1
|
Yang R, Han Y, Guan X, Hong Y, Meng J, Ding S, Long Q, Yi W. Regulation and clinical potential of telomerase reverse transcriptase (TERT/hTERT) in breast cancer. Cell Commun Signal 2023; 21:218. [PMID: 37612721 PMCID: PMC10463831 DOI: 10.1186/s12964-023-01244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023] Open
Abstract
Telomerase reverse transcriptase (TERT/hTERT) serves as the pivotal catalytic subunit of telomerase, a crucial enzyme responsible for telomere maintenance and human genome stability. The high activation of hTERT, observed in over 90% of tumors, plays a significant role in tumor initiation and progression. An in-depth exploration of hTERT activation mechanisms in cancer holds promise for advancing our understanding of the disease and developing more effective treatment strategies. In breast cancer, the expression of hTERT is regulated by epigenetic, transcriptional, post-translational modification mechanisms and DNA variation. Besides its canonical function in telomere maintenance, hTERT exerts non-canonical roles that contribute to disease progression through telomerase-independent mechanisms. This comprehensive review summarizes the regulatory mechanisms governing hTERT in breast cancer and elucidates the functional implications of its activation. Given the overexpression of hTERT in most breast cancer cells, the detection of hTERT and its associated molecules are potential for enhancing early screening and prognostic evaluation of breast cancer. Although still in its early stages, therapeutic approaches targeting hTERT and its regulatory molecules show promise as viable strategies for breast cancer treatment. These methods are also discussed in this paper. Video Abstract.
Collapse
Affiliation(s)
- Ruozhu Yang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yi Han
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Xinyu Guan
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yue Hong
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Jiahao Meng
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Shirong Ding
- Department of Oncology, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Qian Long
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Wenjun Yi
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| |
Collapse
|
2
|
Penta D, Natesh J, Mondal P, Meeran SM. Dietary Diindolylmethane Enhances the Therapeutic Effect of Centchroman in Breast Cancer by Inhibiting Neoangiogenesis. Nutr Cancer 2023; 75:734-749. [PMID: 36370104 DOI: 10.1080/01635581.2022.2143825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tumor angiogenesis is primarily regulated by vascular endothelial growth factor and its receptor (VEGF-VEGFR) communication, which is involved in cancer cell growth, progression, and metastasis. Diindolylmethane (DIM), a dietary bioactive from cruciferous vegetables, has been extensively studied in preclinical models for breast cancer prevention and treatment. Nevertheless, the possible role of DIM in the angiogenesis and metastasis regulations in triple-negative breast cancer (TNBC) remains elusive. Here, we investigated the potential anti-angiogenic and anti-metastatic role of DIM in combination with centchroman (CC). We observed that the oral administration of the DIM and CC combination suppressed primary tumor growth and tumor-associated vascularization in 4T1 tumors. Further, the DIM and CC combination exhibited a strong inhibitory effect on VEGF-induced angiogenesis in matrigel plugs. The mechanistic study demonstrated that DIM and CC could effectively downregulate VEGFA expression in tumor tissue and strongly interact with VEGFR2 to block its kinase activity. Interestingly, the DIM and CC combination also suppressed the lung metastasis of the highly metastatic 4T1 tumors through the downregulation of FAK/MMP9/2 signaling and reversal of epithelial-to-mesenchymal transition (EMT). Overall, these findings suggest that DIM-based nutraceuticals and functional foods can be developed as adjuvant therapy for treating TNBC.
Collapse
Affiliation(s)
- Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Penta D, Tripathi P, Rajarajan D, Natesh J, Mondal P, Meeran SM. Diindolylmethane Promotes Metabolic Crisis and Enhances the Efficacy of Centchroman in Breast Cancer: A 1H NMR-Based Approach. ACS OMEGA 2022; 7:43147-43160. [PMID: 36467932 PMCID: PMC9713897 DOI: 10.1021/acsomega.2c05832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/07/2022] [Indexed: 05/20/2023]
Abstract
Diindolylmethane (DIM) is a key metabolite of indole-3-carbinol found in cruciferous vegetables such as broccoli, cauliflower, and cabbage. DIM has been known for its anti-cancerous activity through various mechanisms. Most cancer cells, including triple-negative breast cancer (TNBC), adapt distinct metabolic reprogramming for rapid growth and proliferation. Hence, targeting metabolic dysregulation may provide a favorable therapeutic condition for the treatment of TNBC. Earlier, we found that DIM increases the intracellular accumulation of Centchroman (CC), a potential anticancer agent, thereby enhancing the therapeutic potential of CC against breast cancer. However, the role of DIM in regulating TNBC cellular metabolism remains unknown. In the current study, we investigated the potential therapeutic interventions of DIM in TNBC and its metabolic reprogramming in enhancing the efficacy of CC. We found that DIM induced metabolic catastrophe in TNBC cells by regulating aerobic glycolysis and intermediate metabolism. Further, the DIM and CC combination significantly inhibited the TNBC tumor growth in the 4T1-syngeneic model. The inhibition of tumor growth was associated with the downregulation of key aerobic glycolysis mediators such as PKM2, GLUT1, and hypoxia-inducible factor 1α (HIF-1α). This is a first-of-a-kind investigation linking DIM with aerobic glycolysis regulation and enhancing the treatment efficacy of CC against TNBC. Therefore, these findings suggest that DIM-based nutraceuticals and functional foods can be developed as adjuvant therapy for treating metabolically dysregulated TNBC.
Collapse
Affiliation(s)
- Dhanamjai Penta
- Department
of Biochemistry, CSIR-Central Food Technological
Research Institute, Mysore, Karnataka 570020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratima Tripathi
- Plantation
Products, Spices & Flavour Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Dheeran Rajarajan
- Department
of Biochemistry, CSIR-Central Food Technological
Research Institute, Mysore, Karnataka 570020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadish Natesh
- Department
of Biochemistry, CSIR-Central Food Technological
Research Institute, Mysore, Karnataka 570020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Mondal
- Department
of Biochemistry, CSIR-Central Food Technological
Research Institute, Mysore, Karnataka 570020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Musthapa Meeran
- Department
of Biochemistry, CSIR-Central Food Technological
Research Institute, Mysore, Karnataka 570020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- , . Phone: +91 821 2517760
ext.: 2476. Fax: +91 821 2516308
| |
Collapse
|
4
|
S L, A S, Dv S, Bs R, R S, Sharaf S, Sa A, G R. Comparative differential cytotoxicity of clinically used SERMs in human cancer lines of different origin and its predictive molecular docking studies of key target genes involved in cancer progression and treatment responses. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 3:100080. [PMID: 35059624 PMCID: PMC8760488 DOI: 10.1016/j.crphar.2021.100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
SERMS like Tamoxifene, 5-hydroxy tamoxifene, raloxifene and endoxifene has been used for the treatment of hormonal imbalances and dependent cancers owing to their action via Estrogen receptors as in the treatment of estrogen sensitive breast cancers. Due to the adverse side effects, modifications and development of the existing or newer SERMS has always been of immense interest. Ormeloxifene, a SERM molecule manufactured by HLL Lifecare Ltd, India as birth control under the trade names Saheli, Novex, and Novex-DS which is also investigated against mastalgia, fibro-adenoma and abnormal uterine bleeding. Anti-cancer effects have been reported in estrogen dependent and independent cancers which shows its wide scope to be implemented in cancer therapy. Current investigation is a comprehensive effort to find the cytotoxic potential of Ormeloxifene in comparison with clinically used four SERMS in twenty six cancer cell lines of different origin using Adriamycin as positive control. Also the computational studies pertaining to selected target/ligand with respect to tumor progression, development, treatment responses and apoptosis. The studies proved effective cytotoxicity of Ormeloxifene on cancer cell lines with lower TGI, GI50 and LC50 values which are significantly comparable. Also the in silico studies proved that the docking score of the compound suggests the interaction of the compound which could tightly regulate key target genes controlling cancer like ER, EGFR kinase, EGFR-cSRC, HDAC-2, PARP-1 and BRAF. This study brings out the superior efficacy of Ormeloxifene compared to other SERMS with proven safety profile to be repositioned as an anti-cancer drug to treat diverse cancer types.
Collapse
Affiliation(s)
- Lakshmi S
- Corporate R&D Centre, HLL Lifecare Limited, Thiruvananthapuram, Pincode- 695 017, India
| | - Shanitha A
- Dept. of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, Pincode-695581, India
| | - Shiny Dv
- Corporate R&D Centre, HLL Lifecare Limited, Thiruvananthapuram, Pincode- 695 017, India
| | - Rahul Bs
- Corporate R&D Centre, HLL Lifecare Limited, Thiruvananthapuram, Pincode- 695 017, India
| | - Saikant R
- Corporate R&D Centre, HLL Lifecare Limited, Thiruvananthapuram, Pincode- 695 017, India
| | - Shehna Sharaf
- Corporate R&D Centre, HLL Lifecare Limited, Thiruvananthapuram, Pincode- 695 017, India
| | - Abi Sa
- Corporate R&D Centre, HLL Lifecare Limited, Thiruvananthapuram, Pincode- 695 017, India
| | - Rajmohan G
- Corporate R&D Centre, HLL Lifecare Limited, Thiruvananthapuram, Pincode- 695 017, India
| |
Collapse
|
5
|
Rajarajan D, Natesh J, Penta D, Meeran SM. Dietary Piperine Suppresses Obesity-Associated Breast Cancer Growth and Metastasis by Regulating the miR-181c-3p/ PPARα Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15562-15574. [PMID: 34905918 DOI: 10.1021/acs.jafc.1c05670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adipocyte-derived leptin activates multiple oncogenic signaling, leading to breast cancer cell progression and metastasis. Hence, finding effective strategies to inhibit the oncogenic effects of leptin would provide a novel approach for disrupting obesity-associated breast cancer. In the current study, we explored the role of piperine, a major plant alkaloid from Piper nigrum (black pepper), against leptin-induced breast cancer. Piperine treatment significantly inhibited leptin-induced breast cancer cell proliferation, colony formation, migration, and invasion. We found that piperine downregulated the expression of PPARα, a predicted target of miR-181c-3p. Mechanistically, piperine potentiates miR-181c-3p-mediated anticancer potential in leptin-induced breast cancer cells. Interestingly, the knockdown of PPARα reduced the proliferative potential of leptin-induced breast cancer cells. Further, oral administration of piperine inhibited breast tumor growth in diet-induced obese mice, accompanied by the upregulation of miR-181c-3p and downregulation of PPARα expression. Together, piperine represents a potential candidate for further development as an anticancer agent for treating obesity-associated breast cancer.
Collapse
Affiliation(s)
- Dheeran Rajarajan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Abstract
Aim: The current investigation is focused on the targeted delivery of doxorubicin through CD44 aptamer-mediated active targeting to the human breast cancer cells. Methods: CD44 aptamer-doxorubicin (Apt-Dox) conjugates were developed by incubating different molar ratios of aptamer and doxorubicin. Cytotoxicity, selective intracellular accumulation and uptake of the Apt-Dox conjugates were analyzed to evaluate the efficacy of Apt-Dox conjugates. Results: Dox was efficiently conjugated with aptamer at 1:2 Apt-Dox molar ratios. Apt-Dox conjugate significantly inhibited the proliferation of CD44-overexpressing breast cancer cells, whereas negligible inhibition of cell proliferation was found in the control cells. Apt-Dox conjugate selectively internalized and accumulated in CD44-overexpressing cells. Conclusion: Apt-Dox conjugate selectively delivers doxorubicin to CD44-expressing cancer cells, thereby inhibiting selective cell proliferation and enhancing the targeted therapy.
Collapse
|
7
|
Penta D, Mondal P, Natesh J, Meeran SM. Dietary bioactive diindolylmethane enhances the therapeutic efficacy of centchroman in breast cancer cells by regulating ABCB1/P-gp efflux transporter. J Nutr Biochem 2021; 94:108749. [PMID: 33910062 DOI: 10.1016/j.jnutbio.2021.108749] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/13/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
Overexpression of drug efflux transporters is commonly associated with multidrug-resistance in cancer therapy. Here for the first time, we investigated the ability of diindolylmethane (DIM), a dietary bioactive rich in cruciferous vegetables, in enhancing the efficacy of Centchroman (CC) by modulating the drug efflux transporters in human breast cancer cells. CC is a selective estrogen receptor modulator, having promising therapeutic efficacy against breast cancer. The combination of DIM and CC synergistically inhibited cell proliferation and induced apoptosis in breast cancer cells. This novel combination has also hindered the stemness of human breast cancer cells. Molecular docking analysis revealed that DIM had shown a strong binding affinity with the substrate-binding sites of ABCB1 (P-gp) and ABCC1 (MRP1) drug-efflux transporters. DIM has increased the intracellular accumulation of Hoechst and Calcein, the substrates of P-gp and MRP1, respectively, in breast cancer cells. Further, DIM stimulates P-gp ATPase activity, which indicates that DIM binds at the substrate-binding domain of P-gp, and thereby inhibits its efflux activity. Intriguingly, DIM enhanced the intracellular concentration of CC by inhibiting the P-gp and MRP1 expression as well as activity. The intracellular retaining of CC has increased its efficacy against breast cancer. Overall, DIM, a dietary bioactive, enhances the anticancer efficiency of CC through modulation of drug efflux ABC-transporters in breast cancer cells. Therefore, DIM-based nutraceuticals and functional foods can be developed as adjuvant therapy against human breast cancer.
Collapse
Affiliation(s)
- Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Khan S, Shukla S, Farhan M, Sinha S, Lakra AD, Penta D, Kannan A, Meeran SM. Centchroman prevents metastatic colonization of breast cancer cells and disrupts angiogenesis via inhibition of RAC1/PAK1/β-catenin signaling axis. Life Sci 2020; 256:117976. [PMID: 32561397 DOI: 10.1016/j.lfs.2020.117976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 12/24/2022]
Abstract
AIMS We have previously reported that Centchroman (CC), an oral contraceptive drug, inhibits breast cancer progression and metastasis. In this study, we investigated whether CC inhibits local invasion of tumor cells and/or their metastatic colonization with detailed underlying mechanisms. MAIN METHODS The effect of CC on the experimental metastasis and spontaneous metastasis was demonstrated by using tail-vein and orthotopic 4T1-syngeneic mouse tumor models, respectively. The anti-angiogenic potential of CC was evaluated using well established in vitro and in vivo models. The role of RAC1/PAK1/β-catenin signaling axis in the metastasis was investigated and validated using siRNA-mediated knockdown of PAK1 as well as by pharmacological PAK1-inhibitor. KEY FINDINGS The oral administration of CC significantly suppressed the formation of metastatic lung nodules in the 4T1-syngeneic orthotopic as well as experimental metastatic models. More importantly, CC treatment suppressed the tube formation and migration capacities of human umbilical vein endothelial cells (HUVEC) and inhibited pre-existing vasculature as well as the formation of neovasculature. The suppression of migration and invasion capacities of metastatic breast cancer cells upon CC treatment was associated with the inhibition of small GTPases (Rac1 and Cdc42) concomitant with the downregulation of PAK1 and downstream β-catenin signaling. In addition, CC upregulated the expression of miR-145, which is known to target PAK1. SIGNIFICANCE This study warrants the repurposing of CC as a potential therapeutic agent against metastatic breast cancer.
Collapse
Affiliation(s)
- Sajid Khan
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Samriddhi Shukla
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Farhan
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sonam Sinha
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amar Deep Lakra
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Anbarasu Kannan
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Syed Musthapa Meeran
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India; Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India.
| |
Collapse
|
9
|
Nonhormonal selective estrogen receptor modulator 1-(2-[4-{(3R,4S)-7-Methoxy-2, 2-dimethyl-3-phenyl-chroman-4yl}phenoxy]ethyl)pyrrolidine hydrochloride (ormeloxifene hydrochloride) for the treatment of breast cancer. Drug Dev Res 2018; 79:275-286. [DOI: 10.1002/ddr.21440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022]
|