1
|
Zhang T, Ray S, Melican K, Richter-Dahlfors A. The maturation of native uropathogenic Escherichia coli biofilms seen through a non-interventional lens. Biofilm 2024; 8:100212. [PMID: 39114648 PMCID: PMC11305213 DOI: 10.1016/j.bioflm.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Urinary tract infections (UTI) caused by uropathogenic Escherichia coli (UPEC) are a significant global health challenge. The UPEC biofilm lifestyle is believed to play an important role in infection recurrency and treatment resistance, but our understanding of how the extracellular matrix (ECM) components curli and cellulose contribute to biofilm formation and pathogenicity is limited. Here, we study the spatial and temporal development of native UPEC biofilm using agar-based detection methods where the non-toxic, optically active fluorescent tracer EbbaBiolight 680 reports the expression and structural location of curli in real-time. An in vitro screen of the biofilm capacity of common UPEC strains reveals significant strain variability and identifies UPEC No. 12 (UPEC12) as a strong biofilm former at 28 °C and 37 °C. Non-interventional microscopy, including time-lapse and 2-photon, reveal significant horizontal and vertical heterogeneity in the UPEC12 biofilm structure. We identify region-specific expression of curli, with a shift in localization from the bottom of the flat central regions of the biofilm to the upper surface in the topographically dramatic intermediate region. When investigating if the rdar morphotype affects wettability of the biofilm surface, we found that the nano-architecture of curli guided by cellulose, rather than the rdar macrostructures, leads to increased hydrophobicity of the biofilm. By providing new insights at exceptional temporal and spatial resolution, we demonstrate how non-interventional analysis of native biofilms will facilitate the next generation of understanding into the roles of ECM components during growth of UPEC biofilms and their contribution to the pathogenesis of UTI.
Collapse
Affiliation(s)
- Tianqi Zhang
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Sanhita Ray
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Keira Melican
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Agneta Richter-Dahlfors
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
2
|
Long J, Yang C, Liu J, Ma C, Jiao M, Hu H, Xiong J, Zhang Y, Wei W, Yang H, He Y, Zhu M, Yu Y, Fu L, Chen H. Tannic acid inhibits Escherichia coli biofilm formation and underlying molecular mechanisms: Biofilm regulator CsgD. Biomed Pharmacother 2024; 175:116716. [PMID: 38735084 DOI: 10.1016/j.biopha.2024.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024] Open
Abstract
Biofilms often engender persistent infections, heightened antibiotic resistance, and the recurrence of infections. Therefor, infections related to bacterial biofilms are often chronic and pose challenges in terms of treatment. The main transcription regulatory factor, CsgD, activates csgABC-encoded curli to participate in the composition of extracellular matrix, which is an important skeleton for biofilm development in enterobacteriaceae. In our previous study, a wide range of natural bioactive compounds that exhibit strong affinity to CsgD were screened and identified via molecular docking. Tannic acid (TA) was subsequently chosen, based on its potent biofilm inhibition effect as observed in crystal violet staining. Therefore, the aim of this study was to investigate the specific effects of TA on the biofilm formation of clinically isolated Escherichia coli (E. coli). Results demonstrated a significant inhibition of E. coli Ec032 biofilm formation by TA, while not substantially affecting the biofilm of the ΔcsgD strain. Moreover, deletion of the csgD gene led to a reduction in Ec032 biofilm formation, alongside diminished bacterial motility and curli synthesis inhibition. Transcriptomic analysis and RT-qPCR revealed that TA repressed genes associated with the csg operon and other biofilm-related genes. In conclusion, our results suggest that CsgD is one of the key targets for TA to inhibit E. coli biofilm formation. This work preliminarily elucidates the molecular mechanisms of TA inhibiting E. coli biofilm formation, which could provide a lead structure for the development of future antibiofilm drugs.
Collapse
Affiliation(s)
- Jinying Long
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Can Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - JingJing Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Min Jiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Huiming Hu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Jing Xiong
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Yang Zhang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Wei Wei
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Maixun Zhu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Yuandi Yu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Lizhi Fu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
3
|
Nucci A, Janaszkiewicz J, Rocha EPC, Rendueles O. Emergence of novel non-aggregative variants under negative frequency-dependent selection in Klebsiella variicola. MICROLIFE 2023; 4:uqad038. [PMID: 37781688 PMCID: PMC10540941 DOI: 10.1093/femsml/uqad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Klebsiella variicola is an emergent human pathogen causing diverse infections, some of which in the urinary tract. However, little is known about the evolution and maintenance of genetic diversity in this species, the molecular mechanisms and their population dynamics. Here, we characterized the emergence of a novel rdar-like (rough and dry) morphotype which is contingent both on the genetic background and the environment. We show that mutations in either the nitrogen assimilation control gene (nac) or the type III fimbriae regulator, mrkH, suffice to generate rdar-like colonies. These morphotypes are primarily selected for the reduced inter-cellular aggregation as a result of MrkH loss-of-function which reduces type 3 fimbriae expression. Additionally, these clones also display increased growth rate and reduced biofilm formation. Direct competitions between rdar and wild type clones show that mutations in mrkH provide large fitness advantages. In artificial urine, the morphotype is under strong negative frequency-dependent selection and can socially exploit wild type strains. An exhaustive search for mrkH mutants in public databases revealed that ca 8% of natural isolates analysed had a truncated mrkH gene many of which were due to insertions of IS elements, including a reported clinical isolate with rdar morphology. These strains were rarely hypermucoid and often isolated from human, mostly from urine and blood. The decreased aggregation of these mutants could have important clinical implications as we hypothesize that such clones could better disperse within the host allowing colonisation of other body sites and potentially leading to systemic infections.
Collapse
Affiliation(s)
- Amandine Nucci
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Juliette Janaszkiewicz
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Olaya Rendueles
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| |
Collapse
|
4
|
Cimdins-Ahne A, Naemi AO, Li F, Simm R, Römling U. Characterisation of Variants of Cyclic di-GMP Turnover Proteins Associated with Semi-Constitutive rdar Morphotype Expression in Commensal and Uropathogenic Escherichia coli Strains. Microorganisms 2023; 11:2048. [PMID: 37630608 PMCID: PMC10459773 DOI: 10.3390/microorganisms11082048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Expression of rdar (red, dry, and rough) colony morphology-based biofilm formation in Escherichia coli is highly variable. To investigate the molecular mechanisms of semi-constitutive rdar morphotype formation, we compared their cyclic di-GMP turnover protein content and variability to the highly regulated, temperature-dependent morphotype of the historical and modern ST10 isolates E. coli MG1655 and Fec10, respectively. Subsequently, we assessed the effects of cyclic di-GMP turnover protein variants of the EAL phosphodiesterases YcgG and YjcC and the horizontally transferred diguanylate cyclase DgcX on biofilm formation and motility. The two YcgG variants with truncations of the N-terminal CSS signaling domain were oppositely effective in targeting downregulation of rdar biofilm formation compared to the full-length reference protein. Expression of the C-terminal truncated variants YjcCFec67 and YjcCTob1 showed highly diminished apparent phosphodiesterase activity compared to the reference YjcCMG1655. For YjcCFec101, substitution of the C-terminus led to an apparently inactive enzyme. Overexpression of the diguanylate cyclase DgcX contributed to upregulation of cellulose biosynthesis but not to elevated expression of the major biofilm regulator csgD in the "classical" rdar-expressing commensal strain E. coli Fec10. Thus, the c-di-GMP regulating network is highly complex with protein variants displaying substantially different apparent enzymatic activities.
Collapse
Affiliation(s)
- Annika Cimdins-Ahne
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; (A.C.-A.); (F.L.)
| | - Ali-Oddin Naemi
- Institute of Oral Biology, University of Oslo, 0313 Oslo, Norway; (A.-O.N.); (R.S.)
| | - Fengyang Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; (A.C.-A.); (F.L.)
| | - Roger Simm
- Institute of Oral Biology, University of Oslo, 0313 Oslo, Norway; (A.-O.N.); (R.S.)
- Norwegian Veterinary Institute, 0106 Oslo, Norway
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; (A.C.-A.); (F.L.)
| |
Collapse
|
5
|
Römling U, Cao LY, Bai FW. Evolution of cyclic di-GMP signalling on a short and long term time scale. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001354. [PMID: 37384391 PMCID: PMC10333796 DOI: 10.1099/mic.0.001354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Diversifying radiation of domain families within specific lineages of life indicates the importance of their functionality for the organisms. The foundation for the diversifying radiation of the cyclic di-GMP signalling network that occurred within the bacterial kingdom is most likely based in the outmost adaptability, flexibility and plasticity of the system. Integrative sensing of multiple diverse extra- and intracellular signals is made possible by the N-terminal sensory domains of the modular cyclic di-GMP turnover proteins, mutations in the protein scaffolds and subsequent signal reception by diverse receptors, which eventually rewires opposite host-associated as well as environmental life styles including parallel regulated target outputs. Natural, laboratory and microcosm derived microbial variants often with an altered multicellular biofilm behaviour as reading output demonstrated single amino acid substitutions to substantially alter catalytic activity including substrate specificity. Truncations and domain swapping of cyclic di-GMP signalling genes and horizontal gene transfer suggest rewiring of the network. Presence of cyclic di-GMP signalling genes on horizontally transferable elements in particular observed in extreme acidophilic bacteria indicates that cyclic di-GMP signalling and biofilm components are under selective pressure in these types of environments. On a short and long term evolutionary scale, within a species and in families within bacterial orders, respectively, the cyclic di-GMP signalling network can also rapidly disappear. To investigate variability of the cyclic di-GMP signalling system on various levels will give clues about evolutionary forces and discover novel physiological and metabolic pathways affected by this intriguing second messenger signalling system.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lian-Ying Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
6
|
Zhang S, Wang J, Fan Y, Meng W, Qian C, Liu P, Wei Y, Yuan C, Du Y, Yin Z. YciR, a Specific 3′-Phosphodiesterase, Plays a Role in the Pathogenesis of Uropathogenic Escherichia coli CFT073. Front Microbiol 2022; 13:910906. [PMID: 35923408 PMCID: PMC9339999 DOI: 10.3389/fmicb.2022.910906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urinary tract infections (UTIs), with the characteristics of recurrence and resistance to antibiotics due to misuse, remain a common health and economic issue for patients. Uropathogenic Escherichia coli (UPEC), which is capable of evading the immune response by forming intracellular bacterial communities (IBCs) in the cytoplasm of bladder epithelial cells (BECs) after invasion, has been shown to be the prevailing cause of UTIs. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a small molecule responsible for eliciting the innate immune response of the host only if it has not been degraded by some phosphodiesterases (PDEs), such as YciR. The relationship between YciR and c-di-GMP levels in UPEC is inconclusive. In this study, we investigated the gene expression profile of UPEC in BECs and identified yciR as an upregulated gene. Western blot revealed that YciR enhanced the virulence of UPEC by inhibiting the phosphorylation of NF-κB. The expression of yciR could be repressed by HupB in a directly binding manner. We identified YciR, a novel PDE, and defined its possible function in innate immune evasion. We also demonstrated that YciR is an HupB-dependent PDE that degrades c-di-GMP and that a low concentration of c-di-GMP might make NF-κB less phosphorylated, thereby reducing the host’s pro-inflammatory response. This is the first time that YciR has been identified as a virulence factor in the pathogenesis of UPEC. These findings further increase our understanding of the pathogenesis of UPEC and provide a theoretical basis for further studies.
Collapse
Affiliation(s)
- Si Zhang
- Ministry of Education (MOE) International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- College of Life Science, Nankai University, Tianjin, China
| | - Jingting Wang
- College of Life Science, Nankai University, Tianjin, China
| | - Yu Fan
- College of Life Science, Nankai University, Tianjin, China
| | - Wang Meng
- Tianjin First Central Hospital, Tianjin, China
| | - Chengqian Qian
- College of Life Science, Nankai University, Tianjin, China
| | - Peng Liu
- College of Life Science, Nankai University, Tianjin, China
| | - Yi Wei
- College of Life Science, Nankai University, Tianjin, China
| | - Chao Yuan
- Department of Sanitary Toxicology and Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yuhui Du
- Ministry of Education (MOE) International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Yuhui Du,
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
- Zhiqiu Yin,
| |
Collapse
|
7
|
Li F, Cao L, Bähre H, Kim SK, Schroeder K, Jonas K, Koonce K, Mekonnen SA, Mohanty S, Bai F, Brauner A, Lee VT, Rohde M, Römling U. Patatin-like phospholipase CapV in Escherichia coli - morphological and physiological effects of one amino acid substitution. NPJ Biofilms Microbiomes 2022; 8:39. [PMID: 35546554 PMCID: PMC9095652 DOI: 10.1038/s41522-022-00294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
In rod-shaped bacteria, morphological plasticity occurs in response to stress, which blocks cell division to promote filamentation. We demonstrate here that overexpression of the patatin-like phospholipase variant CapVQ329R, but not CapV, causes pronounced sulA-independent pyridoxine-inhibited cell filamentation in the Escherichia coli K-12-derivative MG1655 associated with restriction of flagella production and swimming motility. Conserved amino acids in canonical patatin-like phospholipase A motifs, but not the nucleophilic serine, are required to mediate CapVQ329R phenotypes. Furthermore, CapVQ329R production substantially alters the lipidome and colony morphotype including rdar biofilm formation with modulation of the production of the biofilm activator CsgD, and affects additional bacterial traits such as the efficiency of phage infection and antimicrobial susceptibility. Moreover, genetically diverse commensal and pathogenic E. coli strains and Salmonella typhimurium responded with cell filamentation and modulation in colony morphotype formation to CapVQ329R expression. In conclusion, this work identifies the CapV variant CapVQ329R as a pleiotropic regulator, emphasizes a scaffold function for patatin-like phospholipases, and highlights the impact of the substitution of a single conserved amino acid for protein functionality and alteration of host physiology.
Collapse
Affiliation(s)
- Fengyang Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Lianying Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Kristen Schroeder
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kira Koonce
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Solomon A Mekonnen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Soumitra Mohanty
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Fengwu Bai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
8
|
Cimdins‐Ahne A, Chernobrovkin A, Kim S, Lee VT, Zubarev RA, Römling U. A mass spectrometry-based non-radioactive differential radial capillary action of ligand assay (DRaCALA) to assess ligand binding to proteins. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4822. [PMID: 35362254 PMCID: PMC9285882 DOI: 10.1002/jms.4822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Binding of ligands to macromolecules changes their physicochemical and enzymatic characteristics. Cyclic di-GMP is a second messenger involved in motility/sessility and acute/chronic infection life style transition. Although the GGDEF domain, predominantly a diguanylate cyclase, represents one of the most abundant bacterial domain superfamilies, the number of cyclic di-GMP receptors falls short. To facilitate screening for cyclic di-nucleotide binding proteins, we describe a non-radioactive, matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF)-based modification of the widely applied differential radial capillary action of ligand assay (DRaCALA). The results of this assay suggest that the diguanylate cyclase/phosphodiesterase variant YciRFec101, but not selected catalytic mutants, bind cyclic di-GMP. HIGHLIGHTS: Cyclic di-nucleotides are ubiquitous second messengers in bacteria. However, few receptors have been identified. Previous screening of cell lysates by differential radial capillary action of ligand assay (DRaCALA) using radioactive ligand identified cyclic di-nucleotide binding proteins. A MALDI-TOF-based DRaCALA was developed to detect cyclic di-nucleotide binding as a non-radioactive alternative. Known cyclic di-GMP binding proteins were verified and potential cyclic di-GMP binding proteins were identified.
Collapse
Affiliation(s)
- Annika Cimdins‐Ahne
- Department of Microbiology, Tumor and Cell BiologyBiomedicum, Karolinska InstitutetSolnaSweden
| | - Alexey Chernobrovkin
- Department of Medical Biochemistry and BiophysicsBiomedicum, Karolinska InstitutetSolnaSweden
- Pelago Bioscience ABSolnaSweden
| | - Soo‐Kyoung Kim
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Vincent T. Lee
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Roman A. Zubarev
- Department of Medical Biochemistry and BiophysicsBiomedicum, Karolinska InstitutetSolnaSweden
- Department of Pharmacological and Technological ChemistryI.M. Sechenov First Moscow State Medical UniversityMoscowRussia
| | - Ute Römling
- Department of Microbiology, Tumor and Cell BiologyBiomedicum, Karolinska InstitutetSolnaSweden
| |
Collapse
|
9
|
Koonjan S, Cardoso Palacios C, Nilsson AS. Population Dynamics of a Two Phages-One Host Infection System Using Escherichia coli Strain ECOR57 and Phages vB_EcoP_SU10 and vB_EcoD_SU57. Pharmaceuticals (Basel) 2022; 15:268. [PMID: 35337066 PMCID: PMC8953519 DOI: 10.3390/ph15030268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we looked at the population dynamics of a two phages-one host system using phages vB_EcoP_SU10 (SU10) and vB_EcoD_SU57 (SU57) and the bacteria Escherichia coli, strain ECOR57. Phage-specific growth curves were observed where infections by SU10 resulted in a moderate production of phages and infections by SU57 resulted in a fast and extensive production of phage progeny. Sequentially adding SU10 followed by SU57 did not produce a significant change in growth rates, whereas adding SU57 followed by SU10 resulted in a decrease in SU10 titer The efficiency of the plating assays showed that ECOR57 exhibited a resistance spectrum after infection by both the single and combined phages. Phage-resistant bacteria exhibited four different morphotypes (i.e., normal, slimy, edgy, and pointy). The normal and edgy morphotypes had a high frequency of developing resistance. Bacterial growth and biofilm assays indicated that the edgy and pointy morphotypes reached a stationary phase faster and produced more biofilm compared to the wild type. These findings suggest that the dynamic structure of phage-bacteria communities dictate resistance evolution and development. Understanding when and how resistances arise and phage(s)-hosts interactions could aid in the design of phage therapy treatments.
Collapse
Affiliation(s)
- Shazeeda Koonjan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Carlos Cardoso Palacios
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, SE-739 93 Riddarhyttan, Sweden
| | - Anders S. Nilsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| |
Collapse
|
10
|
Abstract
Shigella flexneri is an intracellular human pathogen that invades colonic cells and causes bloody diarrhea. S. flexneri evolved from commensal Escherichia coli, and genome comparisons reveal that S. flexneri has lost approximately 20% of its genes through the process of pathoadaptation, including a disproportionate number of genes associated with the turnover of the nucleotide-based second messenger cyclic di-GMP (c-di-GMP); however, the remaining c-di-GMP turnover enzymes are highly conserved. c-di-GMP regulates many behavioral changes in other bacteria in response to changing environmental conditions, including biofilm formation, but this signaling system has not been examined in S. flexneri. In this study, we expressed VCA0956, a constitutively active c-di-GMP synthesizing diguanylate cyclase (DGC) from Vibrio cholerae, in S. flexneri to determine if virulence phenotypes were regulated by c-di-GMP. We found that expressing VCA0956 in S. flexneri increased c-di-GMP levels, and this corresponds with increased biofilm formation and reduced acid resistance, host cell invasion, and plaque size. We examined the impact of VCA0956 expression on the S. flexneri transcriptome and found that genes related to acid resistance were repressed, and this corresponded with decreased survival to acid shock. We also found that individual S. flexneri DGC mutants exhibit reduced biofilm formation and reduced host cell invasion and plaque size, as well as increased resistance to acid shock. This study highlights the importance of c-di-GMP signaling in regulating S. flexneri virulence phenotypes. IMPORTANCE The intracellular human pathogen Shigella causes dysentery, resulting in as many as one million deaths per year. Currently, there is no approved vaccine for the prevention of shigellosis, and the incidence of antimicrobial resistance among Shigella species is on the rise. Here, we explored how the widely conserved c-di-GMP bacterial signaling system alters Shigella behaviors associated with pathogenesis. We found that expressing or removing enzymes associated with c-di-GMP synthesis results in changes in Shigella's ability to form biofilms, invade host cells, form lesions in host cell monolayers, and resist acid stress.
Collapse
|
11
|
Qasemi A, Rahimi F, Katouli M. Genetic diversity and virulence characteristics of biofilm-producing uropathogenic Escherichia coli. Int Microbiol 2021; 25:297-307. [PMID: 34705131 DOI: 10.1007/s10123-021-00221-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
Uropathogenic E. coli (UPEC) strains exhibit different levels of biofilm formation that help adhesion of the bacteria to uroepithelial cells. We investigated the genetic diversity and virulence-associated genes (VAGs) of biofilm-producing UPEC. A collection of 107 biofilm-producing (BFP) UPEC strains isolated from patients with UTI in Iran were divided into three groups of strong, moderate, and weak BFPs after a quantitative microtiter plate assay, and the involvement of curli and cellulose in adhesion of the strains to T24 cell line was confirmed by the construction of csgD and yedQ mutants of two representative UPEC strains. BFP strains were tested for their genetic diversity, phylogenetic groups, and the presence of 15 VAGs. A significant decrease in adhesion of csgD and yedQ mutant strains confirmed the role of biofilm production in adhesion to uroepithelial cells. A high diversity was found among all three groups of strong (Di = 0.998), moderate (Di = 0.998), and weak (Di = 0.988) BFPs with majority of the strains belonging to phylogroups B2 (44.9%) and A (24.3%). Strong BFP strains carried significantly higher level papEF, hlyA, and iutA than other BFP groups. In contrast, the presence of fimH, focG, sfaS, set-1, and cvaC was more pronounced among weak BFP strains. There exists a high genetic diversity among the BFP strains with different VGA profiles. However, the high prevalence of phylogroup A among BFP strains suggests the fitness of commensal E. coli strains to cause UTI in this country.
Collapse
Affiliation(s)
- Ali Qasemi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezarjarib St., Isfahan, Iran
| | - Fateh Rahimi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezarjarib St., Isfahan, Iran.
| | - Mohammad Katouli
- Genecology Research Center, Maroochydore, QLD, Australia.,School of Science, Technology and Education, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
12
|
Annibal A, Ripa R, Ballhysa E, Latza C, Hochhard N, Antebi A. Mass spectrometric characterization of cyclic dinucleotides (CDNs) in vivo. Anal Bioanal Chem 2021; 413:6457-6468. [PMID: 34476522 PMCID: PMC8412381 DOI: 10.1007/s00216-021-03628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/03/2022]
Abstract
Cyclic dinucleotides (CDNs) are key secondary messenger molecules produced by cyclic dinucleotide synthases that trigger various cellular signaling cascades from bacteria to vertebrates. In mammals, cyclic GMP-AMP synthase (cGAS) has been shown to bind to intracellular DNA and catalyze the production of the dinucleotide 2′3′ cGAMP, which signals downstream effectors to regulate immune function, interferon signaling, and the antiviral response. Despite the importance of CDNs, sensitive and accurate methods to measure their levels in vivo are lacking. Here, we report a novel LC-MS/MS method to quantify CDNs in vivo. We characterized the mass spectrometric behavior of four different biologically relevant CDNs (c-di-AMP, c-di-GMP, 3′3′ cGAMP, 2′3′ cGAMP) and provided a means of visually representing fragmentation resulting from collision-induced dissociation at different energies using collision energy breakdown graphs. We then validated the method and quantified CDNs in two in vivo systems, the bacteria Escherichia coli OP50 and the killifish Nothobranchius furzeri. We found that optimization of LC-MS/MS parameters is crucial to sensitivity and accuracy. These technical advances should help illuminate physiological and pathological roles of these CDNs in in vivo settings. Graphical abstract ![]()
Collapse
Affiliation(s)
- Andrea Annibal
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Roberto Ripa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Eugen Ballhysa
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Christian Latza
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Nadine Hochhard
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Bharti S, Maurya RK, Venugopal U, Singh R, Akhtar MS, Krishnan MY. Rv1717 Is a Cell Wall - Associated β-Galactosidase of Mycobacterium tuberculosis That Is Involved in Biofilm Dispersion. Front Microbiol 2021; 11:611122. [PMID: 33584576 PMCID: PMC7873859 DOI: 10.3389/fmicb.2020.611122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/16/2020] [Indexed: 01/12/2023] Open
Abstract
Understanding the function of conserved hypothetical protein (CHP)s expressed by a pathogen in the infected host can lead to better understanding of its pathogenesis. The present work describes the functional characterization of a CHP, Rv1717 of Mycobacterium tuberculosis (Mtb). Rv1717 has been previously reported to be upregulated in TB patient lungs. Rv1717 belongs to the cupin superfamily of functionally diverse proteins, several of them being carbohydrate handling proteins. Bioinformatic analysis of the amino acid sequence revealed similarity to glycosyl hydrolases. Enzymatic studies with recombinant Rv1717 purified from Escherichia coli showed that the protein is a β-D-galactosidase specific for pyranose form rather than the furanose form. We expressed the protein in Mycobacterium smegmatis (Msm), which lacks its ortholog. In MsmRv1717, the protein was found to localize to the cell wall (CW) with a preference to the poles. MsmRv1717 showed significant changes in colony morphology and cell surface properties. Most striking observation was its unusual Congo red colony morphotype, reduced ability to form biofilms, pellicles and autoagglutinate. Exogenous Rv1717 not only prevented biofilm formation in Msm, but also degraded preformed biofilms, suggesting that its substrate likely exists in the exopolysaccharides of the biofilm matrix. Presence of galactose in the extracellular polymeric substance (EPS) has not been reported before and hence we used the galactose-specific Wisteria floribunda lectin (WFL) to test the same. The lectin extensively bound to Msm and Mtb EPS, but not the bacterium per se. Purified Rv1717 also hydrolyzed exopolysaccharides extracted from Msm biofilm. Eventually, to decipher its role in Mtb, we downregulated its expression and demonstrate that the strain is unable to disperse from in vitro biofilms, unlike the wild type. Biofilms exposed to carbon starvation showed a sudden upregulation of Rv1717 transcripts supporting the potential role of Rv1717 in Mtb dispersing from a deteriorating biofilm.
Collapse
Affiliation(s)
- Suman Bharti
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rahul Kumar Maurya
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Radhika Singh
- Toxicology and Health Risk Assessment Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Md Sohail Akhtar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | |
Collapse
|
14
|
Expression and function of the cdgD gene, encoding a CHASE-PAS-DGC-EAL domain protein, in Azospirillum brasilense. Sci Rep 2021; 11:520. [PMID: 33436847 PMCID: PMC7804937 DOI: 10.1038/s41598-020-80125-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
The plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.
Collapse
|
15
|
Kamal SM, Cimdins-Ahne A, Lee C, Li F, Martín-Rodríguez AJ, Seferbekova Z, Afasizhev R, Wami HT, Katikaridis P, Meins L, Lünsdorf H, Dobrindt U, Mogk A, Römling U. A recently isolated human commensal Escherichia coli ST10 clone member mediates enhanced thermotolerance and tetrathionate respiration on a P1 phage-derived IncY plasmid. Mol Microbiol 2020; 115:255-271. [PMID: 32985020 PMCID: PMC7984374 DOI: 10.1111/mmi.14614] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022]
Abstract
The ubiquitous human commensal Escherichia coli has been well investigated through its model representative E. coli K‐12. In this work, we initially characterized E. coli Fec10, a recently isolated human commensal strain of phylogroup A/sequence type ST10. Compared to E. coli K‐12, the 4.88 Mbp Fec10 genome is characterized by distinct single‐nucleotide polymorphisms and acquisition of genomic islands. In addition, E. coli Fec10 possesses a 155.86 kbp IncY plasmid, a composite element based on phage P1. pFec10 harbours multiple cargo genes such as coding for a tetrathionate reductase and its corresponding regulatory two‐component system. Among the cargo genes is also the Transmissible Locus of Protein Quality Control (TLPQC), which mediates tolerance to lethal temperatures in bacteria. The disaggregase ClpGGI of TLPQC constitutes a major determinant of the thermotolerance of E. coli Fec10. We confirmed stand‐alone disaggregation activity, but observed distinct biochemical characteristics of ClpGGI‐Fec10 compared to the nearly identical Pseudomonas aeruginosa ClpGGI‐SG17M. Furthermore, we noted a unique contribution of ClpGGI‐Fec10 to the exquisite thermotolerance of E. coli Fec10, suggesting functional differences between both disaggregases in vivo. Detection of thermotolerance in 10% of human commensal E. coli isolates hints to the successful establishment of food‐borne heat‐resistant strains in the human gut.
Collapse
Affiliation(s)
- Shady Mansour Kamal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | | | - Changhan Lee
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fengyang Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Zaira Seferbekova
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Robert Afasizhev
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | | | - Panagiotis Katikaridis
- Center for Molecular Biology, University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lena Meins
- Center for Molecular Biology, University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Axel Mogk
- Center for Molecular Biology, University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Liu Y, Lee C, Li F, Trček J, Bähre H, Guo RT, Chen CC, Chernobrovkin A, Zubarev R, Römling U. A Cyclic di-GMP Network Is Present in Gram-Positive Streptococcus and Gram-Negative Proteus Species. ACS Infect Dis 2020; 6:2672-2687. [PMID: 32786278 PMCID: PMC7551669 DOI: 10.1021/acsinfecdis.0c00314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 01/16/2023]
Abstract
The ubiquitous cyclic di-GMP (c-di-GMP) network is highly redundant with numerous GGDEF domain proteins as diguanylate cyclases and EAL domain proteins as c-di-GMP specific phosphodiesterases comprising those domains as two of the most abundant bacterial domain superfamilies. One hallmark of the c-di-GMP network is its exalted plasticity as c-di-GMP turnover proteins can rapidly vanish from species within a genus and possess an above average transmissibility. To address the evolutionary forces of c-di-GMP turnover protein maintenance, conservation, and diversity, we investigated a Gram-positive and a Gram-negative species, which preserved only one single clearly identifiable GGDEF domain protein. Species of the family Morganellaceae of the order Enterobacterales exceptionally show disappearance of the c-di-GMP signaling network, but Proteus spp. still retained one diguanylate cyclase. As another example, in species of the bovis, pyogenes, and salivarius subgroups as well as Streptococcus suis and Streptococcus henryi of the genus Streptococcus, one candidate diguanylate cyclase was frequently identified. We demonstrate that both proteins encompass PAS (Per-ARNT-Sim)-GGDEF domains, possess diguanylate cyclase catalytic activity, and are suggested to signal via a PilZ receptor domain at the C-terminus of type 2 glycosyltransferase constituting BcsA cellulose synthases and a cellulose synthase-like protein CelA, respectively. Preservation of the ancient link between production of cellulose(-like) exopolysaccharides and c-di-GMP signaling indicates that this functionality is even of high ecological importance upon maintenance of the last remnants of a c-di-GMP signaling network in some of today's free-living bacteria.
Collapse
Affiliation(s)
- Ying Liu
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Changhan Lee
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Fengyang Li
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Janja Trček
- Faculty
of Natural Sciences and Mathematics, Department of Biology, University
of Maribor, 2000 Maribor, Slovenia
| | - Heike Bähre
- Research
Core Unit Metabolomics, Hannover Medical
School, D-30625 Hannover, Germany
| | - Rey-Ting Guo
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative
Innovation Center for Green Transformation of Bio-Resources, Hubei
Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Chun-Chi Chen
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative
Innovation Center for Green Transformation of Bio-Resources, Hubei
Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Alexey Chernobrovkin
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Roman Zubarev
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department
of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Ute Römling
- Department
of Microbiology, Tumor and Cell Biology and Department of Medical Biochemistry
and Biophysics, Biomedicum, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
17
|
Paulshus E, Thorell K, Guzman-Otazo J, Joffre E, Colque P, Kühn I, Möllby R, Sørum H, Sjöling Å. Repeated Isolation of Extended-Spectrum-β-Lactamase-Positive Escherichia coli Sequence Types 648 and 131 from Community Wastewater Indicates that Sewage Systems Are Important Sources of Emerging Clones of Antibiotic-Resistant Bacteria. Antimicrob Agents Chemother 2019; 63:e00823-19. [PMID: 31235629 PMCID: PMC6709473 DOI: 10.1128/aac.00823-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
Antibiotic resistance in bacteria is an emerging problem globally. Resistant bacteria are found in human and animal microbiota, as well as in the environment. Wastewater receives bacteria from all these sources and thus can provide a measurement of abundance and diversity of antibiotic-resistant bacteria circulating in communities. In this study, water samples were collected from a wastewater pump station in a Norwegian suburban community over a period of 15 months. A total of 45 daily samples were cultured and analyzed for the presence of Escherichia coli Eighty E. coli-like colonies were collected from each daily sample and then phenotyped and analyzed for antibiotic resistance using the PhenePlate-AREB system. During the sampling period, two unique E. coli phenotypes with resistance to cefotaxime and cefpodoxime indicating carriage of extended-spectrum β-lactamases (ESBL) were observed repeatedly. Whole-genome sequencing of 15 representative isolates from the two phenotypes identified these as two distinct clones belonging to the two globally spread E. coli multilocus sequence types (STs) ST131 and ST648 and carrying blaCTX-M-15 The number of ESBL-positive E. coli strains in the community wastewater pump station was 314 of 3,123 (10%) analyzed E. coli strains. Of the ESBL-positive isolates, 37% belonged to ST648, and 7% belonged to ST131. Repeated findings of CTX-M-15-positive ST648 and ST131 over time indicate that these STs are resident in the analyzed wastewater systems and/or circulate abundantly in the community.
Collapse
Affiliation(s)
- Erik Paulshus
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kaisa Thorell
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jessica Guzman-Otazo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Enrique Joffre
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Patricia Colque
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Inger Kühn
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Roland Möllby
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Henning Sørum
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| |
Collapse
|
18
|
DncV Synthesizes Cyclic GMP-AMP and Regulates Biofilm Formation and Motility in Escherichia coli ECOR31. mBio 2019; 10:mBio.02492-18. [PMID: 30837338 PMCID: PMC6401482 DOI: 10.1128/mbio.02492-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ability of bacteria to sense and respond to environmental signals is critical for survival. Bacteria use cyclic dinucleotides as second messengers to regulate a number of physiological processes, such as the fundamental life style transition between motility and sessility (biofilm formation). cGAMP, which is synthesized by a dinucleotide cyclase called DncV, is a newly discovered second messenger involved in virulence and chemotaxis in the Vibrio cholerae biovar El Tor causing the current 7th cholera pandemic. However, to what extent cGAMP exists and participates in physiological processes in other bacteria is still unknown. In this study, we found an elevated cGAMP level to possibly regulate biofilm formation and motility in the animal commensal E. coli strain ECOR31. Thus, we detected a novel role for cGAMP signaling in regulation of physiological processes other than those previously reported in proteobacterial species. Cyclic dinucleotides (cDNs) act as intracellular second messengers, modulating bacterial physiology to regulate the fundamental life style transition between motility and sessility commonly known as biofilm formation. Cyclic GMP-AMP (cGAMP), synthesized by the dinucleotide cyclase DncV, is a newly discovered cDN second messenger involved in virulence and chemotaxis in Vibrio cholerae O1 biovar El Tor. Here we report a novel role for horizontally transferred DncV in cGAMP production and regulation of biofilm formation and motility in the animal commensal strain Escherichia coli ECOR31. ECOR31 expresses a semiconstitutive temperature-independent rdar (red, dry, and rough) morphotype on Congo red agar plates characterized by the extracellular matrix components cellulose and curli fimbriae which requires activation by the major biofilm regulator CsgD and cyclic di-GMP signaling. In contrast, C-terminal His-tagged DncV negatively regulates the rdar biofilm morphotype and cell aggregation via downregulation of csgD mRNA steady-state level. Furthermore, DncV sequentially promotes and inhibits adhesion to the abiotic surface after 24 h and 48 h of growth, respectively. DncV also suppresses swimming and swarming motility posttranscriptional of the class 1 flagellum regulon gene flhD. Purified DncV produced different cDNs, cyclic di-GMP, cyclic di-AMP, an unknown product(s), and the dominant species 3′3′-cGAMP. In vivo, only the 3′3′-cGAMP concentration was elevated upon short-term overexpression of dncV, making this work a first report on cGAMP production in E. coli. Regulation of rdar biofilm formation and motility upon overexpression of untagged DncV in combination with three adjacent cotransferred gene products suggests a novel temperature-dependent cGAMP signaling module in E. coli ECOR31.
Collapse
|
19
|
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections in humans, and the majority are caused by uropathogenic Escherichia coli (UPEC). The rising antibiotic resistance among UPEC and the frequent failure of antibiotics to effectively treat recurrent UTI and catheter-associated UTI motivate research on alternative ways of managing UTI. Abundant evidence indicates that the toxic radical nitric oxide (NO), formed by activation of the inducible nitric oxide synthase, plays an important role in host defence to bacterial infections, including UTI. The major source of NO production during UTI is from inflammatory cells, especially neutrophils, and from the uroepithelial cells that are known to orchestrate the innate immune response during UTI. NO and reactive nitrogen species have a wide range of antibacterial targets, including DNA, heme proteins, iron-sulfur clusters, and protein thiol groups. However, UPEC have acquired a variety of defence mechanisms for protection against NO, such as the NO-detoxifying enzyme flavohemoglobin and the NO-tolerant cytochrome bd-I respiratory oxidase. The cytotoxicity of NO-derived intermediates is nonspecific and may be detrimental to host cells, and a balanced NO production is crucial to maintain the tissue integrity of the urinary tract. In this review, we will give an overview of how NO production from host cells in the urinary tract is activated and regulated, the effect of NO on UPEC growth and colonization, and the ability of UPEC to protect themselves against NO. We also discuss the attempts that have been made to develop NO-based therapeutics for UTI treatment.
Collapse
|
20
|
Cimdins A, Simm R, Li F, Lüthje P, Thorell K, Sjöling Å, Brauner A, Römling U. Alterations of c-di-GMP turnover proteins modulate semi-constitutive rdar biofilm formation in commensal and uropathogenic Escherichia coli. Microbiologyopen 2017; 6. [PMID: 28913868 PMCID: PMC5635171 DOI: 10.1002/mbo3.508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 01/25/2023] Open
Abstract
Agar plate‐based biofilm of enterobacteria like Escherichia coli is characterized by expression of the extracellular matrix components amyloid curli and cellulose exopolysaccharide, which can be visually enhanced upon addition of the dye Congo Red, resulting in a red, dry, and rough (rdar) colony morphology. Expression of the rdar morphotype depends on the transcriptional regulator CsgD and occurs predominantly at ambient temperature in model strains. In contrast, commensal and pathogenic isolates frequently express the csgD‐dependent rdar morphotype semi‐constitutively, also at human host body temperature. To unravel the molecular basis of temperature‐independent rdar morphotype expression, biofilm components and c‐di‐GMP turnover proteins of seven commensal and uropathogenic E. coli isolates were analyzed. A diversity within the c‐di‐GMP signaling network was uncovered which suggests alteration of activity of the trigger phosphodiesterase YciR to contribute to (up)regulation of csgD expression and consequently semi‐constitutive rdar morphotype development.
Collapse
Affiliation(s)
- Annika Cimdins
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Roger Simm
- Norwegian Veterinary Institute, Oslo, Norway
| | - Fengyang Li
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Petra Lüthje
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Kaisa Thorell
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Sjöling
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|