1
|
Pirenne S, Manzano-Núñez F, Loriot A, Cordi S, Desmet L, Aydin S, Hubert C, Toffoli S, Limaye N, Sempoux C, Komuta M, Gatto L, Lemaigre FP. Spatial transcriptomics profiling of gallbladder adenocarcinoma: a detailed two-case study of progression from precursor lesions to cancer. BMC Cancer 2024; 24:1025. [PMID: 39164619 PMCID: PMC11334592 DOI: 10.1186/s12885-024-12770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Most studies on tumour progression from precursor lesion toward gallbladder adenocarcinoma investigate lesions sampled from distinct patients, providing an overarching view of pathogenic cascades. Whether this reflects the tumourigenic process in individual patients remains insufficiently explored. Genomic and epigenomic studies suggest that a subset of gallbladder cancers originate from biliary intraepithelial neoplasia (BilIN) precursor lesions, whereas others form independently from BilINs. Spatial transcriptomic data supporting these conclusions are missing. Moreover, multiple areas with precursor or adenocarcinoma lesions can be detected within the same pathological sample. Yet, knowledge about intra-patient variability of such lesions is lacking. METHODS To characterise the spatial transcriptomics of gallbladder cancer tumourigenesis in individual patients, we selected two patients with distinct cancer aetiology and whose samples simultaneously displayed multiple areas of normal epithelium, BilINs and adenocarcinoma. Using GeoMx digital spatial profiling, we characterised the whole transcriptome of a high number of regions of interest (ROIs) per sample in the two patients (24 and 32 ROIs respectively), with each ROI covering approximately 200 cells of normal epithelium, low-grade BilIN, high-grade BilIN or adenocarcinoma. Human gallbladder organoids and cell line-derived tumours were used to investigate the tumour-promoting role of genes. RESULTS Spatial transcriptomics revealed that each type of lesion displayed limited intra-patient transcriptomic variability. Our data further suggest that adenocarcinoma derived from high-grade BilIN in one patient and from low-grade BilIN in the other patient, with co-existing high-grade BilIN evolving via a distinct process in the latter case. The two patients displayed distinct sequences of signalling pathway activation during tumour progression, but Semaphorin 4 A (SEMA4A) expression was repressed in both patients. Using human gallbladder-derived organoids and cell line-derived tumours, we provide evidence that repression of SEMA4A promotes pseudostratification of the epithelium and enhances cell migration and survival. CONCLUSION Gallbladder adenocarcinoma can develop according to patient-specific processes, and limited intra-patient variability of precursor and cancer lesions was noticed. Our data suggest that repression of SEMA4A can promote tumour progression. They also highlight the need to gain gene expression data in addition to histological information to avoid understimating the risk of low-grade preneoplastic lesions.
Collapse
Affiliation(s)
- Sophie Pirenne
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
- Department of Imaging & Pathology, UZ Herestraat 49, Leuven, 3000, Belgium
| | - Fátima Manzano-Núñez
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Axelle Loriot
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Sabine Cordi
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Lieven Desmet
- Support en Méthodologie et Calcul Statistique, Université catholique de Louvain, Voie du Roman Pays 20, Louvain-la-Neuve, 1348, Belgium
| | - Selda Aydin
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels, 1200, Belgium
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels, 1200, Belgium
| | - Catherine Hubert
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels, 1200, Belgium
- Department of Medical Oncology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels, 1200, Belgium
| | - Sébastien Toffoli
- Institut de Pathologie et de Génétique, Avenue Georges Lemaître 25, Charleroi, 6041, Belgium
| | - Nisha Limaye
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Christine Sempoux
- Institute of Pathology, Lausanne University Hospital CHUV, University of Lausanne, Rue du Bugnon 25, Lausanne, 1011, Switzerland
| | - Mina Komuta
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita Hospital, Narita, Japan
| | - Laurent Gatto
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Frédéric P Lemaigre
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium.
| |
Collapse
|
2
|
Khalil H, Nada AH, Mahrous H, Hassan A, Rijo P, Ibrahim IA, Mohamed DD, AL-Salmi FA, Mohamed DD, Elmaksoud AIA. Amelioration effect of 18β-Glycyrrhetinic acid on methylation inhibitors in hepatocarcinogenesis -induced by diethylnitrosamine. Front Immunol 2024; 14:1206990. [PMID: 38322013 PMCID: PMC10844948 DOI: 10.3389/fimmu.2023.1206990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024] Open
Abstract
Aim suppression of methylation inhibitors (epigenetic genes) in hepatocarcinogenesis induced by diethylnitrosamine using glycyrrhetinic acid. Method In the current work, we investigated the effect of sole GA combined with different agents such as doxorubicin (DOX) or probiotic bacteria (Lactobacillus rhamanosus) against hepatocarcinogenesis induced by diethylnitrosamine to improve efficiency. The genomic DNA was isolated from rats' liver tissues to evaluate either methylation-sensitive or methylation-dependent resection enzymes. The methylation activity of the targeting genes DLC-1, TET-1, NF-kB, and STAT-3 was examined using specific primers and cleaved DNA products. Furthermore, flow cytometry was used to determine the protein expression profiles of DLC-1 and TET-1 in treated rats' liver tissue. Results Our results demonstrated the activity of GA to reduce the methylation activity in TET-1 and DLC-1 by 33.6% and 78%, respectively. As compared with the positive control. Furthermore, the association of GA with DOX avoided the methylation activity by 88% and 91% for TET-1 and DLC-1, respectively, as compared with the positive control. Similarly, the combined use of GA with probiotics suppressed the methylation activity in the TET-1 and DLC-1 genes by 75% and 81% for TET-1 and DLC-1, respectively. Also, GA and its combination with bacteria attenuated the adverse effect in hepatocarcinogenesis rats by altering potential methylomic genes such as NF-kb and STAT3 genes by 76% and 83%, respectively. Conclusion GA has an ameliorative effect against methylation inhibitors in hepatocellular carcinoma (HCC) by decreasing the methylation activity genes.
Collapse
Affiliation(s)
- Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Alaa H. Nada
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Hoda Mahrous
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Patricia Rijo
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Ibrahim A. Ibrahim
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Dalia D. Mohamed
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Fawziah A. AL-Salmi
- Department of Biology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| | - Doaa D. Mohamed
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Ahmed I. Abd Elmaksoud
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
- College of Biotechnology, Misr University of Science and Technology, Giza, Egypt
| |
Collapse
|
3
|
Manzano-Núñez F, Prates Tiago Aguilar L, Sempoux C, Lemaigre FP. Biliary Tract Cancer: Molecular Biology of Precursor Lesions. Semin Liver Dis 2023; 43:472-484. [PMID: 37944999 DOI: 10.1055/a-2207-9834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Biliary tract cancer is a devastating malignancy of the bile ducts and gallbladder with a dismal prognosis. The study of precancerous lesions has received considerable attention and led to a histopathological classification which, in some respects, remains an evolving field. Consequently, increasing efforts have been devoted to characterizing the molecular pathogenesis of the precursor lesions, with the aim of better understanding the mechanisms of tumor progression, and with the ultimate goal of meeting the challenges of early diagnosis and treatment. This review delves into the molecular mechanisms that initiate and promote the development of precursor lesions of intra- and extrahepatic cholangiocarcinoma and of gallbladder carcinoma. It addresses the genomic, epigenomic, and transcriptomic landscape of these precursors and provides an overview of animal and organoid models used to study them. In conclusion, this review summarizes the known molecular features of precancerous lesions in biliary tract cancer and highlights our fragmentary knowledge of the molecular pathogenesis of tumor initiation.
Collapse
Affiliation(s)
| | | | - Christine Sempoux
- Institute of Pathology, Lausanne University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
4
|
Grunt TW, Heller G. A critical appraisal of the relative contribution of tissue architecture, genetics, epigenetics and cell metabolism to carcinogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00056-1. [PMID: 37268024 DOI: 10.1016/j.pbiomolbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Here we contrast several carcinogenesis models. The somatic-mutation-theory posits mutations as main causes of malignancy. However, inconsistencies led to alternative explanations. For example, the tissue-organization-field-theory considers disrupted tissue-architecture as main cause. Both models can be reconciled using systems-biology-approaches, according to which tumors hover in states of self-organized criticality between order and chaos, are emergent results of multiple deviations and are subject to general laws of nature: inevitable variation(mutation) explainable by increased entropy(second-law-of-thermodynamics) or indeterminate decoherence upon measurement of superposed quantum systems(quantum mechanics), followed by Darwinian-selection. Genomic expression is regulated by epigenetics. Both systems cooperate. So cancer is neither just a mutational nor an epigenetic problem. Rather, epigenetics links environmental cues to endogenous genetics engendering a regulatory machinery that encompasses specific cancer-metabolic-networks. Interestingly, mutations occur at all levels of this machinery (oncogenes/tumor-suppressors, epigenetic-modifiers, structure-genes, metabolic-genes). Therefore, in most cases, DNA mutations may be the initial and crucial cancer-promoting triggers.
Collapse
Affiliation(s)
- Thomas W Grunt
- Cell Signaling and Metabolism Networks Program, Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090, Vienna, Austria; Comprehensive Cancer Center, 1090, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, 1090, Vienna, Austria.
| | - Gerwin Heller
- Comprehensive Cancer Center, 1090, Vienna, Austria; Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
5
|
He S, Zeng F, Yin H, Wang P, Bai Y, Song Q, Chu J, Huang Z, Liu Y, Liu H, Chen Q, Liu L, Zhou J, Hu H, Li X, Li T, Wang G, Cai J, Jiao Y, Zhao H. Molecular diagnosis of pancreatobiliary tract cancer by detecting mutations and methylation changes in bile samples. EClinicalMedicine 2023; 55:101736. [PMID: 36425869 PMCID: PMC9678809 DOI: 10.1016/j.eclinm.2022.101736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Patients with pancreatobiliary tract cancer usually have a poor clinical outcome, with a 5-year overall survival rate below 20%. This is mainly associated with the late diagnosis. In addition, the standard-of-care for patients with malignant biliary stenosis involves a major surgery, the Whipple procedure. An accurate preoperative diagnosis, including differentiation from benign diseases, is critical to avoid unnecessary treatment. Here we developed BileScreen, a sensitive detection modality for the diagnosis of pancreatobiliary tract cancer based on massively parallel sequencing mutation and methylation changes in bile samples. METHODS A total of 338 patients, from five hospitals in China, with pancreatobiliary system disorders were enrolled in this study between November 2018 and October 2020, and 259 were included for the analysis of BileScreen. We profiled 23 gene mutations and 44 genes with methylation modifications in parallel from bile samples, and set up a model for the detection of malignancy based on multi-level biomarkers. FINDINGS We applied the BileScreen assay in a training cohort (n = 104) to set up the model and algorithm. The model was further evaluated in a validation cohort (n = 105), resulting in 92% sensitivity and 98% specificity. The performance of BileScreen was further assessed in a prospective test cohort (n = 50) of patients diagnosed with suspicious or negative pathology by endoscopic retrograde cholangiopancreatography and were confirmed in follow-up. BileScreen yielded 90% sensitivity and 80% specificity, and outcompeted serum carbohydrate antigen 19-9 in detecting pancreatobiliary tract cancer in all three cohorts, especially in terms of specificity. INTERPRETATION Taken together, BileScreen has the ability to interrogate mutations and methylation changes in bile samples in parallel, thus rendering it a potentially sensitive detection method to help in the diagnosis of pancreatobiliary tract cancer in a safe, convenient and less-invasive manner. FUNDING This study was supported by the Capital's Funds for Health Improvement and Research (2020-2-4025 to S.H.), the National Natural Science Foundation of China (81972311 to H.Z.), CAMS Innovation Fund for Medical Sciences (CIFMS) (2017-12M-4-002 to H.Z.), the CAMS Innovation Fund for Medical Sciences(CIFMS) (2021-I2M-1-066 to CJQ), the Non-profit Central Research Institution Fund of Chinese Academy of Medical Sciences (2019PT310026 to H.Z.) and Sanming Project of Medicine in Shenzhen (SZSM202011010 to H.Z.).
Collapse
Affiliation(s)
- Shun He
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan province, China
| | - Huihui Yin
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinlei Bai
- Jinchenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Qianqian Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangtao Chu
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yumeng Liu
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Liu
- Department of Hepatobiliary Surgery, Dazhou Central Hospital, Dazhou, Sichuan province, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Liu
- Jinchenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Jun Zhou
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan province, China
| | - Hanjie Hu
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingchen Li
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tengyan Li
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guiqi Wang
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Corresponding author. National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan South Lane, Chaoyang District, Beijing, China.
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Corresponding author. National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan South Lane, Chaoyang District, Beijing, China.
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Corresponding author. National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan South Lane, Chaoyang District, Beijing, China.
| | - Hong Zhao
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Corresponding author. National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan South Lane, Chaoyang District, Beijing, China.
| |
Collapse
|
6
|
Tanwar P, Minocha S, Gupta I. A Comprehensive narrative review of transcriptomics and epigenomics of gallbladder cancer. J Cancer Res Ther 2023; 19:S499-S507. [PMID: 38384011 DOI: 10.4103/jcrt.jcrt_1823_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 02/23/2024]
Abstract
ABSTRACTS Gallbladder cancer (GBC) is one of the quiet prevalent and aggressive biliary tract malignant neoplasms distinguished by significant cellular heterogeneity, metastatic activity, and a poor prognosis, with varied frequency worldwide. Most cases are detected incidentally while routine screening imaging or pathological investigation of cholecystectomy tissues and usually present with advanced disease. The surgical resection is usually done in the initial clinical stage having limited spread. Despite the surgical therapy, the death rate is significant. Furthermore, the molecular mechanisms affecting the clinical course of inflammatory gallbladder to carcinogenesis remain poorly understood. There is an impending need for developing diagnostic biomarkers and targeted approaches for GBC. The newer molecular platform, such as next-generation sequencing (NGS), such as RNA-sequencing (RNAseq), single-cell sequencing, and microarray technology, has revolutionized the field of genomics, opened a new perspective in defining genetic and epigenetic characteristics identifying molecules as possible therapeutic targets. Therefore, in this review, we would analyze transcriptomic and epigenomics profiles of GBC using already published high-throughput sequencing-based studies published between 2010 and 2023. The review would also analyze the possible impact of the technological advancement on the patient management strategy and overall survival. This may also help identify target genes and pathways linked to GBC, which may help establish molecular biomarkers, for early GBC diagnosis, personalized therapy, and management.
Collapse
Affiliation(s)
- Pranay Tanwar
- Laboratory Oncology Unit, Dr BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, India
| |
Collapse
|
7
|
Abstract
Gallbladder cancer (GBC) is the most common cancer of the biliary tract, characterized by a very poor prognosis when diagnosed at advanced stages owing to its aggressive behaviour and limited therapeutic options. Early detection at a curable stage remains challenging because patients rarely exhibit symptoms; indeed, most GBCs are discovered incidentally following cholecystectomy for symptomatic gallbladder stones. Long-standing chronic inflammation is an important driver of GBC, regardless of the lithiasic or non-lithiasic origin. Advances in omics technologies have provided a deeper understanding of GBC pathogenesis, uncovering mechanisms associated with inflammation-driven tumour initiation and progression. Surgical resection is the only treatment with curative intent for GBC but very few cases are suitable for resection and most adjuvant therapy has a very low response rate. Several unmet clinical needs require to be addressed to improve GBC management, including discovery and validation of reliable biomarkers for screening, therapy selection and prognosis. Standardization of preneoplastic and neoplastic lesion nomenclature, as well as surgical specimen processing and sampling, now provides reproducible and comparable research data that provide a basis for identifying and implementing early detection strategies and improving drug discovery. Advances in the understanding of next-generation sequencing, multidisciplinary care for GBC, neoadjuvant and adjuvant strategies, and novel systemic therapies including chemotherapy and immunotherapies are gradually changing the treatment paradigm and prognosis of this recalcitrant cancer.
Collapse
Affiliation(s)
- Juan C Roa
- Department of Pathology, Millennium Institute on Immunology and Immunotherapy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Patricia García
- Department of Pathology, Millennium Institute on Immunology and Immunotherapy, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vinay K Kapoor
- Department of Hepato-pancreato-biliary (HPB) Surgery, Mahatma Gandhi Medical College & Hospital (MGMCH), Jaipur, India
| | - Shishir K Maithel
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jill Koshiol
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
8
|
Xu S, Jiang C, Lin R, Wang X, Hu X, Chen W, Chen X, Chen T. Epigenetic activation of the elongator complex sensitizes gallbladder cancer to gemcitabine therapy. J Exp Clin Cancer Res 2021; 40:373. [PMID: 34823564 PMCID: PMC8613969 DOI: 10.1186/s13046-021-02186-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background Gallbladder cancer (GBC) is known for its high malignancy and multidrug resistance. Previously, we uncovered that impaired integrity and stability of the elongator complex leads to GBC chemotherapy resistance, but whether its restoration can be an efficient therapeutic strategy for GBC remains unknown. Methods RT-qPCR, MS-qPCR and ChIP-qPCR were used to evaluate the direct association between ELP5 transcription and DNA methylation in tumour and non-tumour tissues of GBC. EMSA, chromatin accessibility assays, and luciferase assays were utilized to analysis the DNA methylation in interfering PAX5-DNA interactions. The functional experiments in vitro and in vivo were performed to investigate the effects of DNA demethylating agent decitabine (DAC) on the transcription activation of elongator complex and the enhanced sensitivity of gemcitabine in GBC cells. Tissue microarray contains GBC tumour tissues was used to evaluate the association between the expression of ELP5, DNMT3A and PAX5. Results We demonstrated that transcriptional repression of ELP5 in GBC was highly correlated with hypermethylation of the promoter. Mechanistically, epigenetic analysis revealed that DNA methyltransferase DNMT3A-catalysed hypermethylation blocked transcription factor PAX5 activation of ELP5 by disrupting PAX5-DNA interaction, resulting in repressed ELP5 transcription. Pharmacologically, the DNA demethylating agent DAC eliminated the hypermethylated CpG dinucleotides in the ELP5 promoter and then facilitated PAX5 binding and reactivated ELP5 transcription, leading to the enhanced function of the elongator complex. To target this mechanism, we employed a sequential combination therapy of DAC and gemcitabine to sensitize GBC cells to gemcitabine-therapy through epigenetic activation of the elongator complex. Conclusions Our findings suggest that ELP5 expression in GBC is controlled by DNA methylation-sensitive induction of PAX5. The sequential combination therapy of DAC and gemcitabine could be an efficient therapeutic strategy to overcome chemotherapy resistance in GBC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02186-0.
Collapse
Affiliation(s)
- Sunwang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Cen Jiang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ruirong Lin
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaopeng Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoqiang Hu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Tao Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
9
|
PARP1 rs1136410 (A/G) polymorphism is associated with early age of onset of gallbladder cancer. Eur J Cancer Prev 2021; 31:311-317. [PMID: 34406176 DOI: 10.1097/cej.0000000000000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Evaluation of the association of PARP1 rs1136410 (A/G) polymorphism with gallbladder cancer susceptibility and its prognosis in the Indian population of eastern Uttar Pradesh and western Bihar. METHODS PARP1 rs1136410 was genotyped by PCR-RFLP and its association with the prognosis of gallbladder cancer patients were analyzed using Kaplan-Meier plot and log-rank tests. RESULTS Our results demonstrate that minor allele G is more frequent in gallbladder cancer patients than controls. The frequencies of minor allele G and GG genotype are significantly associated with increased risk of gallbladder cancer. Our data suggest that the minor allele G and homozygous genotype GG are significant predisposing factors for the early age of onset of gallbladder cancer. Similarly, women patients having AG and GG genotypes demonstrate an increased risk of gallbladder cancer. The risk group genotypes (AG + GG) are significantly more frequent in patients with thick gallbladder wall, with jaundice and with the presence of lymph node than in patients with normal gallbladder wall thickness, without jaundice and absence of lymph node involvement. Survival analysis data suggest that patients with risk group genotype (AG + GG) presenting jaundice have shorter overall survival. CONCLUSION Our study suggests that the minor allele G of PARP1 rs1136410 (A/G) is a predisposing factor for gallbladder carcinogenesis and is significantly associated with early onset of the disease. Interestingly, the minor allele G is significantly more frequent in the patients with jaundice, lymph node metastasis and gallbladder wall thickness.
Collapse
|
10
|
Bhunia S, Barbhuiya MA, Gupta S, Shrivastava BR, Tiwari PK. Epigenetic downregulation of desmin in gall bladder cancer reveals its potential role in disease progression. Indian J Med Res 2021; 151:311-318. [PMID: 32461394 PMCID: PMC7371065 DOI: 10.4103/ijmr.ijmr_501_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background & objectives: Gall bladder cancer (GBC) is a fatal neoplasm, with a globally variable incidence rates. To improve the survival rate of patients, a newer set of biomarkers needs to be discovered for its early detection and better prognosis. Our earlier studies on GBC proteomics and whole-genome methylome data revealed expression of desmin to be significantly downregulated with correlated promoter hypermethylation during gall bladder carcinogenesis. Thus, to evaluate desmin as a potential biomarker for GBC, we carried out a detailed follow up study. Methods: Methylation-specific polymerase chain reaction (MS-PCR) (n=17, GBC and n=23, non-tumour control), real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) [n=14, GBC and n=14, adjacent non-tumour (ANT)], immunohistochemistry (n=27, GBC and n=14, non-tumour) and immunoblotting (n=13, GBC and n=13, ANT) were performed in surgically removed gall bladder tissue samples. Results: MS-PCR analysis showed methylation of desmin in 88.23 per cent (15/17) gall bladder tumour samples as compared to non-tumour tissues (39.13%, 9/23). Real-time qRT-PCR analysis revealed a significant downregulation of desmin expression in GBC as compared to ANT tissue. This was further confirmed by western blot, showing reduced expression of desmin protein in GBC, as compared to non-tumour tissue. Immunohistochemical analysis also showed a decreased level of desmin i.e., more than 95 per cent (26/27) in tumour cells compared to non-tumours (35.71%, 5/14). Interpretation & conclusions: The increased frequency of desmin promoter methylation which could be responsible for its significant downregulation, indicates its potential as a candidate biomarker for GBC. This requires further validation in a large group of patients to evaluate its clinical utility.
Collapse
Affiliation(s)
- Shushruta Bhunia
- Department of Molecular & Human Genetics, Centre for Genomics, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Mustafa Ahmed Barbhuiya
- Department of Pathology & Laboratory Medicine, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Sanjiv Gupta
- Department of Pathology, Cancer Hospital & Research Institute, Gwalior, Madhya Pradesh, India
| | - Braj Raj Shrivastava
- Department of Pathology, Cancer Hospital & Research Institute, Gwalior, Madhya Pradesh, India
| | - Pramod Kumar Tiwari
- Department of Molecular & Human Genetics, Centre for Genomics, Jiwaji University, Gwalior, Madhya Pradesh, India
| |
Collapse
|
11
|
Singh D, Bharti A, Biswas D, Tewari M, Kar AG, Ansari MA, Singh S, Narayan G. Frequent Downregulation and Promoter Hypermethylation of DLC1: Relationship with Clinical Outcome in Gallbladder Cancer. J Gastrointest Cancer 2021; 53:237-244. [PMID: 33417200 DOI: 10.1007/s12029-020-00560-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Down regulation of DLC1 is associated with poor prognosis in many cancers, however, its role in gallbladder cancer (GBC) is still unclear. In present study, we investigated the expression profile and promoter methylation status of DLC1. METHODS Expression profiles of DLC1 in 55 GBC and their paired adjacent control samples were analyzed through real time RT-PCR and immunohistochemistry. The mRNA data was correlated with clinico-pathological parameters. Promoter hypermethylation was analyzed through MSP. RESULTS DLC1 shows downregulation in 76.4%, upregulation in 10.9% whereas no change in 12.7% of GBC samples. Its underexpression shows significant correlation with tumor grade and nodal spread. IHC shows cytoplasmic expression of DLC1 in normal as well as tumor samples. IHC result was concordant to mRNA result. Samples having downregulated DLC1 expression show heterozygous methylation in 83.3% of samples and homozygous methylation in 9.5% of samples whereas 7% of samples have no methylation. Kaplan-Meier analysis shows patient with decreased mRNA of DLC1 have significant low mean survival compared to patients with higher mRNA expression of DLC1. CONCLUSION Our findings suggested that dysregulated expression of DLC1 and its hypermethylation may be one of the events playing roles in tumorigenesis of GBC and may serve as a potential target for development of future GBC gene therapy.
Collapse
Affiliation(s)
- Deepika Singh
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amisha Bharti
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Dipanjan Biswas
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.,Department of Surgical Oncology, Tata Memorial Hospital, Parel, Mumbai, 400012, India
| | - Mallika Tewari
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Amrita Ghosh Kar
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Mumtaz Ahmed Ansari
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunita Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Gopeshwar Narayan
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Tulsyan S, Hussain S, Mittal B, Saluja SS, Tanwar P, Rath GK, Goodman M, Kaur T, Mehrotra R. A systematic review with in silico analysis on transcriptomic profile of gallbladder carcinoma. Semin Oncol 2020; 47:398-408. [PMID: 33162112 DOI: 10.1053/j.seminoncol.2020.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/21/2020] [Indexed: 01/17/2023]
|
13
|
Gondkar K, Patel K, Patil Okaly GV, Nair B, Pandey A, Gowda H, Kumar P. Dickkopf Homolog 3 (DKK3) Acts as a Potential Tumor Suppressor in Gallbladder Cancer. Front Oncol 2019; 9:1121. [PMID: 31737564 PMCID: PMC6828847 DOI: 10.3389/fonc.2019.01121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/09/2019] [Indexed: 01/19/2023] Open
Abstract
Gallbladder cancer (GBC) is a common malignancy of biliary tract cancers and its incidence has been rising rapidly worldwide. The prognosis for this disease is dismal as most of the symptoms are non-specific leading to a definitive diagnosis only at a late stage. Loss of DKK3 gene is associated with a possible tumor suppressor role in human cancers. The role and regulation of DKK3 in GBC have not been studied. We found that DKK3 expression levels were low in GBC patients and cell lines. Treatment of GBC cell lines with demethylating agent 5-Aza- 2'-deoxycytidine enhances its expression, establishing impact of methylation on DKK3 expression. We observed low expression of DKK3 in gallbladder adenocarcinoma tumors and highly invasive GBC cell lines. We showed that overexpression of DKK3 can decrease cell invasion, proliferation, and colony forming ability of GBC cells. Our data thus demonstrated the DKK3 gene is a potential tumor suppressor gene in GBC and aberrant promoter methylation could be involved in its downregulation, which may play a role in the tumorigenesis and aggressiveness of GBC.
Collapse
Affiliation(s)
- Kirti Gondkar
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Geeta V Patil Okaly
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Akhilesh Pandey
- Manipal Academy of Higher Education, Manipal, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India.,Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
14
|
Mishra SK, Kumari N, Krishnani N. Molecular pathogenesis of gallbladder cancer: An update. Mutat Res 2019; 816-818:111674. [PMID: 31330366 DOI: 10.1016/j.mrfmmm.2019.111674] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 01/17/2023]
Abstract
Gallbladder carcinoma (GBC) is the most aggressive gastrointestinal malignancy throughout the world, with wide geographical variance. It is the subtype of biliary tract malignancy that has the poorest prognosis and lower survival among all biliary tract malignancies. Various factors are associated with GBC pathogenesis such as environmental, microbial, metabolic and molecular. Chronic inflammation of gallbladder due to presence of gallstone or microbial infection (eg. Salmonella or H. pylori) results in sustained production of inflammatory mediators in the tissue microenvironment, which can cause genomic changes linked to carcinogenesis. Genetic alterations are one of the major factors, associated with aggressiveness and prognosis. Researches have been done to explore suitable biomarker for early diagnosis and identify altered molecular pathways to develop appropriate biomarkers for early diagnosis, therapy and predicting prognosis. Different agents for targeted therapy against actionable mutations of molecules like EGFR, VEGF, mTOR, HER2, PDL-1, PD-1, MET, PI3K, N-cadherin, VEGFR, MEK1 and MEK2 are being tried. Despite these advancements, there is dismal improvement in the survival of GBC patients. Genetic aberrations other than actionable mutations and epigenetic modification including aberrant expressions of micro-RNAs, are also being studied both as diagnostic biomarker and therapeutic targets. Complex pathogenesis of GBC still needs to be unfolded. In this review we focus on the molecular pathogenesis of GBC elucidated till date along with future directions that can be explored to achieve better management of GBC patients.
Collapse
Affiliation(s)
- Shravan Kumar Mishra
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| | - Niraj Kumari
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| | - Narendra Krishnani
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| |
Collapse
|
15
|
Muhammad JS, Khan MR, Ghias K. DNA methylation as an epigenetic regulator of gallbladder cancer: An overview. Int J Surg 2018; 53:178-183. [PMID: 29602013 DOI: 10.1016/j.ijsu.2018.03.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Abstract
Gallbladder cancer (GBC) is a lethal health issue affecting mostly the women in their middle-age. High incidence of GBC has been reported across the world specifically in Asian countries, India and Pakistan. The exact etiology remains unknown, although several risk factors and genetic aberrations involving mutations or epigenetic changes may be involved in gallbladder carcinogenesis. This article presents a review of the published literature mainly from the year 2003 onwards. The topic of main concerns was epigenetic regulation of GBC. All relevant studies identified were included and are described according to the aforementioned subheadings. In this review, we have discussed the role of DNA methylation in GBC, clinical implication and future prospects of biomarker development for early diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan.
| | | | - Kulsoom Ghias
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| |
Collapse
|
16
|
|
17
|
Verlingue L, Hollebecque A, Boige V, Ducreux M, Malka D, Ferté C. Matching genomic molecular aberrations with molecular targeted agents: Are biliary tract cancers an ideal playground? Eur J Cancer 2017. [PMID: 28628842 DOI: 10.1016/j.ejca.2017.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Sharma A, Sharma KL, Gupta A, Yadav A, Kumar A. Gallbladder cancer epidemiology, pathogenesis and molecular genetics: Recent update. World J Gastroenterol 2017; 23:3978-3998. [PMID: 28652652 PMCID: PMC5473118 DOI: 10.3748/wjg.v23.i22.3978] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/01/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
Gallbladder cancer is a malignancy of biliary tract which is infrequent in developed countries but common in some specific geographical regions of developing countries. Late diagnosis and deprived prognosis are major problems for treatment of gallbladder carcinoma. The dramatic associations of this orphan cancer with various genetic and environmental factors are responsible for its poorly defined pathogenesis. An understanding to the relationship between epidemiology, molecular genetics and pathogenesis of gallbladder cancer can add new insights to its undetermined pathophysiology. Present review article provides a recent update regarding epidemiology, pathogenesis, and molecular genetics of gallbladder cancer. We systematically reviewed published literature on gallbladder cancer from online search engine PubMed (http://www.ncbi.nlm.nih.gov/pubmed). Various keywords used for retrieval of articles were Gallbladder, cancer Epidemiology, molecular genetics and bullion operators like AND, OR, NOT. Cross references were manually searched from various online search engines (http://www.ncbi.nlm.nih.gov/pubmed,https://scholar.google.co.in/, http://www.medline.com/home.jsp). Most of the articles published from 1982 to 2015 in peer reviewed journals have been included in this review.
Collapse
|
19
|
Tekcham DS, Tiwari PK. Epigenetic regulation in gallbladder cancer: Promoter methylation profiling as emergent novel biomarkers. Asia Pac J Clin Oncol 2016; 12:332-348. [PMID: 27385126 DOI: 10.1111/ajco.12507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/27/2016] [Accepted: 04/05/2016] [Indexed: 12/12/2022]
Abstract
DNA methylation, once considered to rule the sex determination in Mary Lyon's hypothesis, has now reached the epicenter of human diseases, from monogenic (e.g. Prader Willi syndrome, Angelman syndromes and Beckwith-Wiedemann syndrome) to polygenic diseases, like cancer. Technological developments from gold standard to high throughput technologies have made tremendous advancement to define the epigenetic mechanism of cancer. Gallbladder cancer (GBC) is a fatal health issue affecting mostly the middle-aged women, whose survival rate is very low due to late symptomatic diagnosis. DNA methylation has become one of the key molecular mechanisms in the tumorigenesis of gallbladder. Various molecules have been reported to be epigenetically altered in GBC. In this review, we have discussed the classes of epigenetics, an overview of DNA methylation, technological approaches for its study, profile of methylated genes, their likely roles in GBC, future prospects of biomarker development and other discovery approaches, including therapeutics.
Collapse
Affiliation(s)
- Dinesh Singh Tekcham
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Pramod Kumar Tiwari
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, Madhya Pradesh, India
| |
Collapse
|
20
|
Tekcham DS, Tiwari PK. Non-coding RNAs as emerging molecular targets of gallbladder cancer. Gene 2016; 588:79-85. [PMID: 27131889 DOI: 10.1016/j.gene.2016.04.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/06/2016] [Accepted: 04/24/2016] [Indexed: 01/17/2023]
Abstract
Gallbladder cancer is one of the most common cancers of biliary tract with aggressive pathophysiology, now emerging as a global health issue. Although minority of gallbladder cancer patients could receive such curative resection due to late diagnosis, this increases the survival rate. Lack of potential target molecule (s) for early diagnosis, better prognosis and effective therapy of gallbladder cancer has triggered investigators to look for novel technological or high throughput approaches to identify potential biomarker for gallbladder cancer. Intervention of non-coding RNAs in gallbladder cancer has been revealed recently. Non-coding RNAs are now widely implicated in cancer. Recent reports have revealed association of non-coding RNAs (microRNAs or miRNAs and long non-coding RNAs or lncRNAs) with gallbladder cancer. Here, we present an updated overview on the biogenesis, mechanism of action, role of non-coding RNAs, the identified cellular functions in gallbladder tumorigenesis, their prognostic & therapeutic potentials (efficacies) and future significance in developing effective biomarker(s), in future, for gallbladder.
Collapse
Affiliation(s)
- Dinesh Singh Tekcham
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior 474 011, MP, India
| | - Pramod Kumar Tiwari
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior 474 011, MP, India.
| |
Collapse
|
21
|
Feng H, Zhang Z, Wang X, Liu D. Identification of DLC-1 expression and methylation status in patients with non-small-cell lung cancer. Mol Clin Oncol 2015; 4:249-254. [PMID: 26893870 DOI: 10.3892/mco.2015.681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023] Open
Abstract
In order to determine whether the deleted in liver cancer-1 (DLC-1) gene is deregulated in non-small-cell lung carcinoma (NSCLC) and to assess the contribution of molecular alterations in DLC-1 to lung carcinogenesis, a total of 84 tissue specimens (30 NSCLC and 30 corresponding adjacent normal tissues; 5 benign tumor and 5 corresponding adjacent normal tissues; and 10 pulmonary bullae and 4 corresponding adjacent normal tissues), were obtained from 45 patients who underwent curative surgical resection. DLC-1 mRNA expression was evaluated by reverse transcription-quantitative polymerase chain reaction (PCR) and its protein level was assessed by western blot analysis. A significant downregulation of DCL-1 at the mRNA and protein levels was observed in NSCLC tissues when compared to benign lung tumors and normal lung tissues (P<0.001). To further determine whether the decreased expression of DLC-1 at the mRNA and protein levels is associated with the methylation of its promoter, methylation-specific PCR was performed following extraction of genomic DNA from the samples. DLC-1 promoter methylation was identified in 7 of the 30 (23.3%) NSCLC tissue samples, but not in the corresponding adjacent normal tissues from NSCLC patients or in lung tissues from non-NSCLC patients. Our data indicated that DLC-1 hypermethylation may play a crucial role in lung carcinogenesis and may be a target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Hongxiang Feng
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zhenrong Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Xiaowei Wang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Deruo Liu
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
22
|
Roos L, Spector TD, Bell CG. Using epigenomic studies in monozygotic twins to improve our understanding of cancer. Epigenomics 2015; 6:299-309. [PMID: 25111484 DOI: 10.2217/epi.14.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cancer is a set of diseases that exhibit not only genetic mutations but also a profoundly distorted epigenetic landscape. Over the last two decades, great advances have been made in identifying these alterations and their importance in the initiation and progression of cancer. Epigenetic changes can be seen from the very early stages in tumorigenesis and dysregulation of the epigenome has an increasingly acknowledged pathogenic role. Epigenomic twin studies have great potential to contribute to our understanding of complex diseases, such as cancer. This is because the use of monozygotic twins discordant for cancer enables epigenetic variation analysis without the confounding influence of the constitutive genetic background, age or cohort effects. It therefore allows the identification of susceptibility loci that may be sensitive to modification by the environment. These studies into cancer etiology will potentially lead to robust epigenetic markers for the detection and risk assessment of cancer.
Collapse
Affiliation(s)
- Leonie Roos
- Department of Twin Research & Genetic Epidemiology, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
| | | | | |
Collapse
|
23
|
Miyazaki M, Yoshitomi H, Miyakawa S, Uesaka K, Unno M, Endo I, Ota T, Ohtsuka M, Kinoshita H, Shimada K, Shimizu H, Tabata M, Chijiiwa K, Nagino M, Hirano S, Wakai T, Wada K, Isayama H, Iasayama H, Okusaka T, Tsuyuguchi T, Fujita N, Furuse J, Yamao K, Murakami K, Yamazaki H, Kijima H, Nakanuma Y, Yoshida M, Takayashiki T, Takada T. Clinical practice guidelines for the management of biliary tract cancers 2015: the 2nd English edition. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2015; 22:249-73. [PMID: 25787274 DOI: 10.1002/jhbp.233] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The Japanese Society of Hepato-Biliary-Pancreatic Surgery launched the clinical practice guidelines for the management of biliary tract and ampullary carcinomas in 2008. Novel treatment modalities and handling of clinical issues have been proposed after the publication. New approaches for editing clinical guidelines, such as the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system, also have been introduced for better and clearer grading of recommendations. METHODS Clinical questions (CQs) were proposed in seven topics. Recommendation, grade of recommendation and statement for each CQ were discussed and finalized by evidence-based approach. Recommendation was graded to grade 1 (strong) and 2 (weak) according to the concept of GRADE system. RESULTS The 29 CQs covered seven topics: (1) prophylactic treatment, (2) diagnosis, (3) biliary drainage, (4) surgical treatment, (5) chemotherapy, (6) radiation therapy, and (7) pathology. In 27 CQs, 19 recommendations were rated strong and 11 recommendations weak. Each CQ included the statement of how the recommendation was graded. CONCLUSIONS This guideline provides recommendation for important clinical aspects based on evidence. Future collaboration with cancer registry will be a key for assessment of the guidelines and establishment of new evidence. Free full-text articles and a mobile application of this guideline are available via http://www.jshbps.jp/en/guideline/biliary-tract2.html.
Collapse
Affiliation(s)
- Masaru Miyazaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pathology of Gallbladder Carcinoma: Current Understanding and New Perspectives. Pathol Oncol Res 2015; 21:509-25. [DOI: 10.1007/s12253-014-9886-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022]
|
25
|
Bizama C, García P, Espinoza JA, Weber H, Leal P, Nervi B, Roa JC. Targeting specific molecular pathways holds promise for advanced gallbladder cancer therapy. Cancer Treat Rev 2015; 41:222-34. [PMID: 25639632 DOI: 10.1016/j.ctrv.2015.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
Abstract
Gallbladder cancer is the most common and aggressive malignancy of the biliary tract. The complete surgical resection is the only potentially curative approach in early stage; however, most cases are diagnosed in advanced stages and the response to traditional chemotherapy and radiotherapy is extremely limited, with modest impact in overall survival. The recent progress in understanding the molecular alterations of gallbladder cancer has shown great promise for the development of more effective treatment strategies. This has mainly resulted from the identification of molecular alterations in relevant intracellular signaling pathways-Hedgehog, PI3K/AKT/mTOR, Notch, ErbB, MAPK and angiogenesis-which are potential tailored targets for gallbladder cancer patients. This review discusses the recent remarkable progress in understanding the molecular alterations that represent novel prognosis molecular markers and therapeutic targets for gallbladder cancer, which will provide opportunities for research and for developing innovative strategies that may enhance the benefit of conventional chemotherapy, or eventually modify the fatal natural history of this orphan disease.
Collapse
Affiliation(s)
- Carolina Bizama
- Department of Pathology, Center for Investigation in Translational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Patricia García
- Department of Pathology, Center for Investigation in Translational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Jaime A Espinoza
- Department of Pathology, Center for Investigation in Translational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Helga Weber
- Department of Pathology, School of Medicine, Universidad de La Frontera, CEGIN-BIOREN, Temuco 4811230, Chile
| | - Pamela Leal
- Department of Pathology, School of Medicine, Universidad de La Frontera, CEGIN-BIOREN, Temuco 4811230, Chile
| | - Bruno Nervi
- Department of Hematology Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 26767000, Chile
| | - Juan Carlos Roa
- Department of Pathology, Center for Investigation in Translational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
26
|
Kagohara LT, Schussel JL, Subbannayya T, Sahasrabuddhe N, Lebron C, Brait M, Maldonado L, Valle BL, Pirini F, Jahuira M, Lopez J, Letelier P, Brebi-Mieville P, Ili C, Pandey A, Chatterjee A, Sidransky D, Guerrero-Preston R. Global and gene-specific DNA methylation pattern discriminates cholecystitis from gallbladder cancer patients in Chile. Future Oncol 2014; 11:233-49. [PMID: 25066711 PMCID: PMC4332836 DOI: 10.2217/fon.14.165] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM The aim of the study was to evaluate the use of global and gene-specific DNA methylation changes as potential biomarkers for gallbladder cancer (GBC) in a cohort from Chile. MATERIAL & METHODS DNA methylation was analyzed through an ELISA-based technique and quantitative methylation-specific PCR. RESULTS Global DNA Methylation Index (p = 0.02) and promoter methylation of SSBP2 (p = 0.01) and ESR1 (p = 0.05) were significantly different in GBC when compared with cholecystitis. Receiver curve operator analysis revealed promoter methylation of APC, CDKN2A, ESR1, PGP9.5 and SSBP2, together with the Global DNA Methylation Index, had 71% sensitivity, 95% specificity, a 0.97 area under the curve and a positive predictive value of 90%. CONCLUSION Global and gene-specific DNA methylation may be useful biomarkers for GBC clinical assessment.
Collapse
Affiliation(s)
- Luciane Tsukamoto Kagohara
- Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Juliana L Schussel
- Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oral Medicine, Post Graduation Program in Dentistry, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | - Cynthia Lebron
- Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Mariana Brait
- Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Leonel Maldonado
- Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Blanca L Valle
- Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Francesca Pirini
- Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Martha Jahuira
- Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jaime Lopez
- Universidad de La Frontera, Facultad de Medicina, Departamento de Anatomía Patológica, Laboratorio Patología Molecular, BIOREN-CEGIN, Temuco, Chile
| | - Pablo Letelier
- Universidad de La Frontera, Facultad de Medicina, Departamento de Anatomía Patológica, Laboratorio Patología Molecular, BIOREN-CEGIN, Temuco, Chile
- Escuela Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile
| | - Priscilla Brebi-Mieville
- Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Universidad de La Frontera, Facultad de Medicina, Departamento de Anatomía Patológica, Laboratorio Patología Molecular, BIOREN-CEGIN, Temuco, Chile
| | - Carmen Ili
- Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Universidad de La Frontera, Facultad de Medicina, Departamento de Anatomía Patológica, Laboratorio Patología Molecular, BIOREN-CEGIN, Temuco, Chile
| | - Akhilesh Pandey
- McKusick–Nathans Institute of Genetic Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aditi Chatterjee
- Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Institute of Bioinformatics, Whitefield, Bangalore 560066, Karnataka, India
| | - David Sidransky
- Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- Department of Otolaryngology–Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- University of Puerto Rico School of Medicine, Department of Obstetrics & Gynecology, San Juan, Puerto Rico
| |
Collapse
|
27
|
Qin Y, Chu B, Gong W, Wang J, Tang Z, Shen J, Quan Z. Inhibitory effects of deleted in liver cancer 1 gene on gallbladder cancer growth through induction of cell cycle arrest and apoptosis. J Gastroenterol Hepatol 2014; 29:964-72. [PMID: 24329682 DOI: 10.1111/jgh.12486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM The biological function of tumor suppressor deleted in liver cancer 1 (DLC1) has been investigated in several types of human cancer, but its role in gallbladder cancer (GBC) is yet to be determined. In this research, we conducted in vitro and in vivo analysis to evaluate the inhibitory activities of DLC1 gene against GBC growth. METHODS DLC1 expression in GBC tissues and cell lines was examined by immunohistochemical staining, reverse transcription polymerase chain reaction, and Western blot assay. The in vitro and in vivo effects of ectopic DLC1 expression on cell growth were evaluated. In addition, the effects of ectopic DLC1 expression on cell cycle, apoptosis, and migration were also evaluated. The expressions of cell cycle-related and apoptosis-related proteins were examined. RESULTS The downregulation of DLC1 expression was a common event in GBC tissues and cell lines. Restoration of DLC1 expression in GBC-SD and NOZ cells significantly reduced cell proliferation, migration in vitro, and the ability of these cells to form tumors in vivo. Restoration of DLC1 expression arrested GBC-SD and NOZ cells in G0/G1 phase through inducing p21 in a p53-independent manner. In addition, restoration of DLC1 expression induced extrinsic and intrinsic apoptotic pathway through promoting the expressions of Fas L/FADD, Bax, cytochrome c, cleaved caspase-8, -9, -3, and cleaved poly-(ADP-ribose) polymerase and suppressing bcl-2 expression in GBC-SD and NOZ cells. CONCLUSIONS Our findings suggested that dysregulated expression of DLC1 is involved in proliferation and invasion of GBC cells and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Yiyu Qin
- Department of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Tewari M, Agarwal A, Mishra RR, Meena RN, Shukla HS. Epigenetic changes in carcinogenesis of gallbladder. Indian J Surg Oncol 2013; 4:356-61. [PMID: 24426757 PMCID: PMC3890022 DOI: 10.1007/s13193-013-0240-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 03/19/2013] [Indexed: 02/07/2023] Open
Abstract
Gallbladder cancer (GBC) is a lethal and a common malignancy affecting mostly females. There are restricted high incidence pockets across the world and in northern India highest incidence of GBC is reported from the Gangetic belt. The etiology of this disease remains largely unknown though several risk factors have been stated. The genetic aberrations in GBC involving mutations in tumor suppressor genes and oncogenes have been reported in literature. However, there is scarcity of data regarding epigenetic changes that may also be involved in gallbladder carcinogenesis. This review attempts to summarize our current understanding of the epigenetic changes in GBC.
Collapse
Affiliation(s)
- Mallika Tewari
- />Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 U.P. India
| | - Amit Agarwal
- />Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 U.P. India
| | - R. R. Mishra
- />Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - R. N. Meena
- />Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Hari S. Shukla
- />Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 U.P. India
| |
Collapse
|
29
|
Andrén-Sandberg Å. Molecular biology of gallbladder cancer: potential clinical implications. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2012; 4:435-41. [PMID: 23112962 PMCID: PMC3482772 DOI: 10.4103/1947-2714.101979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gallbladder cancer (GBC) is a common malignancy of the biliary tract and involves the changes in multiple oncogenes and multiple genetic genes. Since over the past decade there has been an advance in the knowledge of the genetic basis of cancer, mainly as a result of the rapid progression of molecular technology; however, conventional therapeutic approaches have not had much impact on the course of this aggressive neoplasm. Knowledge of the molecular biology of GBC is rapidly growing. Genetic alterations in GBC include adenosine triphosphate-binding cassette transporter ABCG8, membrane-bound enzyme ADAM-17 of multi-functional gene family, and other genes including p53, COX2, XPC, and RASSF1A. The advances in molecular biology have potential implications for the detection of this disease, using Synuclein-gamma, Syndecan-1, glycoprotein 72 (TAG-72), tumor endothelial marker 8 protein (TEM8) and TNF-alpha. The use of these molecular diagnostic methods is of clinical importance for the gene replacement therapy, genetic prodrug activation therapy, and antisense immunology technology for the treatment of malignancy. The author reviewed recent publications on PubMed, and summarized molecular biology of GBC, with an emphasis on features of potential clinical implications for diagnosis and management.
Collapse
Affiliation(s)
- Åke Andrén-Sandberg
- Department of Surgery, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| |
Collapse
|
30
|
Srivastava K, Srivastava A, Mittal B. Potential biomarkers in gallbladder cancer: present status and future directions. Biomarkers 2012; 18:1-9. [PMID: 22931385 DOI: 10.3109/1354750x.2012.717105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CONTEXT Carcinoma of the gallbladder (GBC) is the most common biliary tree cancer in the world. Beside gallstones, no specific risk factors for GBC are currently established. Several published studies have identified various prognostic gene expression markers in GBC. OBJECTIVE The present article reviewed published studies on gene expression biomarkers and gallbladder cancer susceptibility. METHODS We searched the PubMed, Medline, and Embase databases using the search terms "Gallbladder", "cancer/carcinoma", "expression", "genes", "proteins", and "biomarker" updated until June 2012 and limited to English language papers. The online searching was accompanied by checking reference lists from the identified articles for potentially eligible original reports. RESULTS Potential GBC biomarkers identified by different studies were summarized. CONCLUSION To infer, the present article highlights a few potential biomarkers in GBC. However, none of the markers identified so far are effective as a routine screening test in GBC.
Collapse
Affiliation(s)
- Kshitij Srivastava
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
31
|
How Kit A, Nielsen HM, Tost J. DNA methylation based biomarkers: practical considerations and applications. Biochimie 2012; 94:2314-37. [PMID: 22847185 DOI: 10.1016/j.biochi.2012.07.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/16/2012] [Indexed: 02/06/2023]
Abstract
A biomarker is a molecular target analyzed in a qualitative or quantitative manner to detect and diagnose the presence of a disease, to predict the outcome and the response to a specific treatment allowing personalized tailoring of patient management. Biomarkers can belong to different types of biochemical molecules such as proteins, DNA, RNA or lipids, whereby protein biomarkers have been the most extensively studied and used, notably in blood-based protein quantification tests or immunohistochemistry. The rise of interest in epigenetic mechanisms has allowed the identification of a new type of biomarker, DNA methylation, which is of great potential for many applications. This stable and heritable covalent modification mostly affects cytosines in the context of a CpG dinucleotide in humans. It can be detected and quantified by a number of technologies including genome-wide screening methods as well as locus- or gene-specific high-resolution analysis in different types of samples such as frozen tissues and FFPE samples, but also in body fluids such as urine, plasma, and serum obtained through non-invasive procedures. In some cases, DNA methylation based biomarkers have proven to be more specific and sensitive than commonly used protein biomarkers, which could clearly justify their use in clinics. However, very few of them are at the moment used in clinics and even less commercial tests are currently available. The objective of this review is to discuss the advantages of DNA methylation as a biomarker, the practical considerations for their development, and their use in disease detection, prediction of outcome or treatment response, through multiple examples mainly focusing on cancer, but also to evoke their potential for complex diseases and prenatal diagnostics.
Collapse
Affiliation(s)
- Alexandre How Kit
- Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, 27 rue Juliette Dodu, 75010 Paris, France
| | | | | |
Collapse
|
32
|
DNA promoter methylation as a diagnostic and therapeutic biomarker in gallbladder cancer. Clin Epigenetics 2012; 4:11. [PMID: 22794276 PMCID: PMC3465181 DOI: 10.1186/1868-7083-4-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/08/2012] [Indexed: 12/13/2022] Open
Abstract
Gallbladder cancer is an infrequent neoplasia with noticeable geographical variations in its incidence around the world. In Chile, it is the main cause of death owing to cancer in women over 40 years old, with mortality rates up to 16.5 per 100,000 cases. The prognosis is poor with few therapeutic options; in advanced cases there is only a 10% survival at 5 years. Several studies mention the possible role of DNA methylation in gallbladder carcinogenesis. This epigenetic modification affects tumor suppressor genes involved in regulation pathways, cell cycle control, cell adhesion and extracellular matrix degradation, in a sequential and cumulative way. Determining DNA methylation patterns would allow them to be used as biomarkers for the early detection, diagnosis, prognosis and/or therapeutic selection in gallbladder cancer.
Collapse
|
33
|
Bijron JG, van der Groep P, van Dorst EB, Seeber LMS, Sie-Go DMDS, Verheijen RHM, van Diest PJ. Promoter hypermethylation patterns in fallopian tube epithelium of BRCA1 and BRCA2 germ line mutation carriers. Endocr Relat Cancer 2012; 19:69-81. [PMID: 22143498 DOI: 10.1530/erc-11-0338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BRCA1/2 germ line mutation carriers have a high risk of developing fallopian tube carcinoma (FTC), thought to occur through different early (p53 signatures) and later (dysplasia, intra-epithelial carcinoma) premalignant stages. Promoter hypermethylation of tumour suppressor genes is known to play a key role in (early) carcinogenesis. However, little is known about methylation in normal and (pre)malignant fallopian tube tissue. We identified 14 areas of p53 accumulation in the fallopian tubes of BRCA mutation carriers. Cells from these areas were harvested together with cells from adjacent benign appearing areas. An age-matched non-BRCA sporadic control group (n=13) and eight sporadic FTCs were included as negative and positive controls respectively. Methylation-specific multiplex ligation-dependent probe amplification was used to assess promoter methylation of 70 tumour suppressor genes in all samples. We observed a gradual increase in methylation from sporadic control tissue (median cumulative methylation index (CMI) 568.19) through normal tissue and from areas of p53 accumulation in BRCA carriers (median CMI 687.54 and 676.72) to FTC (median CMI 780.97). Furthermore, the methylation percentage of many individual tumour suppressor genes differed significantly between these groups, gradually increasing as for CMI. Between areas with and without p53 accumulation in BRCA mutation carriers no significant differences were found. In this paper, we have shown that BRCA mutation carriers display increased methylation of tumour suppressor genes in their non-malignant fallopian tube epithelium, closer to methylation levels in FTC than to normal sporadic tissue. Methylation could, therefore, play an important role in the increased risk of gynaecological malignancies in BRCA mutation carriers.
Collapse
Affiliation(s)
- Jonathan G Bijron
- Department of Pathology, University Medical Centre Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Kim HS, Kim GY, Lim SJ, Park YK, Kim YW. Reduced expression of Raf-1 kinase inhibitory protein is a significant prognostic marker in patients with gallbladder carcinoma. Hum Pathol 2010; 41:1609-16. [PMID: 20688353 DOI: 10.1016/j.humpath.2010.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/23/2010] [Accepted: 04/30/2010] [Indexed: 11/17/2022]
Abstract
Gallbladder carcinoma is one of the most aggressive malignancies. It is usually diagnosed at an advanced stage, and the prognosis remains poor despite advances in imaging techniques and aggressive surgical treatment. Because of the lack of reliable prognostic markers, the aim of this study was to investigate the prognostic significance of Raf-1 kinase inhibitory protein expression in gallbladder carcinomas. Immunostaining for Raf-1 kinase inhibitory protein was performed on chronic cholecystitis, adenoma, carcinoma in situ, and primary and nodal metastatic gallbladder carcinoma. Raf-1 kinase inhibitory protein expression was reduced in 68.8% (11/16) and 42.3% (44/104) of nodal metastatic and primary gallbladder carcinoma cases, respectively, but in no case of carcinoma in situ, adenoma, or chronic cholecystitis. The differences in Raf-1 kinase inhibitory protein expression in gallbladder carcinoma versus nongallbladder carcinoma tissues (P < .001), and in nodal metastatic gallbladder carcinoma versus primary gallbladder carcinoma (P = .009), were statistically significant. Kaplan-Meier curves showed that patients with Raf-1 kinase inhibitory protein-negative or weakly positive gallbladder carcinoma had a significantly shorter overall survival than did patients with Raf-1 kinase inhibitory protein-positive gallbladder carcinoma (median, 14 versus 120 months; P = .011). Multivariate survival analysis showed that reduced Raf-1 kinase inhibitory protein expression was an independent prognostic predictor for overall survival (P = .020). Our results suggest that reduction in Raf-1 kinase inhibitory protein expression in gallbladder carcinoma contributes to invasion and metastasis and is a significant prognostic marker in patients with gallbladder carcinoma.
Collapse
Affiliation(s)
- Hyun Soo Kim
- Department of Pathology, Graduate School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | | | | | | | | |
Collapse
|
35
|
Yamaguchi J, Sasaki M, Sato Y, Itatsu K, Harada K, Zen Y, Ikeda H, Nimura Y, Nagino M, Nakanuma Y. Histone deacetylase inhibitor (SAHA) and repression of EZH2 synergistically inhibit proliferation of gallbladder carcinoma. Cancer Sci 2010; 101:355-62. [PMID: 19860841 PMCID: PMC11159376 DOI: 10.1111/j.1349-7006.2009.01387.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polycomb group protein EZH2, frequently overexpressed in malignant tumors, is the catalytic subunit of polycomb repressive complex 2 (PRC2). PRC2 interacts with HDACs in transcriptional silencing and relates to tumor suppressor loss. We examined the expression of HDAC isoforms (HDAC 1 and 2) and EZH2, and evaluated the possible use of HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) and EZH2 repressor for gallbladder carcinoma. We used 48 surgically resected gallbladders and cultures of human gallbladder epithelial cells (HGECs), gallbladder carcinoma (TGBC2TKB), and cholangiocarcinoma (HuCCT-1 and TFK-1) cell lines for examination. Immunohistochemically, EZH2 was overexpressed in gallbladder carcinoma, especially poorly differentiated carcinoma, but not in normal epithelium. In contrast, HDAC1/2 were expressed in both carcinoma and normal epithelium in vivo. This pattern was verified in cultured cells; EZH2 was highly expressed only in TGBC2TKB, whereas HDAC1/2 were expressed in HGECs and TGBC2TKB. Interestingly, SAHA treatment caused significant cell number decline in three carcinoma cells, and this effect was synergized with EZH2 siRNA treatment; however, HGECs were resistant to SAHA. In TGBC2TKB cells, the expression of EZH2 and HDAC1/2 were decreased by SAHA treatment, and p16(INK4a), E-cadherin, and p21were simultaneously activated; however, no such findings were obtained in HGECs, suggesting that the effect of SAHA depends on the EZH2-mediated tumor suppressor loss. In conclusion, this study suggests a possible mechanism by which carcinoma cells but not normal cells are sensitive to SAHA and indicates the efficacy of this new anticancer agent in combination with EZH2 repression in gallbladder carcinoma.
Collapse
Affiliation(s)
- Junpei Yamaguchi
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|