1
|
Yang L, Miao Z, Li N, Meng L, Feng Q, Qiao D, Wang P, Wang Y, Bai Y, Li Z, Lian S. CMTM4 promotes the motility of colon cancer cells under radiation and is associated with an unfavorable neoadjuvant chemoradiotherapy response and patient survival in rectal cancer. Oncol Lett 2025; 29:138. [PMID: 39839608 PMCID: PMC11747855 DOI: 10.3892/ol.2025.14884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Neoadjuvant chemoradiotherapy (nCRT) is the standard treatment for locally advanced rectal cancer (LARC). Pathological complete regression is closely linked to disease outcomes. However, biomarkers predicting nCRT response and patient survival are lacking for LARC. In the present study, the clinical characteristics and follow-up information of 228 patients with LARC were retrospectively collected. Immunohistochemistry (IHC), reverse transcription-quantitative PCR (RT-qPCR), Kaplan-Meier and multivariate analyses were used to evaluate the expression and predict the role of CKLF-like MARVEL transmembrane domain member 4 (CMTM4) in LARC. Additionally, lentiviral short hairpin (sh)RNA was used to interfere with CMTM4 expression. The phenotype of CMTM4-knockdown LoVo cells was determined by colony formation, migration and invasion assays under irradiation (IR) treatment. RNA-sequencing (RNA-seq) analysis was also used to explore the CMTM4-regulated genes in LoVo-shCMTM4 cells compared with control cells. RT-qPCR was then used to confirm the expression of these CMTM4-regulated genes. CMTM4 expression in pre-nCRT tissues indicated an unfavorable response and a short disease-free survival (DFS) with LARC. The expression of CMTM4 significantly increased following nCRT treatment. Additionally, CMTM4 knockdown increased the proliferation, migration and invasion of colon cancer cells; however, IR disrupted the cell migration and invasion induced by CMTM4 knockdown. RNA-seq analysis, the Tumor Immune Estimation Resource database and RT-qPCR indicated that CMTM4 was involved in different signaling pathways and regulated immune-related genes such as cluster of differentiation 66b, chemokine (CXC motif) ligand 8 (CXCL8) and programmed cell death 1. Furthermore, CXCL8 expression was found to be negatively associated with CMTM4 expression in patients with LARC by IHC and RT-qPCR. CXCL8 expression on invasion margin regions in post-operative tissues was also an inferior predictor of DFS in patients with LARC. In conclusion, CMTM4 may predict the nCRT response and outcomes in patients with LARC.
Collapse
Affiliation(s)
- Lujing Yang
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Zhiting Miao
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Ningning Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Lin Meng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Qin Feng
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Dongbo Qiao
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Ping Wang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Yue Wang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Yanhua Bai
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Zhongwu Li
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Shenyi Lian
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
2
|
Descoteaux AE, Radulovic M, Alburi D, Bradham CA. CMTM4 is an adhesion modulator that regulates skeletal patterning and primary mesenchyme cell migration in sea urchin embryos. Dev Biol 2025; 521:85-95. [PMID: 39947420 DOI: 10.1016/j.ydbio.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/19/2025]
Abstract
MARVEL proteins, including those of the CMTM gene family, are multi-pass transmembrane proteins that play important roles in vesicular trafficking and cell migration; however, little is understood about their role in development, and their role in skeletal patterning is unexplored. CMTM4 is the only CMTM family member found in the developmental transcriptome of the sea urchin Lytechinus variegatus. Here, we validate that LvCMTM4 is a transmembrane protein and show that perturbation of CMTM4 expression via zygotic morpholino or mRNA injection perturbs skeletal patterning, resulting in loss of secondary skeletal elements and rotational defects. We also demonstrate that normal levels of CMTM4 are required for normal PMC migration and filopodial organization, and that these effects are not due to gross mis-specification of the ectoderm. Finally, we show that CMTM4 is sufficient to mediate mesenchymal cell-cell adhesion. Taken together, these data suggest that CMTM4 controls PMC migration and biomineralization via adhesive regulation during sea urchin skeletogenesis. This is the first discovery of a functionally required adhesive gene in this skeletal patterning system.
Collapse
Affiliation(s)
- Abigail E Descoteaux
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States; Biological Design Center, Boston University, Boston, MA, 02215, United States
| | - Marko Radulovic
- Department of Biology, Boston University, Boston, MA, 02215, United States; Biological Design Center, Boston University, Boston, MA, 02215, United States
| | - Dona Alburi
- Department of Biology, Boston University, Boston, MA, 02215, United States
| | - Cynthia A Bradham
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States; Biological Design Center, Boston University, Boston, MA, 02215, United States; Program in Bioinformatics, Boston University, Boston, MA, 02215, United States.
| |
Collapse
|
3
|
Ni Q, Li G, Chen Y, Bao C, Wang T, Li Y, Ruan X, Wang H, Sun W. LECs regulate neutrophil clearance through IL-17RC/CMTM4/NF-κB axis at sites of inflammation or infection. Mucosal Immunol 2024; 17:723-738. [PMID: 38754839 DOI: 10.1016/j.mucimm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
The lymphatic system plays a vital role in the regulation of tissue fluid balance and the immune response to inflammation or infection. The effects of lymphatic endothelial cells (LECs) on the regulation of neutrophil migration have not been well-studied. In three murine models: imiquimod-induced skin inflammation, Staphylococcus aureus-induced skin infection, and ligature-induced periodontitis, we show that numerous neutrophils migrate from inflamed or infected tissues to the draining lymph nodes via lymphatic vessels. Moreover, inflamed or infected tissues express a high level of interleukin (IL)-17A and tumor necrosis factor (TNF)-α, simultaneously with a significant increase in the release of neutrophil attractors, including CXCL1, CXCL2, CXCL3, and CXCL5. Importantly, in vitro stimulation of LECs with IL-17A plus TNF-α synergistically promoted these chemokine secretions. Mechanistically, tetra-transmembrane protein CMTM4 directly binds to IL-17RC in LECs. IL-17A plus TNF-α stimulates CXC chemokine secretion by promoting nuclear factor-kappa B signaling. In contrast, knockdown of CMTM4 abrogates IL-17A plus TNF-α activated nuclear factor-kappa B signaling pathways. Lastly, the local administration of adeno-associated virus for CMTM4 in Prox1-CreERT2 mice, mediating LEC-specific overexpression of CMTM4, promotes the drainage of neutrophils by LECs and alleviates immune pathological responses. Thus, our findings reveal the vital role of LECs-mediated neutrophil attraction and clearance at sites of inflammation or infection.
Collapse
Affiliation(s)
- Qiaoqi Ni
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Gen Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Chen
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Chen Bao
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yingyi Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaolei Ruan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Wen Sun
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
4
|
Cordani M, Strippoli R, Trionfetti F, Barzegar Behrooz A, Rumio C, Velasco G, Ghavami S, Marcucci F. Immune checkpoints between epithelial-mesenchymal transition and autophagy: A conflicting triangle. Cancer Lett 2024; 585:216661. [PMID: 38309613 DOI: 10.1016/j.canlet.2024.216661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Inhibitory immune checkpoint (ICP) molecules are pivotal in inhibiting innate and acquired antitumor immune responses, a mechanism frequently exploited by cancer cells to evade host immunity. These evasion strategies contribute to the complexity of cancer progression and therapeutic resistance. For this reason, ICP molecules have become targets for antitumor drugs, particularly monoclonal antibodies, collectively referred to as immune checkpoint inhibitors (ICI), that counteract such cancer-associated immune suppression and restore antitumor immune responses. Over the last decade, however, it has become clear that tumor cell-associated ICPs can also induce tumor cell-intrinsic effects, in particular epithelial-mesenchymal transition (EMT) and macroautophagy (hereafter autophagy). Both of these processes have profound implications for cancer metastasis and drug responsiveness. This article reviews the positive or negative cross-talk that tumor cell-associated ICPs undergo with autophagy and EMT. We discuss that tumor cell-associated ICPs are upregulated in response to the same stimuli that induce EMT. Moreover, ICPs themselves, when overexpressed, become an EMT-inducing stimulus. As regards the cross-talk with autophagy, ICPs have been shown to either stimulate or inhibit autophagy, while autophagy itself can either up- or downregulate the expression of ICPs. This dynamic equilibrium also extends to the autophagy-apoptosis axis, further emphasizing the complexities of cellular responses. Eventually, we delve into the intricate balance between autophagy and apoptosis, elucidating its role in the broader interplay of cellular dynamics influenced by ICPs. In the final part of this article, we speculate about the driving forces underlying the contradictory outcomes of the reciprocal, inhibitory, or stimulatory effects between ICPs, EMT, and autophagy. A conclusive identification of these driving forces may allow to achieve improved antitumor effects when using combinations of ICIs and compounds acting on EMT and/or autophagy. Prospectively, this may translate into increased and/or broadened therapeutic efficacy compared to what is currently achieved with ICI-based clinical protocols.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy.
| |
Collapse
|
5
|
Luo T, Xu T, Ou Y, Ci H, Sun J. Prognostic significance of RKIP, TGM2, and CMTM4 expression in oral squamous cell carcinoma. Medicine (Baltimore) 2024; 103:e37278. [PMID: 38363884 PMCID: PMC10869054 DOI: 10.1097/md.0000000000037278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The expression of RKIP, TGM2, and CMTM4 in oral squamous cell carcinoma (OSCC) and normal oral tissues was detected and their correlations were analyzed. The relationships between RKIP, TGM2, and CMTM4 and the clinicopathological parameters and prognosis of patients were analyzed. METHODS Seventy cancerous and adjacent normal tissue samples were selected, recorded in the pathology department, and embedded in paraffin. Protein expression was detected by immunohistochemistry. Statistical software (SPSS 25.0, IBM Corporation) was used for the statistical analysis. The chi-squared (χ2) test was used to analyze the expression of RKIP, TGM2, and CMTM4 proteins and their clinicopathological features. Differences in RKIP, TGM2, and CMTM4 protein levels between OSCC and normal tissues were compared using a χ2 test. Survival analysis was performed using the Kaplan-Meier method, and differences between survival curves were determined using the log-rank test. The effects of RKIP, TGM2, and CMTM4 expression on patient prognosis were analyzed using a multivariate Cox proportional hazards regression model. P < .05 was considered statistically significant. RESULTS The expression level of RKIP correlated with age and clinical stage (P < .05). TGM2 was associated with clinical stage and lymph node metastasis (P < .05). The expression of CMTM4 increased with a decrease in cancer differentiation. Kaplan-Meier survival analysis suggested that the positive expression of TGM2 and CMTM4 may predict poor prognosis in patients with OSCC. The multivariate Cox proportional hazards regression model suggested that TGM2 could be an independent prognostic factor for patients with OSCC. CONCLUSION Combined expression of TGM2 and CMTM4 can be used as an indicator to evaluate the risk of metastasis and prognosis of OSCC.
Collapse
Affiliation(s)
- Tianyu Luo
- Bengbu Medical University, Bengbu, China
| | - Tao Xu
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui, China
| | - Yurong Ou
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui China
| | - Hongfei Ci
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui China
| | - Junhui Sun
- Bengbu Medical University, Bengbu, China
| |
Collapse
|
6
|
Liu S, Wang R, Fang J. Exploring the frontiers: tumor immune microenvironment and immunotherapy in head and neck squamous cell carcinoma. Discov Oncol 2024; 15:22. [PMID: 38294629 PMCID: PMC10830966 DOI: 10.1007/s12672-024-00870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
The global prevalence of head and neck malignancies positions them as the sixth most common form of cancer, with the head and neck squamous cell carcinoma (HNSCC) representing the predominant histological subtype. Despite advancements in multidisciplinary approaches and molecular targeted therapies, the therapeutic outcomes for HNSCC have only marginally improved, particularly in cases of recurrent or metastatic HNSCC (R/MHNSCC). This situation underscores the critical necessity for the development of innovative therapeutic strategies. Such strategies are essential not only to enhance the efficacy of HNSCC treatment but also to minimize the incidence of associated complications, thus improving overall patient prognosis. Cancer immunotherapy represents a cutting-edge cancer treatment that leverages the immune system for targeting and destroying cancer cells. It's applied to multiple cancers, including melanoma and lung cancer, offering precision, adaptability, and the potential for long-lasting remission through immune memory. It is observed that while HNSCC patients responsive to immunotherapy often experience prolonged therapeutic benefits, only a limited subset demonstrates such responsiveness. Additionally, significant clinical challenges remain, including the development of resistance to immunotherapy. The biological characteristics, dynamic inhibitory changes, and heterogeneity of the tumor microenvironment (TME) in HNSCC play critical roles in its pathogenesis, immune evasion, and therapeutic resistance. This review aims to elucidate the functions and mechanisms of anti-tumor immune cells and extracellular components within the HNSCC TME. It also introduces several immunosuppressive agents commonly utilized in HNSCC immunotherapy, examines factors influencing the effectiveness of these treatments, and provides a comprehensive summary of immunotherapeutic strategies relevant to HNSCC.
Collapse
Affiliation(s)
- Shaokun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Duan SL, Jiang Y, Li GQ, Fu W, Song Z, Li LN, Li J. Research insights into the chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTM): their roles in various tumors. PeerJ 2024; 12:e16757. [PMID: 38223763 PMCID: PMC10787544 DOI: 10.7717/peerj.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing (CMTM) family includes CMTM1-8 and CKLF, and they play key roles in the hematopoietic, immune, cardiovascular, and male reproductive systems, participating in the physiological functions, cancer, and other diseases associated with these systems. CMTM family members activate and chemoattract immune cells to affect the proliferation and invasion of tumor cells through a similar mechanism, the structural characteristics typical of chemokines and transmembrane 4 superfamily (TM4SF). In this review, we discuss each CMTM family member's chromosomal location, involved signaling pathways, expression patterns, and potential roles, and mechanisms of action in pancreatic, breast, gastric and liver cancers. Furthermore, we discuss several clinically applied tumor therapies targeted at the CMTM family, indicating that CMTM family members could be novel immune checkpoints and potential targets effective in tumor treatment.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha Province, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Yingke Jiang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha Province, Hunan, China
| | - Guo-Qing Li
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Weijie Fu
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha Province, Hunan, China
| | - Li-Nan Li
- Department of Oncology, The 1st Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Li
- Department of Oncology, The 1st Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
8
|
Pei Y, Zhang Z, Tan S. Current Opinions on the Relationship Between CMTM Family and Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1411-1422. [PMID: 37649636 PMCID: PMC10464892 DOI: 10.2147/jhc.s417202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a typically malignant tumor in the digestive system. The mortality of HCC ranks third place in the world, second only to lung cancer and colorectal cancer. For the characteristics of high invasiveness, high metastasis, high recurrence rate as well as short survival time, HCC treatment has always been difficult in clinical practice. Many causes have contributed to the appearance of these features, including insidious onset, high degree of malignancy, lack of effective early molecular diagnostic markers, and disease prediction models. The human chemokine-like factor superfamily (CMTMs) is a new gene family consisting of CKLF and CMTM1-CMTM8. CMTMs have a marvel domain which can activate and chemotaxis immune cells. Many studies have reported that CMTMs are involved in the regulation of cell growth and development, and play an important role in the malignant progression of the immune system and reproductive system, especially in the development of tumors. In this review, we summarized the structure and function of the human CMTMs, the relationship between its family members and HCC, the prognostic value, potential functions, and mechanisms in HCC. CMTMs could provide a new diagnostic and therapeutic target in clinical practice for patients with HCC.
Collapse
Affiliation(s)
- Yulin Pei
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, People’s Republic of China
- Public Health Department of Guilin Medical University, Guilin, Guangxi, People’s Republic of China
| | - Zhengbao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, People’s Republic of China
- Public Health Department of Guilin Medical University, Guilin, Guangxi, People’s Republic of China
| | - Shengkui Tan
- Public Health Department of Youjiang Medical University For Nationalities, Baise, GuangxiPeople's Republic of China
| |
Collapse
|
9
|
Li Y, Yu H, Feng J. Role of chemokine-like factor 1 as an inflammatory marker in diseases. Front Immunol 2023; 14:1085154. [PMID: 36865551 PMCID: PMC9971601 DOI: 10.3389/fimmu.2023.1085154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Immunoinflammatory mechanisms have been incrementally found to be involved in the pathogenesis of multiple diseases, with chemokines being the main drivers of immune cell infiltration in the inflammatory response. Chemokine-like factor 1 (CKLF1), a novel chemokine, is highly expressed in the human peripheral blood leukocytes and exerts broad-spectrum chemotactic and pro-proliferative effects by activating multiple downstream signaling pathways upon binding to its functional receptors. Furthermore, the relationship between CKLF1 overexpression and various systemic diseases has been demonstrated in both in vivo and in vitro experiments. In this context, it is promising that clarifying the downstream mechanism of CKLF1 and identifying its upstream regulatory sites can yield new strategies for targeted therapeutics of immunoinflammatory diseases.
Collapse
Affiliation(s)
- Yutong Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Jiang C, He L, Xiao S, Wu W, Zhao Q, Liu F. E3 Ubiquitin Ligase RNF125 Suppresses Immune Escape in Head and Neck Squamous Cell Carcinoma by Regulating PD-L1 Expression. Mol Biotechnol 2022; 65:891-903. [DOI: 10.1007/s12033-022-00587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
|
11
|
Burger GA, Nesenberend DN, Lems CM, Hille SC, Beltman JB. Bidirectional crosstalk between epithelial-mesenchymal plasticity and IFN γ-induced PD-L1 expression promotes tumour progression. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220186. [PMID: 36397970 PMCID: PMC9626257 DOI: 10.1098/rsos.220186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Epithelial-mesenchymal transition (EMT) and immunoevasion through upregulation of programmed death-ligand 1 (PD-L1) are important drivers of cancer progression. While EMT has been proposed to facilitate PD-L1-mediated immunosuppression, molecular mechanisms of their interaction remain obscure. Here, we provide insight into these mechanisms by proposing a mathematical model that describes the crosstalk between EMT and interferon gamma (IFNγ)-induced PD-L1 expression. Our model shows that via interaction with microRNA-200 (miR-200), the multi-stability of the EMT regulatory circuit is mirrored in PD-L1 levels, which are further amplified by IFNγ stimulation. This IFNγ-mediated effect is most prominent for cells in a fully mesenchymal state and less strong for those in an epithelial or partially mesenchymal state. In addition, bidirectional crosstalk between miR-200 and PD-L1 implies that IFNγ stimulation allows cells to undergo EMT for lower amounts of inducing signal, and the presence of IFNγ accelerates EMT and decelerates mesenchymal-epithelial transition (MET). Overall, our model agrees with published findings and provides insight into possible mechanisms behind EMT-mediated immune evasion, and primary, adaptive, or acquired resistance to immunotherapy. Our model can be used as a starting point to explore additional crosstalk mechanisms, as an improved understanding of these mechanisms is indispensable for developing better diagnostic and therapeutic options for cancer patients.
Collapse
Affiliation(s)
- Gerhard A. Burger
- Division of Drug Discovery and Safety, Leiden University, Leiden, The Netherlands
| | - Daphne N. Nesenberend
- Division of Drug Discovery and Safety, Leiden University, Leiden, The Netherlands
- Mathematical Institute, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Carlijn M. Lems
- Division of Drug Discovery and Safety, Leiden University, Leiden, The Netherlands
| | - Sander C. Hille
- Mathematical Institute, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Joost B. Beltman
- Division of Drug Discovery and Safety, Leiden University, Leiden, The Netherlands
| |
Collapse
|
12
|
Tan S, Guo X, Bei C, Zhang H, Li D, Zhu X, Tan H. Prognostic significance and immune characteristics of CMTM4 in hepatocellular carcinoma. BMC Cancer 2022; 22:905. [PMID: 35986302 PMCID: PMC9389844 DOI: 10.1186/s12885-022-09999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/11/2022] [Indexed: 12/09/2022] Open
Abstract
Background Previous study has shown that chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family member 4 (CMTM4) can bind and maintain programmed cell death ligand 1 (PD-L1) expression to promote tumor progression by alleviating the suppression of tumor-specific T cell activity, suggesting its potential role in tumor immunotherapy. However, the role of CMTM4 in tumor immunity has not been well clarified, especially in hepatocellular carcinoma (HCC). Methods The protein expression of CMTM4/PD-L1/CD4/CD8 was detected by immunohistochemistry (IHC) detection in 90 cases of HCC tissues. The mRNA expression profiles and related prognosis data were obtained from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC). Two immune therapy cohorts were from Imvigor210 and GSE176307. Results Though the single protein expression of CMTM4, PD-L1, CD4 or CD8 in HCC tissues by IHC detection didn’t show a significant relationship with the prognosis of HCC patients, we found that high co-expression of CMTM4/PD-L1/CD4 showed a good prognosis of HCC patients. Further Timer 2.0 analysis identified that HCC patients with high expression of CMTM4/PD-L1 and high infiltration of CD4+ T cells had a better overall survival than those with low infiltration of CD4+ T cells. Moreover, a series of bioinformatics analyses revealed that CMTM4-related genes posed important effects on prognosis and immunity in HCC patients, and CMTM4 had a positive correlation with infiltration of CD4+ and CD8+ T cells in HCC. At last, we used two immunotherapy cohorts to verify that the combination of CMTM4 with PD-L1 could improve the prognosis of tumor patients underwent immunotherapy. Conclusions CMTM4 and PD-L1 co-expression with T cell infiltration shows prognostic significance in HCC, suggesting combined effect from multiple proteins should be considered in HCC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09999-y.
Collapse
|
13
|
Zhang T, Yu H, Dai X, Zhang X. CMTM6 and CMTM4 as two novel regulators of PD-L1 modulate the tumor microenvironment. Front Immunol 2022; 13:971428. [PMID: 35958549 PMCID: PMC9359082 DOI: 10.3389/fimmu.2022.971428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) plays crucial roles in regulating tumor occurrence, progress, metastasis and drug resistance. However, it remains largely elusive how the components of TME are regulated to govern its functions in tumor biology. Here, we discussed how the two novel functional proteins, chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing 6 (CMTM6) and CMTM4, which involved in the post-translational regulation of PD-L1, modulate the TME functions. The roles of CMTM6 and CMTM4 in regulating TME components, including immune cells and tumor cells themselves were discussed in this review. The potential clinical applications of CMTM6 and CMTM4 as biomarkers to predict therapy efficacy and as new or combined immunotherapy targets are also highlighted. Finally, the current hot topics for the biological function of CMTM6/4 and several significant research directions for CMTM6/4 are also briefly summarized in the review.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Xiaoling Zhang,
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Xiaoling Zhang,
| |
Collapse
|
14
|
Li J, Wang X, Wang X, Liu Y, Zheng N, Xu P, Zhang X, Xue L. CMTM Family and Gastrointestinal Tract Cancers: A Comprehensive Review. Cancer Manag Res 2022; 14:1551-1563. [PMID: 35502328 PMCID: PMC9056025 DOI: 10.2147/cmar.s358963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
Abstract
Gastrointestinal tract cancers are a highly heterogeneous group of malignant diseases, contributing significantly to the burden of death worldwide. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTMs) plays important roles in cancer development and progression. Since the first member was cloned, there have been abundant studies on the relationships between the CMTM family and human cancers. It has been reported that the CMTM family has a large potential prognostic value for multiple cancers. Meanwhile, upregulated or downregulated expression of the family members was related to advanced tumor stage, metastasis, and overall survival. Studies have also reported that these proteins play critical roles in antitumor immunity. We performed a systematic review to sum up the latest advances of CMTM family' roles in gastrointestinal tract cancers, with a primary focus on hepatocellular carcinoma and gastric carcinoma.
Collapse
Affiliation(s)
- Jie Li
- Department of Hematology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Xiaozi Wang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Xiaoning Wang
- Department of Hematology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Yan Liu
- Department of Hematology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Na Zheng
- Department of Hematology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Pengwei Xu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Xianghong Zhang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Liying Xue
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| |
Collapse
|
15
|
Co-Expression with Membrane CMTM6/4 on Tumor Epithelium Enhances the Prediction Value of PD-L1 on Anti-PD-1/L1 Therapeutic Efficacy in Gastric Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13205175. [PMID: 34680324 PMCID: PMC8533876 DOI: 10.3390/cancers13205175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Immunotherapeutic efficacy is low even in PD-L1 positive patients with advanced gastric adenocarcinoma. Based on the results of 6-color multiplex immunofluorescence staining of the gastric tumor tissues in tissue array and 48-case pre-immunotherapy patients, a better prognostic value was found in the membrane co-expression of CMTM6/4 and PD-L1 in tumor epithelial cells than PD-L1 alone. The membrane co-expression of CMTM6/4 and PD-L1 can be used as a valuable tool for precision pre-immunotherapy patient screening in gastric adenocarcinoma. Abstract Anti-PD-1/L1 immunotherapy has been intensively used in heavily treated population with advanced gastric adenocarcinoma. However, the immunotherapeutic efficacy is low even in PD-L1 positive patients. We aimed to establish a new strategy based on the co-expression of CMTM6/4 and PD-L1 for patient stratification before immunotherapy. By analyzing the data obtained from TCGA and single-cell RNA sequencing at the mRNA level, and 6-color multiplex immunofluorescence staining of tumor tissues in tissue array and 48-case pre-immunotherapy patients at the protein level, we found that CMTM6/4 and PD-L1 co-expressed in both epithelial and mesenchymal regions of gastric adenocarcinoma. The tumor tissues had higher levels of CMTM6/4 expression than their adjacent ones. A positive correlation was found between the expression of CMTM6/4 and the expression of PD-L1 in tumor epithelium. Epithelial co-expression of CMTM6/4 and PD-L1 in gastric tumor region was associated with shorter overall survival but better short-term response to anti-PD-1/L1 immunotherapy. Thus, we developed a predictive model and three pathological patterns based on the membrane co-expression of CMTM6/4 and PD-L1 in tumor epithelial cells for pre-immunotherapy patient screening in gastric adenocarcinoma.
Collapse
|