1
|
Chang Y, Zhou H, Ren Y, Zhang J, Sun L, Du M, Zhao J, Chu H, Zhao Y. Identifying multi-target drugs for prostate cancer using machine learning-assisted transcriptomic analysis. J Biomol Struct Dyn 2025; 43:2109-2119. [PMID: 38102880 DOI: 10.1080/07391102.2023.2294168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/30/2023] [Indexed: 12/17/2023]
Abstract
Prostate cancer is a leading cause of cancer death in men, and the development of effective treatments is of great importance. This study explored to identify the candidate drugs for prostate cancer by transcriptomic data and CMap database analysis. After integrating the results of omics analysis, bisoprolol is confirmed as a promising drug. Moreover, cell experiment reveals its potential inhibitory effect on the proliferation of prostate cancer cells. Importantly, machine learning methods are employed to predict the targets of bisoprolol, and the dual-target ADRB3 and hERG are explored by dynamic simulation. The findings of this study demonstrate the potential of bisoprolol as a multi-target drug for prostate cancer treatment and the feasibility of using beta-adrenergic receptor inhibitors in prostate cancer treatment. In addition, the proposed research approach is promising for discovering potential drugs for cancer treatment by leveraging the concept of drug side effects leading to anticancer effects. Further research is necessary to investigate the pharmacological action, potential toxicity, and underlying mechanisms of bisoprolol in treating prostate cancer with ADRB3.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yibin Chang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongmei Zhou
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuxiang Ren
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiaqi Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lei Sun
- College of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Minghui Du
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jian Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
2
|
Ding Z, Xi J, Zhong M, Chen F, Zhao H, Zhang B, Fang J. Cynaropicrin Induces Cell Cycle Arrest and Apoptosis by Inhibiting PKM2 to Cause DNA Damage and Mitochondrial Fission in A549 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13557-13567. [PMID: 34726896 DOI: 10.1021/acs.jafc.1c05394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metabolic reprogramming is critical for tumorigenesis. Pyruvate kinase M2 (PKM2) is overexpressed in lung carcinoma cells and plays a critical role in the Warburg effect, making the enzyme a research hotspot for anticancer drug development. Cynaropicrin (CYN), a natural sesquiterpene lactone compound from artichoke, has received increasing consideration due to its consumable esteem and pharmacological properties. Our data reveal that CYN not only inhibited the purified PKM2 activity but also decreased the cellular PKM2 expression in A549 cells. The inhibition of PKM2 leads to the upregulation of p53 and the downregulation of the DNA repair enzyme poly (ADP-ribose) polymerase (PARP), and subsequently causes the cell cycle arrest. Additionally, CYN inhibits the interaction of PKM2 and Nrf2, resulting in the impairment of cellular antioxidant capacity, induction of oxidative stress, and mitochondrial damages. Overexpression of PKM2 attenuates the CYN-induced DNA damage, mitochondrial fission, and cell viability. Thus, targeting PKM2 provides an original mechanism for understanding the pharmacological impact of CYN and assists in the further development of CYN as an anticancer agent.
Collapse
Affiliation(s)
- Zhenjiang Ding
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Xi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fan Chen
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Huanhuan Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
5-aza-2'-deoxycytidine induces apoptosis and inhibits tumour growth in vivo of FaDu cells, a specific HPVnegative HNSCC cell line. PLoS One 2021; 16:e0253756. [PMID: 34534222 PMCID: PMC8448306 DOI: 10.1371/journal.pone.0253756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
Head and neck cancer squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, resulting in over 600,000 new diagnoses annually. Traditionally, HNCC has been related to tobacco and alcohol exposure; however, over the past decade, a growing number of head and neck cancers are attributed to human papillomavirus (HPV) infection. 5-Aza-2'-deoxycytidine (5-AzaD) was demonstrated as an effective chemotherapeutic agent for acute myelogenous leukaemia. Preclinical data revealed that 5-aza inhibits growth and increases cell death of HPV(+) cancer cells. These effects are associated with reduced expression of HPV genes, stabilization of TP53, and activation of TP53-dependent apoptosis. The aim of the present study is to test the effect of 5-AzaD on growth of human squamous cell carcinoma (FaDu), a HPV(-) and p53 mutated cells, in vitro and in vivo. The effect of 5-AzaD on cell viability, cell cycle progression and induction of apoptosis was tested in vitro. The effect of 5-AzaD on tumour growth in vivo was tested using xenograft mice inoculated with FaDu cells. The results indicated that 5-AzaD reduced cell viability and induced apoptosis in FaDu cells in vitro. In vivo studies revealed that 5-AzaD suppresses the growth of tumours in xenograft mice inoculated with FaDu cells through inhibition of proliferation and induction of apoptosis. These findings may emphasis that 5-AzaD is effective in treatment of HPV(-) HNSCC tumours through TP53 independent pathway. Future studies are needed in order to clarify the molecular mechanism of action of 5-AzaD in HPV(-) cancer cells.
Collapse
|
4
|
Zhou WM, Liu B, Shavandi A, Li L, Song H, Zhang JY. Methylation Landscape: Targeting Writer or Eraser to Discover Anti-Cancer Drug. Front Pharmacol 2021; 12:690057. [PMID: 34149432 PMCID: PMC8209422 DOI: 10.3389/fphar.2021.690057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a major global health challenge for our health system, despite the important pharmacological and therapeutic discoveries we have seen since past 5 decades. The increasing prevalence and mortality of cancer may be closely related to smoking, exposure to environmental pollution, dietary and genetic factors. Despite significant promising discoveries and developments such as cell and biotechnological therapies a new breakthrough in the medical field is needed to develop specific and effective drugs for cancer treatment. On the development of cell therapies, anti-tumor vaccines, and new biotechnological drugs that have already shown promising effects in preclinical studies. With the continuous enrichment and development of chromatin immunoprecipitation sequencing (ChIP-seq) and its derivative technologies, epigenetic modification has gradually become a research hotspot. As key ingredients of epigenetic modification, Writers, Readers, Erasers have been gradually unveiled. Cancer has been associated with epigenetic modification especially methylation and therefore different epigenetic drugs have been developed and some of those are already undergoing clinical phase I or phase II trials, and it is believed that these drugs will certainly assist the treatment in the near future. With respect to this, an overview of anti-tumor drugs targeting modified enzymes and de-modified enzymes will be performed in order to contribute to future research.
Collapse
Affiliation(s)
- Wen-Min Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Amin Shavandi
- BioMatter Unit, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Lu Li
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Quintanal-Villalonga Á, Molina-Pinelo S. Epigenetics of lung cancer: a translational perspective. Cell Oncol (Dordr) 2019; 42:739-756. [PMID: 31396859 DOI: 10.1007/s13402-019-00465-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lung cancer remains the most common cause of cancer-related death, with a 5-year survival rate of only 18%. In recent years, the development of targeted pharmacological agents and immunotherapies has substantially increased the survival of a subset of patients. However, most patients lack such efficacious therapy and are, thus, treated with classical chemotherapy with poor clinical outcomes. Therefore, novel therapeutic strategies are urgently needed. In recent years, the development of epigenetic assays and their application to cancer research have highlighted the relevance of epigenetic regulation in the initiation, development, progression and treatment of lung cancer. CONCLUSIONS A variety of epigenetic modifications do occur at different steps of lung cancer development, some of which are key to tumor progression. The rise of cutting-edge technologies such as single cell epigenomics is, and will continue to be, crucial for uncovering epigenetic events at a single cell resolution, leading to a better understanding of the biology underlying lung cancer development and to the design of novel therapeutic options. This approach has already led to the development of strategies involving single agents or combined agents targeting epigenetic modifiers, currently in clinical trials. Here, we will discuss the epigenetics of every step of lung cancer development, as well as the translation of these findings into clinical applications.
Collapse
Affiliation(s)
| | - Sonia Molina-Pinelo
- Unidad Clínica de Oncología Médica, Radioterapia y Radiofísica, Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Avda. Manuel Siurot s/n, 41013, Seville, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Jing W, Song N, Liu YP, Qu XJ, Qi YF, Li C, Hou KZ, Che XF, Yang XH. DNMT3a promotes proliferation by activating the STAT3 signaling pathway and depressing apoptosis in pancreatic cancer. Cancer Manag Res 2019; 11:6379-6396. [PMID: 31372043 PMCID: PMC6635825 DOI: 10.2147/cmar.s201610] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Background Although aberrant DNA methyltransferase 3a (DNMT3a) expression is important to the tumorigenesis of pancreatic ductal adenocarcinoma (PDAC), the role of DNMT3a in PDAC prognosis is not clarified yet due to the limited studies and lacking of underlying molecular mechanism. Methods The expression of DNMT3a was examined by immunohistochemistry in PDAC tissues. Gene expression profiles assays were conducted to explore the impact of DNMT3a on biological processes and signal pathways. Cell cycle and apoptosis were measured by flow cytometry. Western blotting and real-time qPCR assays were used to explore the impact of DNMT3a on expression of protein and mRNA related to cell cycle, STAT3 signaling pathway and apoptosis. Results DNMT3a was overexpressed and closely associated with poor outcomes of PDAC. DNMT3a knockdown restrained PDAC cell proliferation, induced cell cycle arrest and promoted apoptosis in vitro. Affymetrix GeneChip Human Transcriptome Array identified that the cell cycle-related process was most significantly associated with DNMT3a. DNMT3a knockdown induced G1-S phase transition arrest by decreasing the expression of cyclin D1, which was mediated by the reduction of IL8 and the subsequent inactivation of STAT3 signaling pathway. Furthermore, exogenous apoptosis was also promoted after DNMT3a knockdown, probably via up-regulation of DNA transcription and expression in CASP8. Conclusion These findings indicate that DNMT3a plays an important role in PDAC progression. DNMT3a may serve as a prognostic biomarker and a therapeutic strategy candidate in PDAC.
Collapse
Affiliation(s)
- Wei Jing
- The First Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Na Song
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yun-Peng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiu-Juan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ya-Fei Qi
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ke-Zuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiao-Fang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiang-Hong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
7
|
Patnaik S, Anupriya. Drugs Targeting Epigenetic Modifications and Plausible Therapeutic Strategies Against Colorectal Cancer. Front Pharmacol 2019; 10:588. [PMID: 31244652 PMCID: PMC6563763 DOI: 10.3389/fphar.2019.00588] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic variations along with epigenetic modifications of DNA are involved in colorectal cancer (CRC) development and progression. CRC is the fourth leading cause of cancer-related deaths worldwide. Initiation and progression of CRC is the cumulation of a variety of genetic and epigenetic changes in colonic epithelial cells. Colorectal carcinogenesis is associated with epigenetic aberrations including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. Recently, epigenetic modifications have been identified like association of hypermethylated gene Claudin11 (CLDN11) with metastasis and prognosis of poor survival of CRC. DNA methylation of genes CMTM3, SSTR2, MDF1, NDRG4 and TGFB2 are potential epigenetic biomarkers for the early detection of CRC. Tumor suppressor candidate 3 (TUSC3) mRNA expression is silenced by promoter methylation, which promotes epidermal growth factor receptor (EGFR) signaling and rescues the CRC cells from apoptosis and hence leading to poor survival rate. Previous scientific evidences strongly suggest epigenetic modifications that contribute to anticancer drug resistance. Recent research studies emphasize development of drugs targeting histone deacetylases (HDACs) and DNA methyltransferase inhibitors as an emerging anticancer strategy. This review covers potential epigenetic modification targeting chemotherapeutic drugs and probable implementation for the treatment of CRC, which offers a strong rationale to explore therapeutic strategies and provides a basis to develop potent antitumor drugs.
Collapse
|
8
|
Nucleosidic DNA demethylating epigenetic drugs – A comprehensive review from discovery to clinic. Pharmacol Ther 2018; 188:45-79. [DOI: 10.1016/j.pharmthera.2018.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Mari-Alexandre J, Diaz-Lagares A, Villalba M, Juan O, Crujeiras AB, Calvo A, Sandoval J. Translating cancer epigenomics into the clinic: focus on lung cancer. Transl Res 2017. [PMID: 28644958 DOI: 10.1016/j.trsl.2017.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic deregulation is increasingly being recognized as a hallmark of cancer. Recent studies have identified many new epigenetic biomarkers, some of which are being introduced into clinical practice for diagnosis, molecular classification, prognosis or prediction of response to therapies. O-6-methylguanine-DNA methyltransferase gene is the most clinically advanced epigenetic biomarker as it predicts the response to temozolomide and carmustine in gliomas. Therefore, epigenomics may represent a novel and promising tool for precision medicine, and in particular, the detection of epigenomic biomarkers in liquid biopsies will be of great interest for monitoring diseases in patients. Of particular relevance is the identification of epigenetic biomarkers in lung cancer, one of the most prevalent and deadly types of cancer. DNA methylation of SHOX2 and RASSF1A could be used as diagnostic markers to differentiate between normal and tumor samples. MicroRNA and long noncoding RNA signatures associated with lung cancer development or tobacco smoke have also been identified. In addition to the field of biomarkers, therapeutic approaches using DNA methylation and histone deacetylation inhibitors are being tested in clinical trials for several cancer types. Moreover, new DNA editing techniques based on zinc finger and CRISPR/Cas9 technologies allow specific modification of aberrant methylation found in oncogenes or tumor suppressor genes. We envision that epigenomics will translate into the clinical field and will have an impact on lung cancer diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Josep Mari-Alexandre
- Unit of Inherited Cardiovascular Diseases, Sudden Death and Mechanisms of Disease, Health Research Institute La Fe, Valencia, Spain
| | - Angel Diaz-Lagares
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS), CIBERONC, Santiago de Compostela, Spain
| | - Maria Villalba
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain; CIBERONC, IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Oscar Juan
- Biomarkers and Precision Medicine Unit. Health Research Institute La Fe, Valencia, Spain
| | - Ana B Crujeiras
- Laboratory of Molecular and Cellular Endocrinology, Health Research Institute of Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Madrid, Spain.
| | - Alfonso Calvo
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain; CIBERONC, IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain.
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit. Health Research Institute La Fe, Valencia, Spain.
| |
Collapse
|
10
|
Zebularine Treatment Induces MAGE-A11 Expression and Improves CTL Cytotoxicity Using a Novel Identified HLA-A2-restricted MAGE-A11 Peptide. J Immunother 2017; 40:211-220. [DOI: 10.1097/cji.0000000000000170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin Epigenetics 2016; 8:98. [PMID: 27651838 PMCID: PMC5025578 DOI: 10.1186/s13148-016-0264-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/07/2016] [Indexed: 01/24/2023] Open
Abstract
Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.
Collapse
Affiliation(s)
- Inês Graça
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; School of Allied Health Sciences (ESTSP), Polytechnic of Porto, Porto, Portugal
| | - Eva Pereira-Silva
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Simon J Crabb
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
12
|
Li X, Zhang C, Bian Q, Gao N, Zhang X, Meng Q, Wu S, Wang S, Xia Y, Chen R. Integrative functional transcriptomic analyses implicate specific molecular pathways in pulmonary toxicity from exposure to aluminum oxide nanoparticles. Nanotoxicology 2016; 10:957-69. [PMID: 26830206 DOI: 10.3109/17435390.2016.1149632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gene expression profiling has developed rapidly in recent years and it can predict and define mechanisms underlying chemical toxicity. Here, RNA microarray and computational technology were used to show that aluminum oxide nanoparticles (Al2O3 NPs) were capable of triggering up-regulation of genes related to the cell cycle and cell death in a human A549 lung adenocarcinoma cell line. Gene expression levels were validated in Al2O3 NPs exposed A549 cells and mice lung tissues, most of which showed consistent trends in regulation. Gene-transcription factor network analysis coupled with cell- and animal-based assays demonstrated that the genes encoding PTPN6, RTN4, BAX and IER play a role in the biological responses induced by the nanoparticle exposure, which caused cell death and cell cycle arrest in the G2/S phase. Further, down-regulated PTPN6 expression demonstrated a core role in the network, thus expression level of PTPN6 was rescued by plasmid transfection, which showed ameliorative effects of A549 cells against cell death and cell cycle arrest. These results demonstrate the feasibility of using gene expression profiling to predict cellular responses induced by nanomaterials, which could be used to develop a comprehensive knowledge of nanotoxicity.
Collapse
Affiliation(s)
- Xiaobo Li
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Chengcheng Zhang
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Qian Bian
- b Department of Toxicology and Function Assessment , Jiangsu Provincial Center for Disease Prevention and Control , Nanjing , China
| | - Na Gao
- c Institute of Bioinformatics, Heinrich Heine University , Dusseldorf , Germany
| | - Xin Zhang
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Qingtao Meng
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Shenshen Wu
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Shizhi Wang
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Yankai Xia
- d Key Laboratory of Modern Toxicology of Ministry of Education , School of Public Health, Nanjing Medical University , Nanjing , China , and
| | - Rui Chen
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China .,e State Key Laboratory of Bioelectronics , Southeast University , Nanjing , China
| |
Collapse
|
13
|
Fu Y, Kadioglu O, Wiench B, Wei Z, Gao C, Luo M, Gu C, Zu Y, Efferth T. Cell cycle arrest and induction of apoptosis by cajanin stilbene acid from Cajanus cajan in breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:462-468. [PMID: 25925968 DOI: 10.1016/j.phymed.2015.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The low abundant cajanin stilbene acid (CSA) from Pigeon Pea (Cajanus cajan) has been shown to kill estrogen receptor α positive cancer cells in vitro and in vivo. Downstream effects such as cell cycle and apoptosis-related mechanisms have not been analyzed yet. MATERIAL AND METHODS We analyzed the activity of CSA by means of flow cytometry (cell cycle distribution, mitochondrial membrane potential, MMP), confocal laser scanning microscopy (MMP), DNA fragmentation assay (apoptosis), Western blotting (Bax and Bcl-2 expression, caspase-3 activation) as well as mRNA microarray hybridization and Ingenuity pathway analysis. RESULTS CSA induced G2/M arrest and apoptosis in a concentration-dependent manner from 8.88 to 14.79 µM. The MMP broke down, Bax was upregulated, Bcl-2 downregulated and caspase-3 activated. Microarray profiling revealed that CSA affected BRCA-related DNA damage response and cell cycle-regulated chromosomal replication pathways. CONCLUSION CSA inhibited breast cancer cells by DNA damage and cell cycle-related signaling pathways leading to cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Benjamin Wiench
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Zuofu Wei
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chang Gao
- Peking University People's Hospital, Beijing 100044, China
| | - Meng Luo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chengbo Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yuangang Zu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
14
|
Epigallocatechin-3-gallate enhances the therapeutic effects of leptomycin B on human lung cancer a549 cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:217304. [PMID: 25922640 PMCID: PMC4397486 DOI: 10.1155/2015/217304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/20/2022]
Abstract
Our previous studies have shown Leptomycin B (LMB) is a promising antilung cancer drug. Epigallocatechin-3-gallate (EGCG) has antitumor properties but a debatable clinical application. The objective of this study is to evaluate the combination therapeutic effect of LMB and EGCG and its molecular mechanisms in human lung cancer A549 cells. Increased cytotoxicity was observed in LMB+EGCG-treated cells compared to LMB-treated cells. Elevated ROS was maximized 2 h after treatment, and LMB+EGCG-treated cells had higher ROS levels compared to LMB. N-Acetyl-L-cysteine (NAC) studies confirmed the oxidative role of LMB and/or EGCG treatment. In comparison to the control, CYP3A4, SOD, GPX1, and p21 mRNA expression levels were increased 7.1-, 2.0-, 4.6-, and 13.1-fold in LMB-treated cells, respectively, while survivin was decreased 42.6-fold. Additionally, these increases of CYP3A4, SOD, and GPX1 were significantly reduced, while p21 was significantly increased in LMB+EGCG-treated cells compared to LMB-treated cells. The qRT-PCR results for p21 and survivin were further confirmed by Western blot. Our study first shows that LMB produces ROS and is possibly metabolized by CYP3A4, GPX1, and SOD in A549 cells, and combination treatment of LMB and EGCG augments LMB-induced cytotoxicity through enhanced ROS production and the modulation of drug metabolism and p21/survivin pathways.
Collapse
|
15
|
Li Y, Zhu M, Zhang X, Cheng D, Ma X. Clinical significance of DAPK promoter hypermethylation in lung cancer: a meta-analysis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1785-96. [PMID: 25848215 PMCID: PMC4378294 DOI: 10.2147/dddt.s78012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Death-associated protein kinase 1 (DAPK) is an important serine/threonine kinase involved in various cellular processes, including apoptosis, autophagy, and inflammation. DAPK expression and activity are deregulated in a variety of diseases including cancer. Methylation of the DAPK gene is common in many types of cancer and can lead to loss of DAPK expression. However, the association between DAPK promoter hypermethylation and the clinicopathological significance of lung cancer remains unclear. In this study, we searched the MEDLINE, PubMed, Web of Science, and Scopus databases, systematically investigated the studies of DAPK promoter hypermethylation in lung cancer and quantified the association between DAPK promoter hypermethylation and its clinicopathological significance by meta-analysis. We observed that the frequency of DAPK methylation was significantly higher in lung cancer than in non-malignant lung tissues (odds ratio 6.02, 95% confidence interval 3.17-11.42, P<0.00001). The pooled results also showed the presence of a prognostic impact of DAPK gene methylation in lung cancer patients (odds ratio 3.63, 95% confidence interval 1.09-12.06, P=0.04). In addition, we summarized these findings and discuss tumor suppressor function, clinicopathological significance, and potential drug targeting of DAPK in lung cancer.
Collapse
Affiliation(s)
- Ying Li
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Min Zhu
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Dongjun Cheng
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Xitao Ma
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| |
Collapse
|