lowest POC flux, as well as an effect of nodule size on community composition. Our results suggest that while abyssal seamounts are important reservoirs of metazoan diversity in the CCZ, given limited taxonomic overlap between seamount and plains fauna, conservation of seamount assemblages will be insufficient to protect biodiversity and ecosystem function in regions targeted for mining.
Collapse
Affiliation(s)
- Olivier Laroche
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Mānoa, Honolulu, HI, USA
| | - Oliver Kersten
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Craig R Smith
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Mānoa, Honolulu, HI, USA
| | - Erica Goetze
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Mānoa, Honolulu, HI, USA
| |
Collapse
|
20
|
Distribution Patterns of Microeukaryotic Community Between Sediment and Water of the Yellow River Estuary. Curr Microbiol 2020; 77:1496-1505. [PMID: 32239287 DOI: 10.1007/s00284-020-01958-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
Abstract
Water and sediment have always been closely tied in aquatic systems. However, little information regarding the full extent of microeukaryotic composition in both the two habitats did we know especially in estuaries. In the present study, the microeukaryotic abundance, diversity, composition, and their response to environmental factors between sediment and water in the Yellow River Estuary (YRE) were investigated. The microeukaryotic 18S rRNA gene abundance ranged from 1.03 × 106 to 5.48 × 107 copies/g dry for sediment, and 3.01 × 104 to 1.25 × 106 copies/mL for water. The distribution patterns of eukaryotic microorganisms could be clustered into two different branches. And the compositions of microeukaryotes in the two habitats were distinct obviously. Metazoa, Fungi, Streptophyta, Ochrophyta, Cercozoa, and Dinophyta were more abundant in sediment. The dominant phyla in water were Dinophyta, followed by Metazoa, Ochrophyta, Cryptophyta, Chloroplyta, Cercozoa, Fungi, Katablepharidophyta, Choanoflagellida, and Haptophyta. Interestingly, the eukaryotic microorganisms detected in sediment were much less sensitive to environmental variables compared with water. Furthermore, their potential co-occurrence networks in particular were also discovered in the present study. As such, we have provided baseline data to support further research on estuarine microeukaryotes in both sediment and water, which was useful for guiding the practical application of ecosystem management and biodiversity protection.
Collapse
|
21
|
Kong J, Wang Y, Warren A, Huang B, Sun P. Diversity Distribution and Assembly Mechanisms of Planktonic and Benthic Microeukaryote Communities in Intertidal Zones of Southeast Fujian, China. Front Microbiol 2019; 10:2640. [PMID: 31803165 PMCID: PMC6872677 DOI: 10.3389/fmicb.2019.02640] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/30/2019] [Indexed: 01/07/2023] Open
Abstract
The intertidal zone occupies the shore between the high and low tide marks and is subjected both to natural forces and anthropogenic activities. Compared with the coastal ecosystem, studies comparing diversity and community structure of intertidal planktonic and benthic microeukaryotes are limited. Therefore, the ecological processes mediating their assemblies remain poorly understood. Environmental rRNA from two size fractions (nano- and micro-sized) of plankton and from seasonally collected (spring and summer) benthos, together with water and sediment chemistry and concentrations of heavy metals, were used to explore diversity and community structure of microeukaryotes in intertidal zones of southeast Fujian Province, China. Benthic microeukaryotes harbored significantly higher alpha-diversity than those of the plankton, whereas no distinct patterns of organism size/seasonal distribution were observed for either community. Community compositions differed significantly between planktonic and benthic microeukaryotes, with the former presenting size-fractionated discrepancies and the latter showing seasonal variation. Community turnover between planktonic and benthic microeukaryotes was mainly driven by stramenopiles and alveolates. Distance-decay patterns were found in both communities, with the rate of community turnover being higher for planktonic than benthic microeukaryotes. Among the environmental factors measured, the concentration of Cd and the water content of sediment were closely associated with benthic community variations, whereas none of the factors measured was identified as being responsible for planktonic community variation. Phylogenetic null model analysis indicated that dispersal limitation was the most crucial ecological process mediating community assembly for both planktonic and benthic microeukaryotes in intertidal zones, with heterogeneous selection making a higher contribution to community variation of benthic than planktonic microeukaryotes. Stochastic processes, mainly dispersal limitation, were found to prevail in both communities. This study thus provides new insights into the diversity distribution and assembly mechanism of microeukaryotes in intertidal zones.
Collapse
Affiliation(s)
- Jie Kong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China
| | - Ying Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Bangqin Huang
- Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Ping Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China
| |
Collapse
|
22
|
Kato S, Hirai M, Ohkuma M, Suzuki K. Microbial metabolisms in an abyssal ferromanganese crust from the Takuyo-Daigo Seamount as revealed by metagenomics. PLoS One 2019; 14:e0224888. [PMID: 31703093 PMCID: PMC6839870 DOI: 10.1371/journal.pone.0224888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/23/2019] [Indexed: 11/18/2022] Open
Abstract
Rocky outcrops covered with thick Fe and Mn oxide coatings, which are known as ferromanganese (Fe-Mn) crusts, are commonly found on slopes of aged seamounts in bathyal and abyssal zones. Although the presence of diverse microorganisms on these Fe-Mn crusts has been reported, little is known about their metabolism. Here, we report the metabolic potential of the microbial community in an abyssal crust collected in the Takuyo-Daigo Seamount, in the north-western Pacific. We performed shotgun metagenomic sequencing of the Fe-Mn crust, and detected putative genes involved in dissolution and precipitation of Fe and Mn, nitrification, sulfur oxidation, carbon fixation, and decomposition of organics in the metagenome. In addition, four metagenome-assembled genomes (MAGs) of abundant members in the microbial community were recovered from the metagenome. The MAGs were affiliated with Thaumarchaeota, Alphaproteobacteria, and Gammaproteobacteria, and were distantly related to previously reported genomes/MAGs of cultured and uncultured species. Putative genes involved in the above reactions were also found in the crust MAGs. Our results suggest that crust microbial communities play a role in biogeochemical cycling of C, N, S, Fe, and Mn, and imply that they contribute to the growth of Fe-Mn crusts.
Collapse
Affiliation(s)
- Shingo Kato
- Submarine Resources Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Miho Hirai
- Research and Development Center for Marine Biosciences, JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Katsuhiko Suzuki
- Submarine Resources Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
23
|
Kersten O, Vetter EW, Jungbluth MJ, Smith CR, Goetze E. Larval assemblages over the abyssal plain in the Pacific are highly diverse and spatially patchy. PeerJ 2019; 7:e7691. [PMID: 31579593 PMCID: PMC6766376 DOI: 10.7717/peerj.7691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/19/2019] [Indexed: 11/20/2022] Open
Abstract
Abyssal plains are among the most biodiverse yet least explored marine ecosystems on our planet, and they are increasingly threatened by human impacts, including future deep seafloor mining. Recovery of abyssal populations from the impacts of polymetallic nodule mining will be partially determined by the availability and dispersal of pelagic larvae leading to benthic recolonization of disturbed areas of the seafloor. Here we use a tree-of-life (TOL) metabarcoding approach to investigate the species richness, diversity, and spatial variability of the larval assemblage at mesoscales across the abyssal seafloor in two mining-claim areas in the eastern Clarion Clipperton Fracture Zone (CCZ; abyssal Pacific). Our approach revealed a previously unknown taxonomic richness within the meroplankton assemblage, detecting larvae from 12 phyla, 23 Classes, 46 Orders, and 65 Families, including a number of taxa not previously reported at abyssal depths or within the Pacific Ocean. A novel suite of parasitic copepods and worms were sampled, from families that are known to associate with other benthic invertebrates or demersal fishes as hosts. Larval assemblages were patchily distributed at the mesoscale, with little similarity in OTUs detected among deployments even within the same 30 × 30 km study area. Our results provide baseline observations on larval diversity prior to polymetallic nodule mining in this region, and emphasize our overwhelming lack of knowledge regarding larvae of the benthic boundary layer in abyssal plain ecosystems.
Collapse
Affiliation(s)
- Oliver Kersten
- Hawaii Pacific University, Kaneohe, HI, United States of America
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Eric W. Vetter
- Hawaii Pacific University, Kaneohe, HI, United States of America
| | - Michelle J. Jungbluth
- Hawaii Pacific University, Kaneohe, HI, United States of America
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Craig R. Smith
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Erica Goetze
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America
| |
Collapse
|
24
|
Gawas VS, Shivaramu MS, Damare SR, Pujitha D, Meena RM, Shenoy BD. Diversity and extracellular enzyme activities of heterotrophic bacteria from sediments of the Central Indian Ocean Basin. Sci Rep 2019; 9:9403. [PMID: 31253859 PMCID: PMC6599205 DOI: 10.1038/s41598-019-45792-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/07/2019] [Indexed: 11/09/2022] Open
Abstract
Sedimentary bacteria play a role in polymetallic nodule formation and growth. There are, however, limited reports on bacterial diversity in nodule-rich areas of the Central Indian Ocean Basin (CIOB). In this study, bacterial abundance in thirteen sediment cores collected from the CIOB was enumerated, followed by phylogenetic characterisation and, screening of select heterotrophic bacteria for extracellular enzyme activities. Total bacterial counts (TBC) were in the order of 107 cells g-1; there was a significant difference (p > 0.05) among the cores but not within the sub-sections of the cores. The retrievable heterotrophic counts ranged from non-detectable to 5.33 × 105 g-1; the heterotrophic bacteria clustered within the phyla Firmicutes, Proteobacteria and Actinobacteria. Bacillus was the most abundant genus. The extracellular enzyme activities were in the order: amylase > lipase > protease > phosphatase > Dnase > urease. Major findings are compared with previous studies from the CIOB and other areas.
Collapse
Affiliation(s)
- Vijayshree S Gawas
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Mamatha S Shivaramu
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India.
| | - Samir R Damare
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Devagudi Pujitha
- CSIR-National Institute of Oceanography Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam, 530017, Andhra Pradesh, India.,Department of Bioinformatics, Karunya University, Coimbatore, 611114, Tamil Nadu, India
| | - Ram Murti Meena
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Belle Damodara Shenoy
- CSIR-National Institute of Oceanography Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam, 530017, Andhra Pradesh, India.
| |
Collapse
|
25
|
Varliero G, Bienhold C, Schmid F, Boetius A, Molari M. Microbial Diversity and Connectivity in Deep-Sea Sediments of the South Atlantic Polar Front. Front Microbiol 2019; 10:665. [PMID: 31024475 PMCID: PMC6465420 DOI: 10.3389/fmicb.2019.00665] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
Abstract
Ultraslow spreading ridges account for one-third of the global mid-ocean ridges. Their impact on the diversity and connectivity of benthic deep-sea microbial assemblages is poorly understood, especially for hydrothermally inactive, magma-starved ridges. We investigated bacterial and archaeal diversity in sediments collected from an amagmatic segment (10°–17°E) of the Southwest Indian Ridge (SWIR) and in the adjacent northern and southern abyssal zones of similar water depths within one biogeochemical province of the Indian Ocean. Microbial diversity was determined by 16S ribosomal RNA (rRNA) gene sequencing. Our results show significant differences in microbial communities between stations outside and inside the SWIR, which were mostly explained by environmental selection. Community similarity correlated significantly with differences in chlorophyll a content and with the presence of upward porewater fluxes carrying reduced compounds (e.g., ammonia and sulfide), suggesting that trophic resource availability is a main driver for changes in microbial community composition. At the stations in the SWIR axial valley (3,655–4,448 m water depth), microbial communities were enriched in bacterial and archaeal taxa common in organic matter-rich subsurface sediments (e.g., SEEP-SRB1, Dehalococcoida, Atribacteria, and Woesearchaeota) and chemosynthetic environments (mainly Helicobacteraceae). The abyssal stations outside the SWIR communities (3,760–4,869 m water depth) were dominated by OM1 clade, JTB255, Planctomycetaceae, and Rhodospirillaceae. We conclude that ultraslow spreading ridges create a unique environmental setting in sedimented segments without distinct hydrothermal activity, and play an important role in shaping microbial communities and promoting diversity, but also in connectivity among deep-sea habitats.
Collapse
Affiliation(s)
- Gilda Varliero
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Christina Bienhold
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,HGF-MPG Joint Research Group on Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Florian Schmid
- Helmholtz Centre for Ocean Research Kiel, GEOMAR, Kiel, Germany.,MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Antje Boetius
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,HGF-MPG Joint Research Group on Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.,MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | |
Collapse
|
26
|
Peoples LM, Grammatopoulou E, Pombrol M, Xu X, Osuntokun O, Blanton J, Allen EE, Nunnally CC, Drazen JC, Mayor DJ, Bartlett DH. Microbial Community Diversity Within Sediments from Two Geographically Separated Hadal Trenches. Front Microbiol 2019; 10:347. [PMID: 30930856 PMCID: PMC6428765 DOI: 10.3389/fmicb.2019.00347] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Hadal ocean sediments, found at sites deeper than 6,000 m water depth, are thought to contain microbial communities distinct from those at shallower depths due to high hydrostatic pressures and higher abundances of organic matter. These communities may also differ from one other as a result of geographical isolation. Here we compare microbial community composition in surficial sediments of two hadal environments—the Mariana and Kermadec trenches—to evaluate microbial biogeography at hadal depths. Sediment microbial consortia were distinct between trenches, with higher relative sequence abundances of taxa previously correlated with organic matter degradation present in the Kermadec Trench. In contrast, the Mariana Trench, and deeper sediments in both trenches, were enriched in taxa predicted to break down recalcitrant material and contained other uncharacterized lineages. At the 97% similarity level, sequence-abundant taxa were not trench-specific and were related to those found in other hadal and abyssal habitats, indicating potential connectivity between geographically isolated sediments. Despite the diversity of microorganisms identified using culture-independent techniques, most isolates obtained under in situ pressures were related to previously identified piezophiles. Members related to these same taxa also became dominant community members when native sediments were incubated under static, long-term, unamended high-pressure conditions. Our results support the hypothesis that there is connectivity between sediment microbial populations inhabiting the Mariana and Kermadec trenches while showing that both whole communities and specific microbial lineages vary between trench of collection and sediment horizon depth. This in situ biodiversity is largely missed when incubating samples within pressure vessels and highlights the need for revised protocols for high-pressure incubations.
Collapse
Affiliation(s)
- Logan M Peoples
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Eleanna Grammatopoulou
- Oceanlab, The Institute of Biological and Environmental Sciences, King's College, The University of Aberdeen, Aberdeen, United Kingdom
| | - Michelle Pombrol
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Xiaoxiong Xu
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Oladayo Osuntokun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Jessica Blanton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Clifton C Nunnally
- Louisiana Universities Marine Consortium (LUMCON), Chauvin, LA, United States
| | - Jeffrey C Drazen
- Department of Oceanography, University of Hawai'i at Ma-noa, Honolulu, HI, United States
| | - Daniel J Mayor
- Oceanlab, The Institute of Biological and Environmental Sciences, King's College, The University of Aberdeen, Aberdeen, United Kingdom.,National Oceanography Centre, University of Southampton Waterfront Campus European Way, Southampton, United Kingdom
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
27
|
Drazen J, Smith C, Gjerde K, Au W, Black J, Carter G, Clark M, Durden J, Dutrieux P, Goetze E, Haddock S, Hatta M, Hauton C, Hill P, Koslow J, Leitner A, Measures C, Pacini A, Parrish F, Peacock T, Perelman J, Sutton T, Taymans C, Tunnicliffe V, Watling L, Yamamoto H, Young E, Ziegler A. Report of the workshop Evaluating the nature of midwater mining plumes and their potential effects on midwater ecosystems. RESEARCH IDEAS AND OUTCOMES 2019. [DOI: 10.3897/rio.5.e33527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The International Seabed Authority (ISA) is developing regulations to control the future exploitation of deep-sea mineral resources including sulphide deposits near hydrothermal vents, polymetallic nodules on the abyssal seafloor, and cobalt crusts on seamounts. Under the UN Convention on the Law of the Sea the ISA is required to adopt are taking measures to ensure the effective protection of the marine environment from harmful effects arising from mining-related activities. Contractors are required to generate environmental baselines and assess the potential environmental consequences of deep seafloor mining. Understandably, nearly all environmental research has focused on the seafloor where the most direct mining effects will occur. However, sediment plumes and other impacts (e.g., noise) from seafloor mining are likely to be extensive in the water column. Sediment plumes created on the seafloor will affect the benthic boundary layer which extends 10s to 100s of meters above the seafloor. Separation or dewatering of ore from sediment and seawater aboard ships will require discharge of a dewatering plume at some depth in the water column.
It is important to consider the potential impacts of mining on the ocean’s midwaters (depths from ~200 m to the seafloor) because they provide vital ecosystem services and harbor substantial biodiversity. The better known epipelagic or sunlit surface ocean provisions the rest of the water column through primary production and export flux (This was not the focus at this workshop as the subject was considered too large and surface discharges are unlikely). It is also home to a diverse community of organisms including commercially important fishes such as tunas, billfish, and cephalopods that contribute to the economies of many countries. The mesopelagic or twilight zone (200-1000 m) is dimly lit and home to very diverse and abundant communities of organisms. Mesopelagic plankton and small nekton form the forage base for many deep-diving marine mammals and commercially harvested epipelagic species. Furthermore, detritus from the epipelagic zone falls through the mesopelagic where it is either recycled, providing the vital process of nutrient regeneration, or sinks to greater depths sequestering carbon from short-term atmospheric cycles. The waters below the mesopelagic down to the seafloor (both the bathypelagic and abyssopelagic) are very poorly characterized but are likely large reservoirs of novel biodiversity and link the surface and benthic ecosystems.
Great strides have been made in understanding the biodiversity and ecosystem function of the ocean’s midwaters, but large regions, including those containing many exploration license areas and the greater depths where mining plumes will occur, remain very poorly studied. It is clear that pelagic communities are distinct from those on the seafloor and in the benthic boundary layer. They are often sampled with different instrumentation. The fauna have relatively large biogeographic ranges and they are more apt to mix freely across stakeholder boundaries, reference areas and other spatial management zones. Pelagic organisms live in a three-dimensional habitat and their food webs and populations are vertically connected by daily or lifetime migrations and the sinking flux of detritus from the epipelagic. The fauna do not normally encounter hard surfaces, making them fragile, and difficult to capture and maintain for sensitivity or toxicity studies. Despite some existing general knowledge, ecological baselines for midwater communities and ecosystems that likely will be impacted by mining have not been documented. There is an urgent need to conduct more research and evaluate the midwater biota (microbes to fishes) in regions where mining is likely to occur.
Deep-sea mining activities may affect midwater organisms in a number of ways, but it is still unclear at what scale perturbations may occur. The sediment plumes both from collectors on the seafloor and from midwater discharge will have a host of negative consequences. They may cause respiratory distress from clogged gills or respiratory surfaces. Suspension feeders, such as copepods, polychaetes, salps, and appendicularians, that filter small particles from the water and form an important basal group of the food web, may suffer from dilution of their food by inorganic sediments and/or clogging of their fragile mucous filter nets. Small particles may settle on gelatinous plankton causing buoyancy issues. Metals, including toxic elements that will enter the food web, will be released from pore waters and crushed ore materials. Sediment plumes will also absorb light and change backscatter properties, reducing visual communication and bioluminescent signaling that are very important for prey capture and reproduction in midwater animals. Noise from mining activities may alter the behaviors of marine mammals and other animals. Small particles have high surface area to volume ratios, high pelagic persistence and dispersal and as a result greater potential to result in pelagic impacts. All of these potential effects will result in mortality, migration (both horizontal and vertical), decreased fitness, and shifts in community composition. Depending on the scale and duration of these effects, there could be reduction in provisioning to commercial fish species, delivery of toxic metals to pelagic food webs and hence human seafood supply, and alterations to carbon transport and nutrient regeneration services.
After four days of presentations and discussions, the workshop participants came to several conclusions and synthesized recommendations.
1. Assuming no discharge in the epipelagic zone, it is essential to minimize mining effects in the mesopelagic zone because of links to our human seafood supply as well as other ecosystem services provided by the mesopelagic fauna. This minimization could be accomplished by delivering dewatering discharge well below the mesopelagic/bathypelagic transition (below ~1000 m depth).
2. Research should be promoted by the ISA and other bodies to study the bathypelagic and abyssopelagic zones (from ~1000 m depths to just above the seafloor). It is likely that both collector plumes and dewatering plumes will be created in the bathypelagic, yet this zone is extremely understudied and contains major unknowns for evaluating mining impacts.
3. Management objectives, regulations and management actions need to prevent the creation of a persistent regional scale “haze” (enhanced suspended particle concentrations) in pelagic midwaters. Such a haze would very likely cause chronic harm to deep midwater ecosystem biodiversity, structure and function.
4. Effort is needed to craft suitable standards, thresholds, and indicators of harmful environmental effects that are appropriate to pelagic ecosystems. In particular, suspension feeders are very important ecologically and are likely to be very sensitive to sediment plumes. They are a high priority for study.
5. Particularly noisy mining activities such as ore grinding at seamounts and hydrothermal vents is of concern to deep diving marine mammals and other species. One way to minimize sound impacts would be to minimize activities in the sound-fixing-and-ranging (SOFAR) channel (typically at depths of ~1000 m) which transmits sounds over very long distances.
6. A Lagrangian (drifting) perspective is needed in monitoring and management because the pelagic ecosystem is not a fixed habitat and mining effects are likely to cross spatial management boundaries. For example, potential broad-scale impacts to pelagic ecosystems should be considered in the deliberations over preservation reference zones, the choice of stations for environmental baseline and monitoring studies and other area-based management and conservation measures.
7. Much more modeling and empirical study of realistic mining sediment plumes is needed. Plume models will help evaluate the spatial and temporal extent of pelagic (as well as benthic) ecosystem effects and help to assess risks from different technologies and mining scenarios. Plume modeling should include realistic mining scenarios (including duration) and assess the spatial-temporal scales over which particle concentrations exceed baseline levels and interfere with light transmission to elucidate potential stresses on communities and ecosystem services. Models should include both near and far field-phases, incorporating realistic near field parameters of plume generation, flocculation, particle sinking, and other processes. It is important to note that some inputs to these models such as physical oceanographic parameters are lacking and should be acquired in the near-term. Plume models need to be complemented by studies to understand effects on biological components by certain particle sizes and concentrations.
Collapse
|
28
|
Kato S, Okumura T, Uematsu K, Hirai M, Iijima K, Usui A, Suzuki K. Heterogeneity of Microbial Communities on Deep-Sea Ferromanganese Crusts in the Takuyo-Daigo Seamount. Microbes Environ 2018; 33:366-377. [PMID: 30381615 PMCID: PMC6307992 DOI: 10.1264/jsme2.me18090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rock outcrops of aged deep-sea seamounts are generally covered with Fe and Mn oxides, known as ferromanganese (Fe-Mn) crusts. Although the presence of microorganisms in Fe-Mn crusts has been reported, limited information is currently available on intra- and inter-variations in crust microbial communities. Therefore, we collected several Fe-Mn crusts in bathyal and abyssal zones (water depths of 1,150-5,520 m) in the Takuyo-Daigo Seamount in the northwestern Pacific, and examined microbial communities on the crusts using culture-independent molecular and microscopic analyses. Quantitative PCR showed that microbial cells were abundant (106-108 cells g-1) on Fe-Mn crust surfaces through the water depths. A comparative 16S rRNA gene analysis revealed community differences among Fe-Mn crusts through the water depths, which may have been caused by changes in dissolved oxygen concentrations. Moreover, community differences were observed among positions within each Fe-Mn crust, and potentially depended on the availability of sinking particulate organic matter. Microscopic and elemental analyses of thin Fe-Mn crust sections revealed the accumulation of microbial cells accompanied by the depletion of Mn in valleys of bumpy crust surfaces. Our results suggest that heterogeneous and abundant microbial communities play a role in the biogeochemical cycling of Mn, in addition to C and N, on crusts and contribute to the extremely slow growth of Fe-Mn crusts.
Collapse
Affiliation(s)
- Shingo Kato
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Research and Development Center for Submarine Resources, JAMSTEC
| | - Tomoyo Okumura
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC.,Center for Advanced Marine Core Research, Kochi University
| | | | - Miho Hirai
- Research and Development Center for Marine Biosciences, JAMSTEC
| | - Koichi Iijima
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Research and Development Center for Submarine Resources, JAMSTEC
| | - Akira Usui
- Center for Advanced Marine Core Research, Kochi University
| | - Katsuhiko Suzuki
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC).,Research and Development Center for Submarine Resources, JAMSTEC
| |
Collapse
|
29
|
Zinke LA, Reese BK, McManus J, Wheat CG, Orcutt BN, Amend JP. Sediment Microbial Communities Influenced by Cool Hydrothermal Fluid Migration. Front Microbiol 2018; 9:1249. [PMID: 29951048 PMCID: PMC6008377 DOI: 10.3389/fmicb.2018.01249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/23/2018] [Indexed: 12/03/2022] Open
Abstract
Cool hydrothermal systems (CHSs) are prevalent across the seafloor and discharge fluid volumes that rival oceanic input from rivers, yet the microbial ecology of these systems are poorly constrained. The Dorado Outcrop on the ridge flank of the Cocos Plate in the northeastern tropical Pacific Ocean is the first confirmed CHS, discharging minimally altered <15°C fluid from the shallow lithosphere through diffuse venting and seepage. In this paper, we characterize the resident sediment microbial communities influenced by cool hydrothermal advection, which is evident from nitrate and oxygen concentrations. 16S rRNA gene sequencing revealed that Thaumarchaea, Proteobacteria, and Planctomycetes were the most abundant phyla in all sediments across the system regardless of influence from seepage. Members of the Thaumarchaeota (Marine Group I), Alphaproteobacteria (Rhodospirillales), Nitrospirae, Nitrospina, Acidobacteria, and Gemmatimonadetes were enriched in the sediments influenced by CHS advection. Of the various geochemical parameters investigated, nitrate concentrations correlated best with microbial community structure, indicating structuring based on seepage of nitrate-rich fluids. A comparison of microbial communities from hydrothermal sediments, seafloor basalts, and local seawater at Dorado Outcrop showed differences that highlight the distinct niche space in CHS. Sediment microbial communities from Dorado Outcrop differ from those at previously characterized, warmer CHS sediment, but are similar to deep-sea sediment habitats with surficial ferromanganese nodules, such as the Clarion Clipperton Zone. We conclude that cool hydrothermal venting at seafloor outcrops can alter the local sedimentary oxidation–reduction pathways, which in turn influences the microbial communities within the fluid discharge affected sediment.
Collapse
Affiliation(s)
- Laura A Zinke
- Marine and Environmental Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Brandi Kiel Reese
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, United States
| | - James McManus
- Department of Geosciences, The University of Akron, Akron, OH, United States.,Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Charles G Wheat
- Global Undersea Research Unit, University of Alaska Fairbanks, Moss Landing, CA, United States
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Jan P Amend
- Marine and Environmental Biology Section, University of Southern California, Los Angeles, CA, United States.,Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
30
|
Lindh MV, Maillot BM, Smith CR, Church MJ. Habitat filtering of bacterioplankton communities above polymetallic nodule fields and sediments in the Clarion-Clipperton zone of the Pacific Ocean. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:113-122. [PMID: 29411533 DOI: 10.1111/1758-2229.12627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Deep-sea mining of commercially valuable polymetallic nodule fields will generate a seabed sediment plume into the water column. Yet, the response of bacterioplankton communities, critical in regulating energy and matter fluxes in marine ecosystems, to such disturbances is unknown. Metacommunity theory, traditionally used in general ecology for macroorganisms, offers mechanistic understanding on the relative role of spatial differences compared with local environmental conditions (habitat filtering) for community assembly. We examined bacterioplankton metacommunities using 16S rRNA amplicons from the Clarion-Clipperton Zone (CCZ) in the eastern Pacific Ocean and in global ocean transect samples to determine sensitivity of these assemblages to environmental perturbations. Habitat filtering was the main assembly mechanism of bacterioplankton community composition in the epi- and mesopelagic waters of the CCZ and the Tara Oceans transect. Bathy- and abyssopelagic bacterioplankton assemblages were mainly assembled by undetermined metacommunity types or neutral and dispersal-driven patch-dynamics for the CCZ and the Malaspina transect. Environmental disturbances may alter the structure of upper-ocean microbial assemblages, with potentially even more substantial, yet unknown, impact on deep-sea communities. Predicting such responses in bacterioplankton assemblage dynamics can improve our understanding of microbially-mediated regulation of ecosystem services in the abyssal seabed likely to be exploited by future deep-sea mining operations.
Collapse
Affiliation(s)
- Markus V Lindh
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI, 96822, USA
| | - Brianne M Maillot
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI, 96822, USA
| | - Craig R Smith
- Department of Oceanography, University of Hawai'i at Mānoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| | - Matthew J Church
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East West Road, Honolulu, HI, 96822, USA
- Department of Oceanography, University of Hawai'i at Mānoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| |
Collapse
|
31
|
Lindh MV, Maillot BM, Shulse CN, Gooday AJ, Amon DJ, Smith CR, Church MJ. From the Surface to the Deep-Sea: Bacterial Distributions across Polymetallic Nodule Fields in the Clarion-Clipperton Zone of the Pacific Ocean. Front Microbiol 2017; 8:1696. [PMID: 28943866 PMCID: PMC5596108 DOI: 10.3389/fmicb.2017.01696] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/23/2017] [Indexed: 11/13/2022] Open
Abstract
Marine bacteria regulate fluxes of matter and energy essential for pelagic and benthic organisms and may also be involved in the formation and maintenance of commercially valuable abyssal polymetallic nodules. Future mining of these nodule fields is predicted to have substantial effects on biodiversity and physicochemical conditions in mined areas. Yet, the identity and distributions of bacterial populations in deep-sea sediments and associated polymetallic nodules has received relatively little attention. We examined bacterial communities using high-throughput sequencing of bacterial 16S rRNA gene fragments from samples collected in the water column, sediment, and polymetallic nodules in the Pacific Ocean (bottom depth ≥4,000 m) in the eastern Clarion-Clipperton Zone. Operational taxonomic units (OTUs; defined at 99% 16S rRNA gene identity) affiliated with JTB255 (Gammaproteobacteria) and Rhodospirillaceae (Alphaproteobacteria) had higher relative abundances in the nodule and sediment habitats compared to the water column. Rhodobiaceae family and Vibrio OTUs had higher relative abundance in nodule samples, but were less abundant in sediment and water column samples. Bacterial communities in sediments and associated with nodules were generally similar; however, 5,861 and 6,827 OTUs found in the water column were retrieved from sediment and nodule habitats, respectively. Cyanobacterial OTUs clustering among Prochlorococcus and Synechococcus were detected in both sediments and nodules, with greater representation among nodule samples. Such results suggest that vertical export of typically abundant photic-zone microbes may be an important process in delivery of water column microorganisms to abyssal habitats, potentially influencing the structure and function of communities in polymetallic nodule fields.
Collapse
Affiliation(s)
- Markus V Lindh
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Brianne M Maillot
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Christine N Shulse
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Andrew J Gooday
- National Oceanography Centre, University of Southampton Waterfront CampusSouthampton, United Kingdom
| | - Diva J Amon
- Department of Oceanography, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Craig R Smith
- Department of Oceanography, University of Hawai'i at MānoaHonolulu, HI, United States
| | - Matthew J Church
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonolulu, HI, United States.,Department of Oceanography, University of Hawai'i at MānoaHonolulu, HI, United States
| |
Collapse
|
32
|
Amon DJ, Ziegler AF, Drazen JC, Grischenko AV, Leitner AB, Lindsay DJ, Voight JR, Wicksten MK, Young CM, Smith CR. Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Annelida, Arthropoda, Bryozoa, Chordata, Ctenophora, Mollusca. Biodivers Data J 2017:e14598. [PMID: 28874906 PMCID: PMC5565845 DOI: 10.3897/bdj.5.e14598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/06/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There is growing interest in mining polymetallic nodules from the abyssal Clarion-Clipperton Zone (CCZ) in the tropical Pacific Ocean. Despite having been the focus of environmental studies for decades, the benthic megafauna of the CCZ remain poorly known. To predict and manage the environmental impacts of mining in the CCZ, baseline knowledge of the megafauna is essential. The ABYSSLINE Project has conducted benthic biological baseline surveys in the UK Seabed Resources Ltd polymetallic-nodule exploration contract area (UK-1). Prior to ABYSSLINE research cruises in 2013 and 2015, no biological studies had been done in this area of the eastern CCZ. NEW INFORMATION Using a Remotely Operated Vehicle and Autonomous Underwater Vehicle (as well as several other pieces of equipment), the megafauna within the UK Seabed Resources Ltd exploration contract area (UK-1) and at a site ~250 km east of the UK-1 area were surveyed, allowing us to make the first estimates of megafaunal morphospecies richness from the imagery collected. Here, we present an atlas of the abyssal annelid, arthropod, bryozoan, chordate, ctenophore and molluscan megafauna observed and collected during the ABYSSLINE cruises to the UK-1 polymetallic-nodule exploration contract area in the CCZ. There appear to be at least 55 distinct morphospecies (8 Annelida, 12 Arthropoda, 4 Bryozoa, 22 Chordata, 5 Ctenophora, and 4 Mollusca) identified mostly by morphology but also using molecular barcoding for a limited number of animals that were collected. This atlas will aid the synthesis of megafaunal presence/absence data collected by contractors, scientists and other stakeholders undertaking work in the CCZ, ultimately helping to decipher the biogeography of the megafauna in this threatened habitat.
Collapse
Affiliation(s)
- Diva J Amon
- University of Hawaii, Honolulu, United States of America
| | | | | | | | | | - Dhugal J Lindsay
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | | | - Mary K Wicksten
- Texas A&M University, College Station, United States of America
| | - Craig M Young
- Oregon Institute of Marine Biology, University of Oregon, Charleston, United States of America
| | - Craig R Smith
- University of Hawaii, Honolulu, United States of America
| |
Collapse
|
33
|
Amon DJ, Ziegler AF, Kremenetskaia A, Mah CL, Mooi R, O'Hara T, Pawson DL, Roux M, Smith CR. Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Echinodermata. Biodivers Data J 2017:e11794. [PMID: 28765722 PMCID: PMC5515089 DOI: 10.3897/bdj.5.e11794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/26/2017] [Indexed: 11/23/2022] Open
Abstract
Background There is growing interest in mining polymetallic nodules from the abyssal Clarion-Clipperton Zone (CCZ) in the tropical Pacific Ocean. Despite being the focus of environmental studies for decades, the benthic megafauna of the CCZ remain poorly known. In order to predict and manage the environmental impacts of mining in the CCZ, baseline knowledge of the megafauna is essential. The ABYSSLINE Project has conducted benthic biological baseline surveys in the UK Seabed Resources Ltd polymetallic-nodule exploration contract area (UK-1). Prior to these research cruises in 2013 and 2015, no biological studies had been done in this area of the eastern CCZ. New information Using a Remotely Operated Vehicle and Autonomous Underwater Vehicle, the megafauna within the UKSRL exploration contract area (UK-1) and at a site ~250 km east of the UK-1 area were surveyed, allowing us to make the first estimates of megafaunal morphospecies richness from the imagery collected. Here, we present an atlas of the abyssal echinoderm megafauna observed and collected during the ABYSSLINE cruises to the UK-1 polymetallic-nodule exploration contract area in the CCZ. There appear to be at least 62 distinct morphospecies (13 Asteroidea, 5 Crinoidea, 9 Echinoidea, 29 Holothuroidea and 6 Ophiuroidea) identified mostly by imagery but also using molecular barcoding for a limited number of animals that were collected. This atlas will aid the synthesis of megafaunal presence/absence data collected by contractors, scientists and other stakeholders undertaking work in the CCZ, ultimately helping to decipher the biogeography of the megafauna in this threatened habitat.
Collapse
Affiliation(s)
- Diva J Amon
- University of Hawaii at Manoa, Honolulu, United States of America
| | - Amanda F Ziegler
- University of Hawaii at Manoa, Honolulu, United States of America
| | | | - Christopher L Mah
- Smithsonian Institution National Museum of Natural History, Washington, United States of America
| | - Rich Mooi
- California Academy of Sciences, San Francisco, United States of America
| | | | - David L Pawson
- Smithsonian Institution National Museum of Natural History, Washington, United States of America
| | - Michel Roux
- Museum National d'Histoire Naturelle, Paris, France
| | - Craig R Smith
- University of Hawaii at Manoa, Honolulu, United States of America
| |
Collapse
|
34
|
Shulse CN, Maillot B, Smith CR, Church MJ. Polymetallic nodules, sediments, and deep waters in the equatorial North Pacific exhibit highly diverse and distinct bacterial, archaeal, and microeukaryotic communities. Microbiologyopen 2016; 6. [PMID: 27868387 PMCID: PMC5387330 DOI: 10.1002/mbo3.428] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 02/01/2023] Open
Abstract
Concentrated seabed deposits of polymetallic nodules, which are rich in economically valuable metals (e.g., copper, nickel, cobalt, manganese), occur over vast areas of the abyssal Pacific Ocean floor. Little is currently known about the diversity of microorganisms inhabiting abyssal habitats. In this study, sediment, nodule, and water column samples were collected from the Clarion-Clipperton Zone of the Eastern North Pacific. The diversities of prokaryote and microeukaryote communities associated with these habitats were examined. Microbial community composition and diversity varied with habitat type, water column depth, and sediment horizon. Thaumarchaeota were relatively enriched in the sediments and nodules compared to the water column, whereas Gammaproteobacteria were the most abundant sequences associated with nodules. Among the Eukaryota, rRNA genes belonging to the Cryptomonadales were relatively most abundant among organisms associated with nodules, whereas rRNA gene sequences deriving from members of the Alveolata were relatively enriched in sediments and the water column. Nine operational taxonomic unit (OTU)s were identified that occur in all nodules in this dataset, as well as all nodules found in a study 3000-9000 km from our site. Microbial communities in the sediments had the highest diversity, followed by nodules, and then by the water column with <1/3 the number of OTUs as in the sediments.
Collapse
Affiliation(s)
- Christine N Shulse
- Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii at Manoa, Honolulu, HI, USA
| | - Brianne Maillot
- Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii at Manoa, Honolulu, HI, USA
| | - Craig R Smith
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Matthew J Church
- Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii at Manoa, Honolulu, HI, USA.,Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|