1
|
Han J, Zhang J, Yao X, Meng M, Wan Y, Cheng Y. Mechanism of HDAC1 Regulating Iron Overload-Induced Neuronal Oxidative Damage After Cerebral Hemorrhage. Mol Neurobiol 2024; 61:7549-7566. [PMID: 38403721 DOI: 10.1007/s12035-024-04000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Iron overload is associated with brain edema in the context of intracerebral hemorrhage (ICH). Here, we investigated the role of histone deacetylase 1 (HDAC1) in mediating oxidative damage induced by iron overload after ICH. Utilizing ICH mouse models and FeCl2-induced HT-22 cell models, we assessed HDAC1 expression and its impact on iron overload and oxidative damage. We examined the levels of Kruppel like factor 4 (KLF4), RAN binding protein 9 (RANBP9), as well as the acetylation levels of HDAC1 and histones H3 and H4 in the KLF4 promoter, and the KLF4 level in the RANBP9 promoter. Additionally, we investigated the binding relationships between KLF4 and the RANBP9 promoter, HDAC1 and miR-129-5p. Our results demonstrated elevated HDAC1 expression in ICH mice and FeCl2-induced HT-22 cells. HDAC1 silencing improved neurological function in mice, reduced brain edema, and alleviated iron overload and oxidative damage in vitro. HDAC1 downregulated KLF4 expression by reducing acetylation levels in the KLF4 promoter, leading to decreased KLF4 enrichment in the RANBP9 promoter and increased RANBP9 expression. Furthermore, upstream miR-129-5p inhibited HDAC1, and the downregulation of miR-129-5p mitigated the protective effect of HDAC1 silencing. Collectively, our findings highlight the significant role of HDAC1 in exacerbating iron overload-induced oxidative damage following ICH and its regulation by miR-129-5p.
Collapse
Affiliation(s)
- Jing Han
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jinnan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xiaojuan Yao
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Meng Meng
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, 300000, China
| | - Yahui Wan
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, 300000, China
| | - Yan Cheng
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
2
|
El-Deeb AM, Mohamed AF, El-Yamany MF, El-Tanbouly DM. Novel trajectories of the NK1R antagonist aprepitant in rotenone-induced Parkinsonism-like symptoms in rats: Involvement of ERK5/KLF4/p62/Nrf2 signaling axis. Chem Biol Interact 2023; 380:110562. [PMID: 37224993 DOI: 10.1016/j.cbi.2023.110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Regulation of the interplay between autophagy and oxidative stress is vital in maintaining neuronal homeostasis during neurotoxicity. The interesting involvement of NK1 receptor (NK1R) in neurodegeneration has highlighted the value of investigating the neuroprotective effect of aprepitant (Aprep), an NK1R antagonist in Parkinson's disease (PD). This study was conducted to disclose Aprep's ability to modulate extracellular signal-regulated kinase 5/Krüppel-like factor 4 (ERK5/KLF4) cue as molecular signaling implicated in regulating autophagy and redox signaling in response to rotenone neurotoxicity. Rotenone (1.5 mg/kg) was administered on alternate days, and rats were given Aprep simultaneously with or without PD98059, an ERK inhibitor, for 21 days. Aprep ameliorated motor deficits as verified by restored histological features, and intact neurons count in SN and striata along with tyrosine hydroxylase immunoreactivity in SN. The molecular signaling of Aprep was illustrated by the expression of KLF4 following the phosphorylation of its upstream target, ERK5. Nuclear factor erythroid 2-related factor 2 (Nrf2) was up-regulated, shifting the oxidant/antioxidant balance towards the antioxidant side, as evidenced by elevated GSH and suppressed MDA levels. In parallel, Aprep noticeably reduced phosphorylated α-synuclein aggregates due to autophagy induction as emphasized by marked LC3II/LC3I elevation and p62 level reduction. These effects were diminished upon PD98059 pre-administration. In conclusion, Aprep showed neuroprotective effects against rotenone-induced PD, which may be partially attributed to the activation of the ERK5/KLF4 signaling pathway. It modulated p62-mediated autophagy and Nrf2 axis which act cooperatively to counter rotenone-associated neurotoxicity pointing to Aprep's prospect as a curious candidate in PD research.
Collapse
Affiliation(s)
- Asmaa M El-Deeb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt.
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Dalia M El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt
| |
Collapse
|
3
|
Xu H, Yu M, Yu Y, Li Y, Yang F, Liu Y, Han L, Xu Z, Wang G. KLF4 prevented angiotensin II-induced smooth muscle cell senescence by enhancing autophagic activity. Eur J Clin Invest 2022; 52:e13804. [PMID: 35506324 DOI: 10.1111/eci.13804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vascular aging is an important risk factor for various cardiovascular diseases. Transcription factor krüppel-like factor 4 (KLF4) could regulate the phenotypic transformation of the vascular smooth muscle cell (VSMC) in the pathogenesis of aortic diseases. The present study aimed to explore the role and mechanism of KLF4 in angiotensin II (Ang II)-induced VSMC senescence. METHODS The VSMC senescence mouse model was induced by sustained release of Ang II (1.0 μg/kg/min) for 4 weeks. The premature senescent VSMCs were induced by Ang II (0.1 μmol/L) for 72 h. Cellular senescence was measured by senescence-associated β-galactosidase (SA-β-gal) activity and p53/p16 expression. The autophagic activity was evaluated by autophagic flux and autophagic marker expression. RESULTS The expression of KLF4 was extremely increased in abdominal aorta tissues after 1-week Ang II stimulation (p < .01) but began to decrease in later periods. Decreased expression of KLF4 was also detected in premature senescent VSMCs. Overexpression of KLF4 could enhance the antisenescence ability of VSMCs. Significantly decreased amounts of SA-β-gal-positive cells and lower p53/p16 expression were detected in KLF4-overexpressing VSMCs (p < .01). Next, telomerase reverse transcriptase (TERT) was identified as a direct downstream target of KLF4 in VSMCs. Overexpression of KLF4 in VSMCs prevented the decreased expression of TERT under Ang II stimulation condition, which could in turn, contribute to the enhanced autophagic activity, and ultimately to the improved antisenescence ability of VSMCs. CONCLUSIONS Our results demonstrated that overexpression of KLF4 prevented Ang II-induced VSMC senescence by promoting TERT-mediated autophagy. These findings provided novel potential targets for the prevention and therapy of vascular aging.
Collapse
Affiliation(s)
- Hongjie Xu
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Manli Yu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongchao Yu
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yang Li
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fan Yang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Critical Care Medicine, Naval Medical Center of PLA, Shanghai, China
| | - Lin Han
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guokun Wang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Crosstalk between PI3K/AKT/KLF4 signaling and microglia M1/M2 polarization as a novel mechanistic approach towards flibanserin repositioning in parkinson's disease. Int Immunopharmacol 2022; 112:109191. [PMID: 36055034 DOI: 10.1016/j.intimp.2022.109191] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023]
Abstract
Balancing microglia M1/M2 polarization has been shown as a prospective therapeutic strategy for Parkinson's disease (PD). Various vital signaling pathways are likely to govern the microglial phenotype. The implication of 5HT1A receptors in neurodegenerative disorders has raised interest in exploring the repositioning of flibanserin (Flib), a 5HT1A agonist, as an effective neuroprotective agent for PD. Therefore, this study was designed to assess the ability of Flib to modulate microglia phenotype switching from M1 to M2 via PI3K/AKT downstream targets in a rotenone model of PD. Rats received rotenone (1.5 mg/kg) every other day and were concurrently treated with Flib (40 mg/kg/day) with or without wortmannin (15 μg/kg/day), a PI3K inhibitor, for 21 days. Flib improved the motor perturbations induced by rotenone, as confirmed by the reversion of histopathological damage and tyrosine hydroxylase immunohistochemical alterations in both the striata and substantia nigra. The molecular signaling of Flib was elaborated by inducing striatal AKT phosphorylation and the expression of its substantial target, KLF4. Flib induced STAT6 phosphorylation to promote M2 polarization as demonstrated by the increased CD163++ microglial count with striatal arginase activity. In parallel, it markedly inhibited M1 activation as evidenced by the reduction in CD86++ microglia count with striatal proinflammatory mediators, IL-1β and iNOS. The pre-administration of wortmannin mostly negated Flib's neuroprotective effects. In conclusion, Flib AKT/ KLF4-dependently amended M1/M2 microglial imbalance to exert a promising neuroprotective effect, highlighting its potential as a revolutionary candidate for conquering PD.
Collapse
|
5
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
6
|
Gajewska KA, Lescesen H, Ramialison M, Wagstaff KM, Jans DA. Nuclear transporter Importin-13 plays a key role in the oxidative stress transcriptional response. Nat Commun 2021; 12:5904. [PMID: 34625540 PMCID: PMC8501021 DOI: 10.1038/s41467-021-26125-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
The importin superfamily member Importin-13 is a bidirectional nuclear transporter. To delineate its functional roles, we performed transcriptomic analysis on wild-type and Importin-13-knockout mouse embryonic stem cells, revealing enrichment of differentially expressed genes involved in stress responses and apoptosis regulation. De novo promoter motif analysis on 277 Importin-13-dependent genes responsive to oxidative stress revealed an enrichment of motifs aligned to consensus sites for the transcription factors specificity protein 1, SP1, or Kruppel like factor 4, KLF4. Analysis of embryonic stem cells subjected to oxidative stress revealed that Importin-13-knockout cells were more resistant, with knockdown of SP1 or KLF4 helping protect wild-type embryonic stem cells against stress-induced death. Importin-13 was revealed to bind to SP1 and KLF4 in a cellular context, with a key role in oxidative stress-dependent nuclear export of both transcription factors. The results are integral to understanding stress biology, highlighting the importance of Importin-13 in the stress response.
Collapse
Affiliation(s)
- K. A. Gajewska
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - H. Lescesen
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - M. Ramialison
- grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute and Systems Biology Institute, Monash University, Clayton, VIC Australia
| | - K. M. Wagstaff
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - D. A. Jans
- grid.1002.30000 0004 1936 7857Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| |
Collapse
|
7
|
Fiard G, Stavrinides V, Chambers ES, Heavey S, Freeman A, Ball R, Akbar AN, Emberton M. Cellular senescence as a possible link between prostate diseases of the ageing male. Nat Rev Urol 2021; 18:597-610. [PMID: 34294916 DOI: 10.1038/s41585-021-00496-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Senescent cells accumulate with age in all tissues. Although senescent cells undergo cell-cycle arrest, these cells remain metabolically active and their secretome - known as the senescence-associated secretory phenotype - is responsible for a systemic pro-inflammatory state, which contributes to an inflammatory microenvironment. Senescent cells can be found in the ageing prostate and the senescence-associated secretory phenotype and can be linked to BPH and prostate cancer. Indeed, a number of signalling pathways provide biological plausibility for the role of senescence in both BPH and prostate cancer, although proving causality is difficult. The theory of senescence as a mechanism for prostate disease has a number of clinical implications and could offer opportunities for targeting in the future.
Collapse
Affiliation(s)
- Gaelle Fiard
- UCL Division of Surgery & Interventional Science, University College London, London, UK.
- Department of Urology, Grenoble Alpes University Hospital, Grenoble, France.
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France.
| | - Vasilis Stavrinides
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Emma S Chambers
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Susan Heavey
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Alex Freeman
- Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rhys Ball
- Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Arne N Akbar
- Division of Medicine, The Rayne Building, University College London, London, UK
| | - Mark Emberton
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
8
|
Blum A, Mostow K, Jackett K, Kelty E, Dakpa T, Ryan C, Hagos E. KLF4 Regulates Metabolic Homeostasis in Response to Stress. Cells 2021; 10:830. [PMID: 33917010 PMCID: PMC8067718 DOI: 10.3390/cells10040830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/23/2022] Open
Abstract
Cancerous cells are detrimental to the human body and can be incredibly resilient against treatments because of the complexities of molecular carcinogenic pathways. In particular, cancer cells are able to sustain increased growth under metabolic stress due to phenomena like the Warburg effect. Krüppel-like factor 4 (KLF4), a context-dependent transcription factor that can act as both a tumor suppressor and an oncogene, is involved in many molecular pathways that respond to low glucose and increased reactive oxygen species (ROS), raising the question of its role in metabolic stress as a result of increased proliferation of tumor cells. In this study, metabolic assays were performed, showing enhanced efficiency of energy production in cells expressing KLF4. Western blotting showed that KLF4 increases the expression of essential glycolytic proteins. Furthermore, we used immunostaining to show that KLF4 increases the localization of glucose transporter 1 (GLUT1) to the cellular membrane. 2',7'-Dichlorodihydrofluorescein diacetate (H2DCF-DA) was used to analyze the production of ROS, and we found that KLF4 reduces stress-induced ROS within cells. Finally, we demonstrated increased autophagic death in KLF4-expressing cells in response to glucose starvation. Collectively, these results relate KLF4 to non-Warburg metabolic behaviors that support its role as a tumor suppressor and could make KLF4 a target for new cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Engda Hagos
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (A.B.); (K.M.); (K.J.); (E.K.); (T.D.); (C.R.)
| |
Collapse
|
9
|
Regulation of antioxidant systems in response to anoxia and reoxygenation in Rana sylvatica. Comp Biochem Physiol B Biochem Mol Biol 2020; 243-244:110436. [PMID: 32247058 DOI: 10.1016/j.cbpb.2020.110436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
The wood frog (Rana sylvatica) is a remarkable species. These frogs can endure prolonged oxygen deprivation as well as dehydration to ~60% of total body water lost and, combining these two abilities, they survive whole body freezing for weeks at a time during the winter. Episodes of anoxia/reoxygenation or freeze/thaw can trigger elevated production of reactive oxygen species (ROS) causing cellular damage, especially when oxygen is reintroduced during reoxygenation or thawing. To mitigate ROS damage, stress-responsive transcription factors such as the Octamer Binding Transcription factor (OCT4) and Nuclear factor (erythroid-derived 2)-like 2 transcription factor (Nrf2) were postulated to be involved in enhancing pro-survival pathways and antioxidant defenses. The present study used immunoblotting to analyze OCT4 and Nrf2 responses (and downstream factors under their control) to 24 h anoxia and 4 h reoxygenation in liver and skeletal muscle of wood frogs, with an emphasis on antioxidant systems. Surprisingly, no change was observed in relative total protein expression of either of the two transcription factors in liver. Furthermore, a significant decrease in total protein levels of OCT4 and Nrf2 occurred in skeletal muscle after 4 h recovery. However, essential cofactors of OCT4 and Nrf2 were significantly upregulated during anoxia and/or recovery. Downstream targets of the Nrf2-ARE pathway were evaluated, including glutathione-S-transferases (GSTs) and aldo-keto reductases (AKRs). Significant increases in GSTT1 and GSTP1 were observed in liver and muscle whereas AKRs showed a tissue specific response to both anoxia and recovery from anoxia. This study demonstrates activation of antioxidants as a cell protective mechanism against generation of reactive oxygen species during anoxia in wood frogs.
Collapse
|
10
|
Cells deficient for Krüppel-like factor 4 exhibit mitochondrial dysfunction and impaired mitophagy. Eur J Cell Biol 2020; 99:151061. [DOI: 10.1016/j.ejcb.2019.151061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/09/2019] [Accepted: 11/28/2019] [Indexed: 01/19/2023] Open
|
11
|
Yanar K, Coskun ZM, Beydogan AB, Aydin S, Bolkent S. The effects of delta-9-tetrahydrocannabinol on Krüppel-like factor-4 expression, redox homeostasis, and inflammation in the kidney of diabetic rat. J Cell Biochem 2019; 120:16219-16228. [PMID: 31081965 DOI: 10.1002/jcb.28903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/10/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus is a complex, multifactorial disorder that is attributed to pancreatic β cell dysfunction. Pancreatic β cell dysfunction results in declining utilization of glucose by peripheral tissues as kidney and it leads to nephropathy. Excessive production and accumulation of free radicals and incapable antioxidant defense system lead to impaired redox status. Macromolecular damage may occur due to impaired redox status and also immune imbalance. Δ9-Tetrahydrocannabinol (THC) is the main active ingredient in cannabis. THC acts as an immunomodulator and an antioxidant agent. Our aim was to evaluate the effects of THC in the diabetic kidney. We analyzed macromolecular damage biomarkers as protein carbonyl (PCO), lipid hydroperoxide (LHP), malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and antioxidant defense system biomarkers as thiol fractions (T-SH, NP-SH, P-SH) and Cu/Zn-superoxide dismutase activity for the antioxidative effects of THC. Furthermore, mRNA expression of Krüppel-like factor-4, secreted immunopositive cell number changes of interleukin-6, nuclear factor κβ (NF-κβ), and peroxisome proliferator-activated receptor-γ and tumor necrosis factor α (TNF-α) levels were analyzed for the immunomodulatory activity of THC. Diabetic rats showed significantly increased levels of PCO, LHP, MDA, and 8-OHdG when compared with controls (P < 0.05 for each parameter). THC significantly reduced the elevated levels of PCO and 8-OHdG (P < 0.05 for both parameters) and also LHP and MDA levels were insignificantly reduced by THC. Also, thiol fractions insignificantly increased in THC administered diabetic kidney when compared with diabetic rats. The NF-κβ cell number significantly decreased in the diabetic rats treated with THC compared with the diabetic group. According to our data, THC has ameliorative effects on the impaired redox status of diabetic kidney and also it acts as an immunomodulator. Therefore, THC might be used as a therapeutic agent for diabetic kidneys but its usage in the healthy kidney may show adverse effects.
Collapse
Affiliation(s)
- Karolin Yanar
- Department of Medical Biochemistry, Faculty of Cerrahpasa Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Zeynep Mine Coskun
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Bilim University, Istanbul, Turkey
| | - Alisa Bahar Beydogan
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Seval Aydin
- Department of Medical Biochemistry, Faculty of Cerrahpasa Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
12
|
Yadav SS, Kumar M, Varshney A, Yadava PK. KLF4 sensitizes the colon cancer cell HCT-15 to cisplatin by altering the expression of HMGB1 and hTERT. Life Sci 2019; 220:169-176. [PMID: 30716337 DOI: 10.1016/j.lfs.2019.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/19/2019] [Accepted: 02/01/2019] [Indexed: 12/17/2022]
Abstract
AIMS Insensitivity of cancer cells to therapeutic drugs is the most daunting challenge in cancer treatment. The mechanism of developing chemo-resistance is only partly understood to date. In continuation of some earlier reports, we hypothesize that KLF4, a key transcription factors that also has a crucial role in maintaining the stemness in cancer cells, may offer a basis for chemo-resistance. MAIN METHODS Sensitivity of cells to cisplatin was analyzed by cell proliferation, colony formation, and cell growth assay. Cell cycle analysis and immunophenotyping were used to measure cell cycle arrest and level of reactive oxygen species respectively. Immunoblotting was used to analyze the change in expression hTERT and HMGB1 involved in KLF4 mediated cisplatin resistance. KEY FINDINGS We found that KLF4 expression sensitizes cancer cell to cisplatin cytotoxicity. Further, KLF4 promotes the cisplatin-mediated G2/M cell cycle arrest while KLF4 knocked down induces cisplatin-mediated S-phase arrest compared to control. Decreased level of reactive oxygen species (ROS) in cisplatin-treated and KLF4 knocked down HCT-15 cells compared to vector control, accounting for increased cell survival. Immuno-blotting showed that KLF4 positively regulates expression of the survival proteins hTERT and HMGB1 while in presence of cisplatin, expression of HMGB1 and hTERT is negatively regulated by KLF4. SIGNIFICANCE This study suggests the involvement of KLF4-HMGB1/hTERT signaling in offering the basis for chemo-resistance in colon cancer cells and KLF4 overexpression as a probable strategy for sensitizing drug-resistant cancer cells to chemotherapy. The present study opens up new avenues for cancer research and therapeutics.
Collapse
Affiliation(s)
| | - Manoj Kumar
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akhil Varshney
- Centre for Advanced Vision Science, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
| | - Pramod Kumar Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
13
|
Brauer PR, Kim JH, Ochoa HJ, Stratton ER, Black KM, Rosencrans W, Stacey E, Hagos EG. Krüppel-like factor 4 mediates cellular migration and invasion by altering RhoA activity. ACTA ACUST UNITED AC 2018; 24:1-10. [PMID: 29498307 DOI: 10.1080/15419061.2018.1444034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Kru¨ppel like factor 4 (KLF4) is a transcription factor that regulates genes related to differentiation and proliferation. KLF4 also plays a role in metastasis via epithelial to mesenchymal transition. Here, we investigate the function of Klf4 in migration and invasion using mouse embryonic fibroblasts and the RKO human colon cancer cell line. Compared to wild-type, cells lacking Klf4 exhibited increased migration-associated phenotypes. In addition, overexpression of Klf4 in Klf4-/- MEFs attenuated the presence of stress fibers to wild-type levels. An invasion assay suggested that lack of Klf4 resulted in increased invasive capacity. Finally, analysis of RhoA showed elevated RhoA activity in both RKO and MEF cells. Taken together, our results strongly support the novel role of KLF4 in a post-translational regulatory mechanism where KLF4 indirectly modulates the actin cytoskeleton morphology via activity of RhoA in order to inhibit cellular migration and invasion.
Collapse
Affiliation(s)
- Philip R Brauer
- a Department of Biology , Colgate University , Hamilton , NY , USA
| | - Jee Hun Kim
- a Department of Biology , Colgate University , Hamilton , NY , USA
| | - Humberto J Ochoa
- a Department of Biology , Colgate University , Hamilton , NY , USA.,b Center for Cancer Research, Lab of Cancer Biology and Genetics , National Cancer Institute , Bethesda , MD , USA
| | | | - Kathryn M Black
- a Department of Biology , Colgate University , Hamilton , NY , USA.,c School of Medicine , Tulane University , New Orleans , LA , USA
| | | | - Eliza Stacey
- a Department of Biology , Colgate University , Hamilton , NY , USA
| | - Engda G Hagos
- a Department of Biology , Colgate University , Hamilton , NY , USA
| |
Collapse
|
14
|
Alejandre Alcazar MA, Kaschwich M, Ertsey R, Preuss S, Milla C, Mujahid S, Masumi J, Khan S, Mokres LM, Tian L, Mohr J, Hirani DV, Rabinovitch M, Bland RD. Elafin Treatment Rescues EGFR-Klf4 Signaling and Lung Cell Survival in Ventilated Newborn Mice. Am J Respir Cell Mol Biol 2018; 59:623-634. [PMID: 29894205 PMCID: PMC6236693 DOI: 10.1165/rcmb.2017-0332oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 05/30/2018] [Indexed: 12/14/2022] Open
Abstract
Mechanical ventilation with O2-rich gas (MV-O2) inhibits alveologenesis and lung growth. We previously showed that MV-O2 increased elastase activity and apoptosis in lungs of newborn mice, whereas elastase inhibition by elafin suppressed apoptosis and enabled lung growth. Pilot studies suggested that MV-O2 reduces lung expression of prosurvival factors phosphorylated epidermal growth factor receptor (pEGFR) and Krüppel-like factor 4 (Klf4). Here, we sought to determine whether apoptosis and lung growth arrest evoked by MV-O2 reflect disrupted pEGFR-Klf4 signaling, which elafin treatment preserves, and to assess potential biomarkers of bronchopulmonary dysplasia (BPD). Five-day-old mice underwent MV with air or 40% O2 for 8-24 hours with or without elafin treatment. Unventilated pups served as controls. Immunoblots were used to assess lung pEGFR and Klf4 proteins. Cultured MLE-12 cells were exposed to AG1478 (EGFR inhibitor), Klf4 siRNA, or vehicle to assess effects on proliferation, apoptosis, and EGFR regulation of Klf4. Plasma elastase and elafin levels were measured in extremely premature infants. In newborn mice, MV with air or 40% O2 inhibited EGFR phosphorylation and suppressed Klf4 protein content in lungs (vs. unventilated controls), yielding increased apoptosis. Elafin treatment inhibited elastase, preserved lung pEGFR and Klf4, and attenuated the apoptosis observed in lungs of vehicle-treated mice. In MLE-12 studies, pharmacological inhibition of EGFR and siRNA suppression of Klf4 increased apoptosis and reduced proliferation, and EGFR inhibition decreased Klf4. Plasma elastase levels were more than twofold higher, without a compensating increase of plasma elafin, in infants with BPD, compared to infants without BPD. These findings indicate that pEGFR-Klf4 is a novel prosurvival signaling pathway in lung epithelium that MV disrupts. Elafin preserves pEGFR-Klf4 signaling and inhibits apoptosis, thereby enabling lung growth during MV. Together, our animal and human data raise the question: would elastase inhibition prevent BPD in high-risk infants exposed to MV-O2?
Collapse
Affiliation(s)
- Miguel A. Alejandre Alcazar
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
- Department of Pediatric and Adolescent Medicine, Center of Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany
| | - Mark Kaschwich
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Robert Ertsey
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Stefanie Preuss
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Carlos Milla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Sana Mujahid
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Juliet Masumi
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Suleman Khan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Lucia M. Mokres
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Lu Tian
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Jasmine Mohr
- Department of Pediatric and Adolescent Medicine, Center of Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany
| | - Dharmesh V. Hirani
- Department of Pediatric and Adolescent Medicine, Center of Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany
| | - Marlene Rabinovitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Richard D. Bland
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| |
Collapse
|
15
|
Cheng Z, Zou X, Jin Y, Gao S, Lv J, Li B, Cui R. The Role of KLF 4 in Alzheimer's Disease. Front Cell Neurosci 2018; 12:325. [PMID: 30297986 PMCID: PMC6160590 DOI: 10.3389/fncel.2018.00325] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/07/2018] [Indexed: 01/30/2023] Open
Abstract
Krüppel-like factor 4 (KLF4), a member of the family of zinc-finger transcription factors, is widely expressed in range of tissues that play multiple functions. Emerging evidence suggest KLF4’s critical regulatory effect on the neurophysiological and neuropathological processes of Alzheimer’s disease (AD), indicating that KLF4 might be a potential therapeutic target of neurodegenerative diseases. In this review, we will summarize relevant studies and illuminate the regulatory role of KLF4 in the neuroinflammation, neuronal apoptosis, axon regeneration and iron accumulation to clarify KLF4’s status in the pathogenesis of AD.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Shuohui Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiayin Lv
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Xu Q, Liu M, Zhang J, Xue L, Zhang G, Hu C, Wang Z, He S, Chen L, Ma K, Liu X, Zhao Y, Lv N, Liang S, Zhu H, Xu N. Overexpression of KLF4 promotes cell senescence through microRNA-203-survivin-p21 pathway. Oncotarget 2018; 7:60290-60302. [PMID: 27531889 PMCID: PMC5312384 DOI: 10.18632/oncotarget.11200] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 07/26/2016] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor and functions as a tumor suppressor or tumor promoter in different cancer types. KLF4 regulates many gene expression, thus affects the process of cell proliferation, differentiation, and apoptosis. Recently, KLF4 was reported to induce senescence during the generation of induced pluripotent stem (iPS) cells, but the exact mechanism is still unclear. In this study, we constructed two doxycycline-inducing KLF4 cell models, and demonstrated overexpression of KLF4 could promote cell senescence, detected by senescence-associated β-galactosidase activity assay. Then we confirmed that p21, a key effector of senescence, was directly induced by KLF4. KLF4 could also inhibit survivin, which could indirectly induce p21. By miRNA microarray, we found a series of miRNAs regulated by KLF4 and involved in senescence. We demonstrated that KLF4 could upregulate miR-203, and miR-203 contributed to senescence through miR-203-survivin-p21 pathway. Our results suggest that KLF4 could promote cell senescence through a complex network: miR-203, survivin, and p21, which were all regulated by overexpression of KLF4 and contributed to cell senescence.
Collapse
Affiliation(s)
- Qing Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ju Zhang
- Division of Proteomics, Beijing Institute of Genomics, Chinese Academy of Science, Beijing, China
| | - Liyan Xue
- Department of Pathology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo Zhang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenfei Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zaozao Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shun He
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lechuang Chen
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Ma
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianghe Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yahui Zhao
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Lv
- Department of Pathology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Minakawa Y, Shimizu A, Matsuno Y, Yoshioka KI. Genomic Destabilization Triggered by Replication Stress during Senescence. Cancers (Basel) 2017. [PMCID: PMC5704177 DOI: 10.3390/cancers9110159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Most cancers develop after middle age, and are often associated with multiple mutations and genomic instability, implying that genomic destabilization is critical for age-related tumor development. In this manuscript, we review current knowledge regarding (1) the senescent cellular background, which is associated with a higher risk of genomic destabilization; and (2) the contributions of genomic destabilization to cancer development.
Collapse
Affiliation(s)
- Yusuke Minakawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (Y.M.); (A.S.); (Y.M.)
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Atsuhiro Shimizu
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (Y.M.); (A.S.); (Y.M.)
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan
| | - Yusuke Matsuno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (Y.M.); (A.S.); (Y.M.)
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Ken-ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (Y.M.); (A.S.); (Y.M.)
- Correspondence:
| |
Collapse
|
18
|
Protective effects and functional mechanisms of Lactobacillus gasseri SBT2055 against oxidative stress. PLoS One 2017; 12:e0177106. [PMID: 28493927 PMCID: PMC5426657 DOI: 10.1371/journal.pone.0177106] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/21/2017] [Indexed: 12/31/2022] Open
Abstract
Lactobacillus gasseri SBT2055 (LG2055) is one of the probiotic lactic acid bacteria. Recently, we demonstrated that feeding with LG2055 extended the lifespan of Caenorhabditis elegans and that the prolongevity effect was dependent upon the regulation of oxidative stress response. In this study, we assessed whether LG2055 regulated the oxidative stress response of mammalian cells. In NIH-3T3 cells and primary mouse embryonic fibroblast cells, low cell proliferation rates and high reactive oxygen species levels were observed following paraquat treatment. LG2055 treatment suppressed these responses in paraquat-treated cells, indicating that LG2055 protected against oxidative stress in mammalian cells. The mRNA expression of oxidative stress-related genes, total nuclear factor-erythroid-2-related factor 2 (Nrf2) protein levels, and the nuclear translocation of Nrf2 were increased by LG2055 treatment. These results suggested that the Nrf2-antioxidant response element (ARE) signaling pathway was activated by LG2055. Furthermore, c-Jun NH2-terminal kinase (JNK) was activated by LG2055 treatment and the inhibition of JNK suppressed the activation of the Nrf2-ARE signaling pathway in LG2055-treated cells. Together, these findings suggest that LG2055 activated the Nrf2-ARE signaling pathway by JNK activation, thus strengthening the defense system against oxidative stress in mammalian cells.
Collapse
|
19
|
Kural KC, Tandon N, Skoblov M, Kel-Margoulis OV, Baranova AV. Pathways of aging: comparative analysis of gene signatures in replicative senescence and stress induced premature senescence. BMC Genomics 2016; 17:1030. [PMID: 28105936 PMCID: PMC5249001 DOI: 10.1186/s12864-016-3352-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background In culturing normal diploid cells, senescence may either happen naturally, in the form of replicative senescence, or it may be a consequence of external challenges such as oxidative stress. Here we present a comparative analysis aimed at reconstruction of molecular cascades specific for replicative (RS) and stressinduced senescence (SIPS) in human fibroblasts. Results An involvement of caspase-3/keratin-18 pathway and serine/threonine kinase Aurora A/ MDM2 pathway was shared between RS and SIPS. Moreover, stromelysin/MMP3 and N-acetylglucosaminyltransferase enzyme MGAT1, which initiates the synthesis of hybrid and complex Nglycans, were identified as key orchestrating components in RS and SIPS, respectively. In RS only, Aurora-B driven cell cycle signaling was deregulated in concert with the suppression of anabolic branches of the fatty acids and estrogen metabolism. In SIPS, Aurora-B signaling is deprioritized, and the synthetic branches of cholesterol metabolism are upregulated, rather than downregulated. Moreover, in SIPS, proteasome/ubiquitin ligase pathways of protein degradation dominate the regulatory landscape. This picture indicates that SIPS proceeds in cells that are actively fighting stress which facilitates premature senescence while failing to completely activate the orderly program of RS. The promoters of genes differentially expressed in either RS or SIPS are unusually enriched by the binding sites for homeobox family proteins, with particular emphasis on HMX1, IRX2, HDX and HOXC13. Additionally, we identified Iroquois Homeobox 2 (IRX2) as a master regulator for the secretion of SPP1-encoded osteopontin, a stromal driver for tumor growth that is overexpressed by both RS and SIPS fibroblasts. The latter supports the hypothesis that senescence-specific de-repression of SPP1 aids in SIPS-dependent stromal activation. Conclusions Reanalysis of previously published experimental data is cost-effective approach for extraction of additional insignts into the functioning of biological systems. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3352-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kamil C Kural
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | | | - Mikhail Skoblov
- Research Centre for Medical Genetics, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | | | - Ancha V Baranova
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA. .,Research Centre for Medical Genetics, Moscow, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.
| |
Collapse
|
20
|
Wang X, Li X, Huang C, Li L, Qu H, Yu X, Ni H, Cui Q. Kruppel-like factor 4 (KLF-4) inhibits the epithelial-to-mesenchymal transition and proliferation of human endometrial carcinoma cells. Gynecol Endocrinol 2016; 32:772-776. [PMID: 27098518 DOI: 10.3109/09513590.2016.1163673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kruppel-like factors (KLFs) are a group of transcriptional regulators, being tumor-suppressive in various types of cancers, but not clear in human endometrial carcinoma (EC). We investigated the KLF-4 expression in both mRNA and protein levels in 29 EC specimens with RT-qPCR and Western blotting methods, and then to determine its promotion to Epithelial-to-mesenchymal transition (EMT) and proliferation of EC Ishikawa cells, via analyzing EMT-associated markers and via CCK-8 and colony forming assay. We found the downregulation of KLF-4 in the 29 EC specimens, correlating with the EC malignance. Moreover, we confirmed reduced levels of EMT and cell proliferation of Ishikawa cells post-KLF-4 overexpression. In conclusion, the significantly reduced KLF-4 correlated with the EC malignance. And the overexpressed KLF-4 promoted the EMT and proliferation of EC cells in vitro. The present study recognized the tumor suppressive role of KLF-4 in EC.
Collapse
Affiliation(s)
- Xiaoli Wang
- a Department of Obstetrics and Gynecology , Yantai Yuhuangding Hospital of Qingdao University , Yantai , Shandong , China
| | - Xiaoyan Li
- a Department of Obstetrics and Gynecology , Yantai Yuhuangding Hospital of Qingdao University , Yantai , Shandong , China
| | - Cuiping Huang
- a Department of Obstetrics and Gynecology , Yantai Yuhuangding Hospital of Qingdao University , Yantai , Shandong , China
| | - Lei Li
- a Department of Obstetrics and Gynecology , Yantai Yuhuangding Hospital of Qingdao University , Yantai , Shandong , China
| | - Hongmei Qu
- a Department of Obstetrics and Gynecology , Yantai Yuhuangding Hospital of Qingdao University , Yantai , Shandong , China
| | - Xiaoyan Yu
- a Department of Obstetrics and Gynecology , Yantai Yuhuangding Hospital of Qingdao University , Yantai , Shandong , China
| | - Huijie Ni
- a Department of Obstetrics and Gynecology , Yantai Yuhuangding Hospital of Qingdao University , Yantai , Shandong , China
| | - Qing Cui
- a Department of Obstetrics and Gynecology , Yantai Yuhuangding Hospital of Qingdao University , Yantai , Shandong , China
| |
Collapse
|
21
|
Fei HR, Tian H, Zhou XL, Yang MF, Sun BL, Yang XY, Jiao P, Wang FZ. Inhibition of autophagy enhances effects of PF-04691502 on apoptosis and DNA damage of lung cancer cells. Int J Biochem Cell Biol 2016; 78:52-62. [DOI: 10.1016/j.biocel.2016.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
|
22
|
Farrugia MK, Vanderbilt DB, Salkeni MA, Ruppert JM. Kruppel-like Pluripotency Factors as Modulators of Cancer Cell Therapeutic Responses. Cancer Res 2016; 76:1677-82. [PMID: 26964625 PMCID: PMC4873413 DOI: 10.1158/0008-5472.can-15-1806] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/25/2015] [Indexed: 12/30/2022]
Abstract
Tumor cells inherit from their normal precursors an extensive stress response machinery that is critical for survival in response to challenges including oxidative stress, wounding, and shear stress. Kruppel-like transcription factors, including KLF4 and KLF5, are rarely affected by genetic alteration during tumorigenesis, but compose key components of the stress response machinery in normal and tumor cells and interact with critical survival pathways, including RAS, p53, survivin, and the BCL2 family of cell death regulators. Within tumor cells, KLF4 and KLF5 play key roles in tumor cell fate, regulating cell proliferation, cell survival, and the tumor-initiating properties of cancer stem-like cells. These factors can be preferentially expressed in embryonic stem cells or cancer stem-like cells. Indeed, specific KLFs represent key components of a cross-regulating pluripotency network in embryonic stem cells and induce pluripotency when coexpressed in adult cells with other Yamanaka factors. Suggesting analogies between this pluripotency network and the cancer cell adaptive reprogramming that occurs in response to targeted therapy, recent studies link KLF4 and KLF5 to adaptive prosurvival signaling responses induced by HER2-targeted therapy. We review literature supporting KLFs as shared mechanisms in stress adaptation and cellular reprogramming and address the therapeutic implications. Cancer Res; 76(7); 1677-82. ©2016 AACR.
Collapse
Affiliation(s)
- Mark K Farrugia
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia. Program in Cancer Cell Biology, West Virginia University, Morgantown, West Virginia
| | - Daniel B Vanderbilt
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia. Program in Cancer Cell Biology, West Virginia University, Morgantown, West Virginia
| | - Mohamad A Salkeni
- The West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia. Department of Medicine, West Virginia University, Morgantown, West Virginia
| | - J Michael Ruppert
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia. Program in Cancer Cell Biology, West Virginia University, Morgantown, West Virginia. The West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
23
|
Li K, Gao B, Li J, Chen H, Li Y, Wei Y, Gong D, Gao J, Zhang J, Tan W, Wen T, Zhang L, Huang L, Xiang R, Lin P, Wei Y. ZNF32 protects against oxidative stress-induced apoptosis by modulating C1QBP transcription. Oncotarget 2015; 6:38107-26. [PMID: 26497555 PMCID: PMC4741987 DOI: 10.18632/oncotarget.5646] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/06/2015] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS)-driven oxidative stress has been recognized as a critical inducer of cancer cell death in response to therapeutic agents. Our previous studies have demonstrated that zinc finger protein (ZNF)32 is key to cell survival upon oxidant stimulation. However, the mechanisms by which ZNF32 mediates cell death remain unclear. Here, we show that at moderate levels of ROS, Sp1 directly binds to two GC boxes within the ZNF32 promoter to activate ZNF32 transcription. Alternatively, at cytotoxic ROS concentrations, ZNF32 expression is repressed due to decreased binding activity of Sp1. ZNF32 overexpression maintains mitochondrial membrane potential and enhances the antioxidant capacity of cells to detoxify ROS, and these effects promote cell survival upon pro-oxidant agent treatment. Alternatively, ZNF32-deficient cells are more sensitive and vulnerable to oxidative stress-induced cell injury. Mechanistically, we demonstrate that complement 1q-binding protein (C1QBP) is a direct target gene of ZNF32 that inactivates the p38 MAPK pathway, thereby exerting the protective effects of ZNF32 on oxidative stress-induced apoptosis. Taken together, our findings indicate a novel mechanism by which the Sp1-ZNF32-C1QBP axis protects against oxidative stress and implicate a promising strategy that ZNF32 inhibition combined with pro-oxidant anticancer agents for hepatocellular carcinoma treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Binding Sites
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Dose-Response Relationship, Drug
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Hep G2 Cells
- Humans
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Membrane Potential, Mitochondrial
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Oxidants/pharmacology
- Oxidative Stress/drug effects
- Promoter Regions, Genetic
- RNA Interference
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Sp1 Transcription Factor/metabolism
- Time Factors
- Transcription, Genetic/drug effects
- Transcriptional Activation
- Transfection
- Xenograft Model Antitumor Assays
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Kai Li
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bo Gao
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Department of Pathology, College of Clinical Medicine, Dali University, Dali, China
| | - Jun Li
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Haining Chen
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyan Li
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yuyan Wei
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Di Gong
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Junping Gao
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jie Zhang
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Weiwei Tan
- Department Biorepository, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tianfu Wen
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Le Zhang
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lugang Huang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University, and Collaborative Innovation Center for Biotherapy, Tianjin, China
| | - Ping Lin
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yuquan Wei
- Department of Cancer Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
24
|
Liu C, DeRoo EP, Stecyk C, Wolsey M, Szuchnicki M, Hagos EG. Impaired autophagy in mouse embryonic fibroblasts null for Krüppel-like Factor 4 promotes DNA damage and increases apoptosis upon serum starvation. Mol Cancer 2015; 14:101. [PMID: 25944097 PMCID: PMC4422415 DOI: 10.1186/s12943-015-0373-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/23/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Autophagy is a major cellular process by which cytoplasmic components such as damaged organelles and misfolded proteins are recycled. Although low levels of autophagy occur in cells under basal conditions, certain cellular stresses including nutrient depletion, DNA damage, and oxidative stress are known to robustly induce autophagy. Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor activated during oxidative stress to maintain genomic stability. Both autophagy and KLF4 play important roles in response to stress and function in tumor suppression. METHODS To explore the role of KLF4 on autophagy in mouse embryonic fibroblasts (MEFs), we compared wild-type with Klf4 deficient cells. To determine the levels of autophagy, we starved MEFs for different times with Earle's balanced salts solution (EBSS). Rapamycin was used to manipulate mTOR activity and autophagy. The percentage of cells with γ-H2AX foci, a marker for DNA damage, and punctate pattern of GFP-LC3 were counted by confocal microscopy. The effects of the drug treatments, Klf4 overexpression, or Klf4 transient silencing on autophagy were analyzed using Western blot. Trypan Blue assay and flow cytometry were used to study cell viability and apoptosis, respectively. qPCR was also used to assay basal and the effects of Klf4 overexpression on Atg7 expression levels. RESULTS Here our data suggested that Klf4 (-/-) MEFs exhibited impaired autophagy, which sensitized them to cell death under nutrient deprivation. Secondly, DNA damage in Klf4-null MEFs increased after treatment with EBSS and was correlated with increased apoptosis. Thirdly, we found that Klf4 (-/-) MEFs showed hyperactive mTOR activity. Furthermore, we demonstrated that rapamycin reduced the increased level of mTOR in Klf4 (-/-) MEFs, but did not restore the level of autophagy. Finally, re-expression of Klf4 in Klf4 deficient MEFs resulted in increased levels of LC3II, a marker for autophagy, and Atg7 expression level when compared to GFP-control transfected Klf4 (-/-) MEFs. CONCLUSION Taken together, our results strongly suggest that KLF4 plays a critical role in the regulation of autophagy and suppression of mTOR activity. In addition, we showed that rapamycin decreased the level of mTOR in Klf4 (-/-) MEFs, but did not restore autophagy. This suggests that KLF4 regulates autophagy through both mTOR-dependent and independent mechanisms. Furthermore, for the first time, our findings provide novel insights into the mechanism by which KLF4 perhaps prevents DNA damage and apoptosis through activation of autophagy.
Collapse
Affiliation(s)
- Changchang Liu
- Department of Biology, Colgate University, 13 Oak Dr., Olin Hall 205A, Hamilton, NY, 13346, USA.
| | - Elise P DeRoo
- Department of Biology, Colgate University, 13 Oak Dr., Olin Hall 205A, Hamilton, NY, 13346, USA. .,Program in Cellular and Molecular Medicine, Boston Childrens Hospital, Boston, MA, 02115, USA. .,School of Medical School, Harvard University, Boston, MA, 02115, USA.
| | - Catherine Stecyk
- Department of Biology, Colgate University, 13 Oak Dr., Olin Hall 205A, Hamilton, NY, 13346, USA. .,Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA.
| | - Margaret Wolsey
- Department of Biology, Colgate University, 13 Oak Dr., Olin Hall 205A, Hamilton, NY, 13346, USA.
| | - Mateusz Szuchnicki
- Department of Biology, Colgate University, 13 Oak Dr., Olin Hall 205A, Hamilton, NY, 13346, USA.
| | - Engda G Hagos
- Department of Biology, Colgate University, 13 Oak Dr., Olin Hall 205A, Hamilton, NY, 13346, USA.
| |
Collapse
|
25
|
Nie X, Liang L, Xi H, Jiang S, Jiang J, Tang C, Liu X, Liu S, Wan C, Zhao J, Yang J. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin induces premature senescence of astrocytes via WNT/β-catenin signaling and ROS production. J Appl Toxicol 2014; 35:851-60. [PMID: 25382668 DOI: 10.1002/jat.3084] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental contaminant that could exert significant neurotoxicity in the human nervous system. Nevertheless, the molecular mechanism underlying TCDD-mediated neurotoxicity has not been clarified clearly. Herein, we investigated the potential role of TCDD in facilitating premature senescence in astrocytes and the underlying molecular mechanisms. Using the senescence-associated β-galactosidase (SA-β-Gal) assay, we demonstrated that TCDD exposure triggered significant premature senescence of astrocyte cells, which was accompanied by a marked activation of the Wingless and int (WNT)/β-catenin signaling pathway. In addition, TCDD altered the expression of senescence marker proteins, such as p16, p21 and GFAP, which together have been reported to be upregulated in aging astrocytes, in both dose- and time-dependent manners. Further, TCDD led to cell-cycle arrest, F-actin reorganization and the accumulation of cellular reactive oxygen species (ROS). Moreover, the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and astrocyte senescence. Notably, the application of XAV939, an inhibitor of WNT/β-catenin signaling pathway, ameliorated the effect of TCDD on cellular β-catenin level, ROS production, cellular oxidative damage and premature senescence in astrocytes. In summary, our findings indicated that TCDD might induce astrocyte senescence via WNT/β-catenin and ROS-dependent mechanisms.
Collapse
Affiliation(s)
- Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Lingwei Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Hanqing Xi
- Department of Disease Prevention, Second People's Hospital of Nantong, Nantong, Jiangsu Province, 226001, China
| | - Shengyang Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Junkang Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Cuiying Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Xipeng Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Suyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Jianbin Yang
- Department of Disease Prevention, Second People's Hospital of Nantong, Nantong, Jiangsu Province, 226001, China
| |
Collapse
|
26
|
Pimentel-Santillana M, Través PG, Pérez-Sen R, Delicado EG, Martín-Sanz P, Miras-Portugal MT, Boscá L. Sustained release of prostaglandin E₂ in fibroblasts expressing ectopically cyclooxygenase 2 impairs P2Y-dependent Ca²⁺-mobilization. Mediators Inflamm 2014; 2014:832103. [PMID: 25214717 PMCID: PMC4151624 DOI: 10.1155/2014/832103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023] Open
Abstract
The nucleotide uridine trisphosphate (UTP) released to the extracellular milieu acts as a signaling molecule via activation of specific pyrimidine receptors (P2Y). P2Y receptors are G protein-coupled receptors expressed in many cell types. These receptors mediate several cell responses and they are involved in intracellular calcium mobilization. We investigated the role of the prostanoid PGE2 in P2Y signaling in mouse embryonic fibroblasts (MEFs), since these cells are involved in different ontogenic and physiopathological processes, among them is tissue repair following proinflammatory activation. Interestingly, Ca(2+)-mobilization induced by UTP-dependent P2Y activation was reduced by PGE2 when this prostanoid was produced by MEFs transfected with COX-2 or when PGE2 was added exogenously to the culture medium. This Ca(2+)-mobilization was important for the activation of different metabolic pathways in fibroblasts. Moreover, inhibition of COX-2 with selective coxibs prevented UTP-dependent P2Y activation in these cells. The inhibition of P2Y responses by PGE2 involves the activation of PKCs and PKD, a response that can be suppressed after pharmacological inhibition of these protein kinases. In addition to this, PGE2 reduces the fibroblast migration induced by P2Y-agonists such as UTP. Taken together, these data demonstrate that PGE2 is involved in the regulation of P2Y signaling in these cells.
Collapse
Affiliation(s)
- María Pimentel-Santillana
- 1Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Paqui G. Través
- 1Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
- 2The Salk Institute, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Raquel Pérez-Sen
- 3Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - Esmerilda G. Delicado
- 3Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - Paloma Martín-Sanz
- 1Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
- 4Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
| | - María Teresa Miras-Portugal
- 3Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - Lisardo Boscá
- 1Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
- 3Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
- 4Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
- *Lisardo Boscá:
| |
Collapse
|