1
|
Curcumin induces expression of 15-hydroxyprostaglandin dehydrogenase in gastric mucosal cells and mouse stomach in vivo: AP-1 as a potential target. J Nutr Biochem 2020; 85:108469. [DOI: 10.1016/j.jnutbio.2020.108469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
|
2
|
Pires BRB, Binato R, Ferreira GM, Cecchini R, Panis C, Abdelhay E. NF-kappaB Regulates Redox Status in Breast Cancer Subtypes. Genes (Basel) 2018; 9:genes9070320. [PMID: 29949949 PMCID: PMC6070792 DOI: 10.3390/genes9070320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress (OS) is an indispensable condition to ensure genomic instability in cancer cells. In breast cancer (BC), redox alterations have been widely characterized, but since this process results from a chain of inflammatory events, the causal molecular triggers remain to be identified. In this context, we used a microarray approach to investigate the role of the main pro-oxidant transcription factor, nuclear factor-kappa B (NF-κB), in gene profiles of BC subtypes. Our results showed that NF-κB knockdown in distinct BC subtypes led to differential expression of relevant factors involved in glutathione metabolism, prostaglandins, cytochrome P450 and cyclooxygenase, suggesting a relationship between the redox balance and NF-κB in such cells. In addition, we performed biochemical analyses to validate the microarray dataset focusing on OS and correlated these parameters with normal expression or NF-κB inhibition. Our data showed a distinct oxidative status pattern for each of the three studied BC subtype models, consistent with the intrinsic characteristics of each BC subtype. Thus, our findings suggest that NF-κB may represent an additional mechanism related to OS maintenance in BC, operating in various forms to mediate other important predominant signaling components of each BC subtype.
Collapse
Affiliation(s)
- Bruno R B Pires
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer, Rio de Janeiro-RJ 20230-130, Brazil.
- Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Rio de Janeiro-RJ 20231-050, Brazil.
| | - Renata Binato
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer, Rio de Janeiro-RJ 20230-130, Brazil.
- Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Rio de Janeiro-RJ 20231-050, Brazil.
| | - Gerson M Ferreira
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer, Rio de Janeiro-RJ 20230-130, Brazil.
- Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Rio de Janeiro-RJ 20231-050, Brazil.
| | - Rubens Cecchini
- Laboratório de Fisiopatologia e Radicais Livres, Universidade Estadual de Londrina, Londrina-PR 86057-970, Brazil.
| | - Carolina Panis
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer, Rio de Janeiro-RJ 20230-130, Brazil.
- Laboratório de Mediadores Inflamatórios, Universidade Estadual do Oeste do Paraná, Francisco Beltrão-PR 85605-010, Brazil.
| | - Eliana Abdelhay
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer, Rio de Janeiro-RJ 20230-130, Brazil.
- Instituto Nacional de Ciência e Tecnologia para o Controle do Câncer, Rio de Janeiro-RJ 20231-050, Brazil.
| |
Collapse
|
3
|
Grabocka E, Bar-Sagi D. Mutant KRAS Enhances Tumor Cell Fitness by Upregulating Stress Granules. Cell 2017; 167:1803-1813.e12. [PMID: 27984728 DOI: 10.1016/j.cell.2016.11.035] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/23/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023]
Abstract
There is growing evidence that stress-coping mechanisms represent tumor cell vulnerabilities that may function as therapeutically beneficial targets. Recent work has delineated an integrated stress adaptation mechanism that is characterized by the formation of cytoplasmic mRNA and protein foci, termed stress granules (SGs). Here, we demonstrate that SGs are markedly elevated in mutant KRAS cells following exposure to stress-inducing stimuli. The upregulation of SGs by mutant KRAS is dependent on the production of the signaling lipid molecule 15-deoxy-delta 12,14 prostaglandin J2 (15-d-PGJ2) and confers cytoprotection against stress stimuli and chemotherapeutic agents. The secretion of 15-d-PGJ2 by mutant KRAS cells is sufficient to enhance SG formation and stress resistance in cancer cells that are wild-type for KRAS. Our findings identify a mutant KRAS-dependent cell non-autonomous mechanism that may afford the establishment of a stress-resistant niche that encompasses different tumor subclones. These results should inform the design of strategies to eradicate tumor cell communities.
Collapse
Affiliation(s)
- Elda Grabocka
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
4
|
Cabral M, Martín-Venegas R, Moreno JJ. Leukotriene D4-induced Caco-2 cell proliferation is mediated by prostaglandin E2 synthesis. Physiol Rep 2015. [PMID: 26216432 PMCID: PMC4552517 DOI: 10.14814/phy2.12417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Leukotriene D4 (LTD4) is a pro-inflammatory mediator formed from arachidonic acid through the action of 5-lipoxygenase (5-LOX). Its biological effects are mediated by at least two G-coupled plasmatic cysteinyl LT receptors (CysLT1-2R). It has been reported an upregulation of the 5-LOX pathway in tumor tissue unlike in normal colon mucosa. Colon tumors generally have an increased expression of CysLT1R and colon cancer patients with high expression levels of CysLT1R have poor prognosis. We previously observed that the cyclooxygenase pathway is involved in the control of intestinal epithelial cancer cell growth through PGE2 production. The aim of this study was therefore to assess the effect of LTD4 binding with CysLT1R on Caco-2 cell growth. We note a number of key findings from this research. We observed that at a concentration similar to that found under inflammatory conditions, LTD4 was able to induce Caco-2 cell proliferation and DNA synthesis. Moreover, with the use of a specific receptor antagonist this study has demonstrated that the effect of LTD4 is a result of its interaction with CystLT1R. We also note the possible participation of the PLC-IP3-Ca2+/DAG-PKC signaling pathways in cytosolic PLA2 and [3H]AA release induced by LTD4-CystLT1R interaction. Finally, we found that the resulting activation of the AA cascade and the production of PGE2 eicosanoid could be related to the activation of cell signaling pathways such as ERK and CREB. These findings will help facilitate our understanding of how inflammatory mediators can affect the survival and dissemination of intestinal carcinoma cells.
Collapse
Affiliation(s)
- Marisol Cabral
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Raquel Martín-Venegas
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Juan J Moreno
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
He N, Zheng H, Li P, Zhao Y, Zhang W, Song F, Chen K. miR-485-5p binding site SNP rs8752 in HPGD gene is associated with breast cancer risk. PLoS One 2014; 9:e102093. [PMID: 25003827 PMCID: PMC4087002 DOI: 10.1371/journal.pone.0102093] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/13/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) that reside in microRNA target sites may play an important role in breast cancer development and progression. To reveal the association between microRNA target site SNPs and breast cancer risk, we performed a large case-control study in China. METHODS We performed a two-stage case-control study including 2744 breast cancer cases and 3125 controls. In Stage I, we genotyped 192 SNPs within microRNA binding sites identified from the "Patrocles" database using custom Illumina GoldenGate VeraCode assays on the Illumina BeadXpress platform. In Stage II, genotyping was performed on SNPs potentially associated with breast cancer risk using the TaqMan platform in an independent replication set. RESULTS In stage I, 15 SNPs were identified to be significantly associated with breast cancer risk (P<0.05). In stage II, one SNP rs8752 was replicated at P<0.05. This SNP is located in the 3' untranslated region (UTR) of the 15-hydroxyprostaglandin dehydrogenase (HPGD) gene at 4q34-35, a miR-485-5p binding site. Compared with the GG genotype, the combined GA+AA genotypes has a significantly higher risk of breast cancer (OR = 1.18; 95% CI: 1.06-1.31, P = 0.002). Specifically, this SNP was associated with estrogen receptor (ER) positive breast cancer (P = 0.0007), but not with ER negative breast cancer (P = 0.23), though p for heterogeneity not significant. CONCLUSION Through a systematic case-control study of microRNA binding site SNPs, we identified a new breast cancer risk variant rs8752 in HPGD in Chinese women. Further studies are warranted to investigate the underling mechanism for this association.
Collapse
Affiliation(s)
- Na He
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
| | - Pei Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
| | - Yanrui Zhao
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
| | - Wei Zhang
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
- * E-mail:
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
| |
Collapse
|
6
|
Cabral M, Martín-Venegas R, Moreno JJ. Role of arachidonic acid metabolites on the control of non-differentiated intestinal epithelial cell growth. Int J Biochem Cell Biol 2013; 45:1620-8. [PMID: 23685077 DOI: 10.1016/j.biocel.2013.05.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/26/2013] [Accepted: 05/09/2013] [Indexed: 11/29/2022]
Abstract
Increasingly evidence indicates that enzymes, receptors and metabolites of the arachidonic acid (AA) cascade play a role in intestinal epithelial cell proliferation and colorectal tumorigenesis. However, the information available does not provide a complete picture and contains a number of discrepancies. For this reason it might be appropriate a thorough study into the impacts of the AA cascade on intestinal epithelial cell growth. Our data show that non-differentiated Caco-2 cells cultured with 10% fetal bovine serum (FBS) synthesize appreciable amounts of prostaglandin E2 (PGE2), leukotriene B4 (LTB4) and 5-, 12 and 15-hydroxyeicosatetraenoic acid (HETE) but not LTD4, 20-HETE and epoxyeicosatrienoic acids. We also found that inhibitors of PGE2, LTB4 and 5-, 12-, 15-HETE synthesis as well as receptor antagonists of PGE2 and LTB4 blocked Caco-2 cell growth and DNA synthesis induced by 10% FBS without cytotoxic or apoptotic activity. Interestingly, PGE2, LTB4 and 5-, 12- and 15-HETE at concentrations reached in 10% FBS Caco-2 cultures (1-10nM) were able to induce Caco-2 cell growth and DNA synthesis. This was due to the interaction of PGE2 with EP1 and EP4 receptors and LTB4 and HETEs with BLT1 and BLT2 receptors. Moreover, we provide evidence that PGE2 stimulates several cell signaling pathways such as ERK, P38α, CREB and GSKβ/β-catenin involved in the regulation of Caco-2 growth. Finally, we provide evidence that the mitogenic effects of LTB4 and HETEs can be dependent, at least in part, on PGE2 synthesis.
Collapse
Affiliation(s)
- Marisol Cabral
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
7
|
Basu S, Nachat-Kappes R, Caldefie-Chézet F, Vasson MP. Eicosanoids and adipokines in breast cancer: from molecular mechanisms to clinical considerations. Antioxid Redox Signal 2013; 18:323-60. [PMID: 22746381 DOI: 10.1089/ars.2011.4408] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic inflammation is one of the foremost risk factors for different types of malignancies, including breast cancer. Additional risk factors of this pathology in postmenopausal women are weight gain, obesity, estrogen secretion, and an imbalance in the production of adipokines, such as leptin and adiponectin. Various signaling products of transcription factor, nuclear factor-kappaB, in particular inflammatory eicosanoids, reactive oxygen species (ROS), and cytokines, are thought to be involved in chronic inflammation-induced cancer. Together, these key components have an influence on inflammatory reactions in malignant tissue damage when their levels are deregulated endogenously. Prostaglandins (PGs) are well recognized in inflammation and cancer, and they are solely biosynthesized through cyclooxygenases (COXs) from arachidonic acid. Concurrently, ROS give rise to bioactive isoprostanes from arachidonic acid precursors that are also involved in acute and chronic inflammation, but their specific characteristics in breast cancer are less demonstrated. Higher aromatase activity, a cytochrome P-450 enzyme, is intimately connected to tumor growth in the breast through estrogen synthesis, and is interrelated to COXs that catalyze the formation of both inflammatory and anti-inflammatory PGs such as PGE(2), PGF(2α), PGD(2), and PGJ(2) synchronously under the influence of specific mediators and downstream enzymes. Some of the latter compounds upsurge the intracellular cyclic adenosine monophosphate concentration and appear to be associated with estrogen synthesis. This review discusses the role of COX- and ROS-catalyzed eicosanoids and adipokines in breast cancer, and therefore ranges from their molecular mechanisms to clinical aspects to understand the impact of inflammation.
Collapse
Affiliation(s)
- Samar Basu
- Biochemistry, Molecular Biology and Nutrition, University of Auvergne, Clermont-Ferrand, France.
| | | | | | | |
Collapse
|
8
|
Lou LH, Jing DD, Lai YX, Lu YY, Li JK, Wu K. 15-PGDH is reduced and induces apoptosis and cell cycle arrest in gastric carcinoma. World J Gastroenterol 2012; 18:1028-37. [PMID: 22416177 PMCID: PMC3296976 DOI: 10.3748/wjg.v18.i10.1028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/16/2012] [Accepted: 02/08/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in human gastric cancer and it’s mechanism in apoptosis and cell cycle arrest.
METHODS: Expression of 15-PGDH mRNA and protein was examined by immunohistochemistry, immunocytochemistry, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting in tissue from human gastric cancer, gastric precancerous state (gastric polyps and atrophic gastritis), normal stomach, and gastric cancer cell lines. The relationship between gastric cancer, gastric precancerous state and 15-PGDH expression was determined. The association between expression of 15-PGDH and various clinicopathological parameters in gastric cancer was evaluated. Human gastric cancer cell line SGC-7901 was transfected with 15-PGDH expression plasmids. The effect of 15-PGDH on the cell cycle was examined by flow cytometry. The effect of 15-PGDH on apoptosis was examined by transmission electron microscopy, flow cytometry and transferase mediated nick end labeling (TUNEL) assay. Expression of cell cycle (p21, p27, p16 and p53) and apoptosis (Survivin, BCL-2, BCL-XL, BAK and BAX) genes was analyzed by RT-PCR.
RESULTS: Expression of 15-PGDH mRNA and protein in human gastric cancer tissues was significantly lower than in normal gastric tissues (P < 0.01). Expression in human gastric cancer cell lines MKN-28 and MKN-45 was reduced, and absent in SGC-7901 cells (P < 0.05). Reduction of 15-PGDH expression was also found in precancerous tissues, such as gastric polyps and atrophic gastritis (P < 0.01). There was a significant difference in expression of 15-PGDH among various gastric cancer pathological types (P < 0.05), with or without distant metastasis (P < 0.05) and different TNM stage (P < 0.01). Flow cytometry demonstrated a significant increase in apoptotic cells in SGC-7901 cells transfected with pcDNA3/15-PGDH plasmid for 24 h and 48 h (P < 0.01), and an increased fraction of sub-G1 phase after transfection (P < 0.05). TUNEL assay showed an increased apoptotic index in cells overexpressing 15-PGDH (P < 0.01). After transfection, expression of proapoptotic genes, such as BAK (P < 0.05), BAX and p53 (P < 0.01), was increased. Expression of antiapoptotic genes was decreased, such as Survivin, BCL-2 and BCL-XL (P < 0.01). Expression of cyclin-dependent kinase inhibitors p21 and p16 (P < 0.01) was significantly upregulated in cells overexpressing 15-PGDH.
CONCLUSION: Reduction of 15-PGDH is associated with carcinogenesis and development of gastric carcinoma. 15-PGDH induces apoptosis and cell cycle arrest in SGC-7901 cells.
Collapse
|
9
|
Na HK, Park JM, Lee HG, Lee HN, Myung SJ, Surh YJ. 15-Hydroxyprostaglandin dehydrogenase as a novel molecular target for cancer chemoprevention and therapy. Biochem Pharmacol 2011; 82:1352-60. [PMID: 21856294 DOI: 10.1016/j.bcp.2011.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 12/27/2022]
Abstract
Cyclooxygenase-2 (COX-2), a rate-limiting enzyme in arachidonic acid cascade, plays a key role in the biosynthesis of prostaglandin E(2) (PGE(2)) upon inflammatory insults. Overproduction of PGE(2) stimulates proliferation of various cancer cells, confers resistance to apoptosis of cancerous or transformed cells, and accelerates metastasis and angiogenesis. Excess PGE(2) undergoes metabolic inactivation which is catalyzed by NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH). In this context, 15-PGDH has been speculated as a physiological antagonist of COX-2 and a tumor suppressor. Thus, overexpression of 15-PGDH has been known to protect against experimentally induced carcinogenesis and renders the cancerous or transformed cells susceptible to apoptosis by counteracting oncogenic action of PGE(2). In contrast, silence of 15-PGDH is observed in some cancer cells, which is associated with epigenetic modification, such as DNA methylation and histone deacetylation, in the promoter region of 15-PGDH. A variety of compounds capable of inducing the expression of 15-PGDH have been reported, which include the histone deacetylase inhibitors, nonsteroidal anti-inflammatory drugs, and peroxisome proliferator-activated receptor-gamma agonists. Therefore, 15-PGDH may be considered as a novel molecular target for cancer chemoprevention and therapy. This review highlights the role of 15-PGDH in carcinogenesis and its regulation.
Collapse
Affiliation(s)
- Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, 147 Mia-dong, Kangbuk-gu, Seoul 142-100, South Korea
| | | | | | | | | | | |
Collapse
|
10
|
Llorente Izquierdo C, Mayoral R, Flores JM, García-Palencia P, Cucarella C, Boscá L, Casado M, Martín-Sanz P. Transgenic mice expressing cyclooxygenase-2 in hepatocytes reveal a minor contribution of this enzyme to chemical hepatocarcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1361-73. [PMID: 21356386 PMCID: PMC3069875 DOI: 10.1016/j.ajpath.2010.11.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/21/2010] [Accepted: 11/23/2010] [Indexed: 02/07/2023]
Abstract
Cyclooxygenase-2 (COX-2) has been associated with cell growth regulation, tissue remodeling, and carcinogenesis. Ectopic expression of COX-2 in hepatocytes constitutes a nonphysiological condition ideal for evaluating the role of prostaglandins (PGs) in liver pathogenesis. The effect of COX-2-dependent PGs in chronic liver disease, hepatitis, fibrosis, and chemical hepatocarcinogenesis, has been investigated in transgenic (Tg) mice that express human COX-2 in hepatocytes and in Tg hepatic human cell lines. We have used three different complementary approaches: i) diethylnitrosamine (DEN)-induced chemical hepatocarcinogenesis in COX-2 Tg mice, ii) DEN/phenobarbital treatment of human COX-2 Tg hepatocyte-like cells, and iii) COX-2 Tg hepatocyte-like cells implants in nude mice. The data suggest that PGs produced by COX-2 in hepatocytes promoted mild hepatitis in 60-week-old mice, as assessed by histological examination, but failed to contribute to the development of liver fibrogenesis after methionine- and choline-deficient diet treatment. Moreover, liver injury, collagen content, and hepatic stellate cell activation were equally severe in wild-type and COX-2 Tg mice. The contribution of COX-2-dependent PGs to the development of DEN-induced hepatocarcinogenesis was evaluated in Tg mice, Tg hepatocyte-like cells, and nude mice and the analysis revealed that COX-2 expression favors the development of preneoplastic foci without affecting malignant transformation. Endogenous COX-2 expression in wild-type mice is a late event in the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Rafael Mayoral
- Institute of Biomedical Research Alberto Sols (CSIC-UAM), Madrid, Spain
- Biomedical Research Centre Network of Hepatic and Digestive Diseases (CIBERehd), Barcelona, Spain
| | - Juana María Flores
- Department of Medicine and Animal Surgery, Veterinary Faculty, Complutense University, Madrid, Spain
| | - Pilar García-Palencia
- Department of Medicine and Animal Surgery, Veterinary Faculty, Complutense University, Madrid, Spain
| | - Carme Cucarella
- Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
| | - Lisardo Boscá
- Institute of Biomedical Research Alberto Sols (CSIC-UAM), Madrid, Spain
- Biomedical Research Centre Network of Hepatic and Digestive Diseases (CIBERehd), Barcelona, Spain
| | - Marta Casado
- Biomedical Research Centre Network of Hepatic and Digestive Diseases (CIBERehd), Barcelona, Spain
- Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
- Address reprint requests to Paloma Martín-Sanz, Ph.D., or Marta Casado, Ph.D., Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Institute of Biomedical Research Alberto Sols (CSIC-UAM), Madrid, Spain
- Biomedical Research Centre Network of Hepatic and Digestive Diseases (CIBERehd), Barcelona, Spain
- Address reprint requests to Paloma Martín-Sanz, Ph.D., or Marta Casado, Ph.D., Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| |
Collapse
|
11
|
Karanikolas BDW, Figueiredo ML, Wu L. Polycomb group protein enhancer of zeste 2 is an oncogene that promotes the neoplastic transformation of a benign prostatic epithelial cell line. MOLECULAR CANCER RESEARCH : MCR 2009. [PMID: 19723877 DOI: 10.1158/1541‐7786.mcr‐09‐0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polycomb group protein enhancer of zeste 2 (EZH2) is a master regulatory protein that plays a critical role in development as part of the polycomb repressive complex 2. Polycomb repressive complex 2 controls numerous cell cycle and regulatory genes through trimethylation of histone 3, which results in chromatin condensation and transcriptional silencing. EZH2 overexpression has been correlated with high incidence of more aggressive, metastatic prostate cancers. Although this correlation means EZH2 could prove valuable as a biomarker in clinical settings, the question remains whether EZH2 is actually responsible for the initiation of these more aggressive tumor types. In this study, EZH2-mediated neoplastic transformation of the normal prostate epithelial cell line benign prostate hyperplasia 1 (BPH1) was confirmed by in vivo tumor growth and in vitro colony formation. Furthermore, EZH2 transformation resulted in increased invasive behavior of BPH1 cells, indicating that EZH2 may be responsible for aggressive behavior in prostate cancers. BPH1 was also transformed with the classic oncogenes myristoylated Akt and activated Ras(V12) to allow phenotype comparisons with the EZH2-transformed cells. This study marks the first demonstration of neoplastic transformation in prostate cells mediated by EZH2 and establishes that EZH2 possesses stronger transforming activity than Akt but weaker activity than activated Ras.
Collapse
Affiliation(s)
- Breanne D W Karanikolas
- Departments of Molecular and Medical Pharmacology and Urology, University of California at Los Angeles, Los Angeles, California 90095-1738, USA
| | | | | |
Collapse
|
12
|
Karanikolas BDW, Figueiredo ML, Wu L. Polycomb group protein enhancer of zeste 2 is an oncogene that promotes the neoplastic transformation of a benign prostatic epithelial cell line. Mol Cancer Res 2009; 7:1456-65. [PMID: 19723877 DOI: 10.1158/1541-7786.mcr-09-0121] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polycomb group protein enhancer of zeste 2 (EZH2) is a master regulatory protein that plays a critical role in development as part of the polycomb repressive complex 2. Polycomb repressive complex 2 controls numerous cell cycle and regulatory genes through trimethylation of histone 3, which results in chromatin condensation and transcriptional silencing. EZH2 overexpression has been correlated with high incidence of more aggressive, metastatic prostate cancers. Although this correlation means EZH2 could prove valuable as a biomarker in clinical settings, the question remains whether EZH2 is actually responsible for the initiation of these more aggressive tumor types. In this study, EZH2-mediated neoplastic transformation of the normal prostate epithelial cell line benign prostate hyperplasia 1 (BPH1) was confirmed by in vivo tumor growth and in vitro colony formation. Furthermore, EZH2 transformation resulted in increased invasive behavior of BPH1 cells, indicating that EZH2 may be responsible for aggressive behavior in prostate cancers. BPH1 was also transformed with the classic oncogenes myristoylated Akt and activated Ras(V12) to allow phenotype comparisons with the EZH2-transformed cells. This study marks the first demonstration of neoplastic transformation in prostate cells mediated by EZH2 and establishes that EZH2 possesses stronger transforming activity than Akt but weaker activity than activated Ras.
Collapse
Affiliation(s)
- Breanne D W Karanikolas
- Departments of Molecular and Medical Pharmacology and Urology, University of California at Los Angeles, Los Angeles, California 90095-1738, USA
| | | | | |
Collapse
|
13
|
Thiel A, Ganesan A, Mrena J, Junnila S, Nykänen A, Hemmes A, Tai HH, Monni O, Kokkola A, Haglund C, Petrova TV, Ristimäki A. 15-hydroxyprostaglandin dehydrogenase is down-regulated in gastric cancer. Clin Cancer Res 2009; 15:4572-80. [PMID: 19584167 DOI: 10.1158/1078-0432.ccr-08-2518] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We have investigated the expression and regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in gastric cancer. EXPERIMENTAL DESIGN Clinical gastric adenocarcinoma samples were analyzed by immunohistochemistry and quantitative real-time PCR for protein and mRNA expression of 15-PGDH and for methylation status of 15-PGDH promoter. The effects of interleukin-1beta (IL-1beta) and epigenetic mechanisms on 15-PGDH regulation were assessed in gastric cancer cell lines. RESULTS In a gastric cancer cell line with a very low 15-PGDH expression (TMK-1), the 15-PGDH promoter was methylated and treatment with a demethylating agent 5-aza-2'-deoxycytidine restored 15-PGDH expression. In a cell line with a relatively high basal level of 15-PGDH (MKN-28), IL-1beta repressed expression of 15-PGDH mRNA and protein. This effect of IL-1beta was at least in part attributed to inhibition of 15-PGDH promoter activity. SiRNA-mediated knockdown of 15-PGDH resulted in strong increase of prostaglandin E(2) production in MKN-28 cells and increased cell growth of these cells by 31% in anchorage-independent conditions. In clinical gastric adenocarcinoma specimens, 15-PGDH mRNA levels were 5-fold lower in gastric cancer samples when compared with paired nonneoplastic tissues (n = 26) and 15-PGDH protein was lost in 65% of gastric adenocarcinomas (n = 210). CONCLUSIONS 15-PGDH is down-regulated in gastric cancer, which could potentially lead to accelerated tumor progression. Importantly, our data indicate that a proinflammatory cytokine linked to gastric carcinogenesis, IL-1beta, suppresses 15-PGDH expression at least partially by inhibiting promoter activity of the 15-PGDH gene.
Collapse
Affiliation(s)
- Alexandra Thiel
- Department of Pathology, HUSLAB and Genome-ScaleBiology Research Program, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
OBJECTIVES Imbalances in essential fatty acid levels have been reported in cystic fibrosis (CF), which may relate to elevated proinflammatory eicosanoid generation. The aim of this work was to better define eicosanoid metabolism in the CF intestine. MATERIALS AND METHODS We used the small intestine of the cystic fibrosis transmembrane conductance regulator knockout mouse (CF mouse) to measure eicosanoid metabolic gene expression by quantitative reverse transcription polymerase chain reaction and Western blot, and eicosanoid levels by enzyme immunoassay, as compared with wild-type (WT) littermates. RESULTS In the CF small intestine, expression of the secretory phospholipase A2 Pla2g5 mRNA was upregulated to 980% of WT levels. The following were downregulated: leukotriene C4 synthase Ltc4s (mRNA 55% of WT); omega-hydroxylase cytochrome P450s Cyp2c40 (mRNA 54% of WT), and Cyp4a10 (mRNA 4% of WT); and the major prostaglandin degradative enzymes prostaglandin dehydrogenase Hpgd (mRNA 27% of WT) and leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase Ltb4dh (mRNA 64% and protein 30% of WT). The prostaglandins PGE2 and PGF2alpha were increased to 400% to 600% of WT levels in the CF mouse intestine, and the hydroxyeicosatetraenoic acids (HETEs) 12-, 15-, and 20-HETE were decreased to 3% to 20% of WT levels. CONCLUSIONS There are changes in eicosanoid metabolic gene expression that are accompanied by significant changes in specific eicosanoid levels. These changes are expected to play important roles in the pathophysiology of CF in the intestine.
Collapse
|