1
|
Niture S, Ramalinga M, Kedir H, Patacsil D, Niture SS, Li J, Mani H, Suy S, Collins S, Kumar D. TNFAIP8 promotes prostate cancer cell survival by inducing autophagy. Oncotarget 2018; 9:26884-26899. [PMID: 29928491 PMCID: PMC6003558 DOI: 10.18632/oncotarget.25529] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/03/2018] [Indexed: 01/11/2023] Open
Abstract
Tumor necrosis factor-α-inducible protein 8 (TNFAIP8) is a TNF-α inducible anti-apoptotic protein with multiple roles in tumor growth and survival. Mechanisms of cell survival by TNFAIP8 remain elusive. We investigated the role of TNFAIP8 in the regulation of the cell cycle, autophagy, cell survival and neuroendocrine differentiation in prostate cancer cells. We showed that TNFAIP8 dysregulates cell-cycle-related proteins, in PC3 cells. Oncogenic cell survival, drug resistance and dysregulation of cell cycle-related proteins are often associated with autophagy. We demonstrated that TNFAIP8 induces autophagy by increasing expression of autophagy effectors such as LC3β I/II, Beclin1, 4EBP1, p62, and SIRT1. We also demonstrated that TNFAIP8 interacts with autophagy-related protein 3 (ATG3). TNFα treatment increased the expression of TNFAIP8, which was associated with increased autophagy and decreased apoptosis. We also observed an increase in expression of neuroendocrine differentiation markers, synaptophysin and chromogranin A, and drug resistance to anticancer drugs, docetaxel and doxorubicin, in cells transfected with TNFAIP8. Collectively, our findings reveal that by the creation of cellular autophagy events, TNFAIP8 promotes cell survival and drug resistance in prostate cancer cells.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, 27707 NC, USA.,Cancer Research Laboratory, University of the District of Columbia, Washington, 20008 DC, USA
| | - Malathi Ramalinga
- Cancer Research Laboratory, University of the District of Columbia, Washington, 20008 DC, USA
| | - Habib Kedir
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, 27707 NC, USA.,Cancer Research Laboratory, University of the District of Columbia, Washington, 20008 DC, USA
| | - Dorrelyn Patacsil
- Cancer Research Laboratory, University of the District of Columbia, Washington, 20008 DC, USA
| | | | - James Li
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, 20008 DC, USA
| | - Haresh Mani
- Department of Pathology, Inova Fairfax Hospital, Falls Church, 22042 VA, USA
| | - Simeng Suy
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, 20008 DC, USA
| | - Sean Collins
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, 20008 DC, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, 27707 NC, USA.,Cancer Research Laboratory, University of the District of Columbia, Washington, 20008 DC, USA.,Lombardi Comprehensive Cancer Center, Georgetown University, Washington, 20008 DC, USA
| |
Collapse
|
2
|
Corominas-Faja B, Vellon L, Cuyàs E, Buxó M, Martin-Castillo B, Serra D, García J, Lupu R, Menendez JA. Clinical and therapeutic relevance of the metabolic oncogene fatty acid synthase in HER2+ breast cancer. Histol Histopathol 2016; 32:687-698. [PMID: 27714708 DOI: 10.14670/hh-11-830] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fatty acid synthase (FASN) is a key lipogenic enzyme for de novo fatty acid biosynthesis and a druggable metabolic oncoprotein that is activated in most human cancers. We evaluated whether the HER2-driven lipogenic phenotype might represent a biomarker for sensitivity to pharmacological FASN blockade. A majority of clinically HER2-positive tumors were scored as FASN overexpressors in a series of almost 200 patients with invasive breast carcinoma. Re-classification of HER2-positive breast tumors based on FASN gene expression predicted a significantly inferior relapse-free and distant metastasis-free survival in HER2+/FASN+ patients. Notably, non-tumorigenic MCF10A breast epithelial cells engineered to overexpress HER2 upregulated FASN gene expression, and the FASN inhibitor C75 abolished HER2-induced anchorage-independent growth and survival. Furthermore, in the presence of high concentrations of C75, HER2-negative MCF-7 breast cancer cells overexpressing HER2 (MCF-7/HER2) had significantly higher levels of apoptosis than HER2-negative cells. Finally, C75 at non-cytotoxic concentrations significantly reduced the capacity of MCF-7/HER2 cells to form mammospheres, an in vitro indicator of cancer stem-like cells. Collectively, our findings strongly suggest that the HER2-FASN lipogenic axis delineates a group of breast cancer patients that might benefit from treatment with therapeutic regimens containing FASN inhibitors.
Collapse
Affiliation(s)
- Bruna Corominas-Faja
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Luciano Vellon
- IBYME, CONICET-Laboratorio de Immunohematología, Buenos Aires, Argentina
| | - Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Maria Buxó
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Begoña Martin-Castillo
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,Unit of Clinical Research, Catalan Institute of Oncology, Girona, Spain
| | - Dolors Serra
- Department of Biochemistry and Molecular Biology, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi García
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Departament de Química Orgànica, Facultat de Química, Institut de Biomedicina de la UB (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Ruth Lupu
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Rochester, MN, USA.,Mayo Clinic Cancer Center, Rochester, MN, USA.
| | - Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
3
|
Cuyàs E, Fernández-Arroyo S, Corominas-Faja B, Rodríguez-Gallego E, Bosch-Barrera J, Martin-Castillo B, De Llorens R, Joven J, Menendez JA. Oncometabolic mutation IDH1 R132H confers a metformin-hypersensitive phenotype. Oncotarget 2016; 6:12279-96. [PMID: 25980580 PMCID: PMC4494938 DOI: 10.18632/oncotarget.3733] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/11/2015] [Indexed: 02/07/2023] Open
Abstract
Metabolic flexibility might be particularly constrained in tumors bearing mutations in isocitrate dehydrogenase 1 (IDH1) leading to the production of the oncometabolite 2-hydroxygluratate (2HG). To test the hypothesis that IDH1 mutations could generate metabolic vulnerabilities for therapeutic intervention, we utilized an MCF10A cell line engineered with an arginine-to-histidine conversion at position 132 (R132H) in the catalytic site of IDH1, which equips the enzyme with a neomorphic α-ketoglutarate to 2HG reducing activity in an otherwise isogenic background. IDH1 R132H/+ and isogenic IDH1 +/+ parental cells were screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput Phenotype MicroArrayplatform comprising >300 nutrients. A radical remodeling of the metabotype occurred in cells carrying the R132H mutation since they presented a markedly altered ability to utilize numerous carbon catabolic fuels. A mitochondria toxicity-screening modality confirmed a severe inability of IDH1-mutated cells to use various carbon substrates that are fed into the electron transport chain at different points. The mitochondrial biguanide poisons, metformin and phenformin, further impaired the intrinsic weakness of IDH1-mutant cells to use certain carbon-energy sources. Additionally, metabolic reprogramming of IDH1-mutant cells increased their sensitivity to metformin in assays of cell proliferation, clonogenic potential, and mammosphere formation. Targeted metabolomics studies revealed that the ability of metformin to interfere with the anaplerotic entry of glutamine into the tricarboxylic acid cycle could explain the hypersensitivity of IDH1-mutant cells to biguanides. Moreover, synergistic interactions occurred when metformin treatment was combined with the selective R132H-IDH1 inhibitor AGI-5198. Together, these results suggest that therapy involving the simultaneous targeting of metabolic vulnerabilities with metformin, and 2HG overproduction with mutant-selective inhibitors (AGI-5198-related AG-120 [Agios]), might represent a worthwhile avenue of exploration in the treatment of IDH1-mutated tumors.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitaria Pere i Virgili (IISPV), Universitat Rovira i Virgili, Reus, Catalonia. Spain
| | - Bruna Corominas-Faja
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Esther Rodríguez-Gallego
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitaria Pere i Virgili (IISPV), Universitat Rovira i Virgili, Reus, Catalonia. Spain
| | - Joaquim Bosch-Barrera
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain
| | - Begoña Martin-Castillo
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Clinical Research Unit, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain
| | - Rafael De Llorens
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Catalonia, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitaria Pere i Virgili (IISPV), Universitat Rovira i Virgili, Reus, Catalonia. Spain
| | - Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| |
Collapse
|
4
|
Menendez JA, Schroeder B, Peirce SK, Vellon L, Papadimitropoulou A, Espinoza I, Lupu R. Blockade of a key region in the extracellular domain inhibits HER2 dimerization and signaling. J Natl Cancer Inst 2015; 107:djv090. [PMID: 25888715 DOI: 10.1093/jnci/djv090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/03/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Several treatment strategies target the human epidermal growth factor receptor 2 (HER2) in breast carcinomas, including monoclonal antibodies directed against HER2's extracellular domain (ECD) and small molecule inhibitors of its tyrosine kinase activity. Yet, novel therapies are needed that prevent HER2 dimerization with other HER family members, because current treatments are only partially effective. METHODS To test the hypothesis that HER2 activation requires a protein sequence in the HER2-ECD that mediates HER2 homo- and heterodimerization, we introduced a series of deletion mutations in the third subdomain of HER2-ECD. These deletion mutants were retrovirally expressed in breast cancer (BC) cells that naturally overexpress HER2 and in noncancerous, HER2-negative breast epithelial cells. One-factor analysis of variance or Student's t test were used to analyze differences. All statistical tests were two-sided. RESULTS The smallest deletion in the ECD domain of HER2, which removed only 16 amino acids (HER2-ECDΔ451-466), completely disrupted the oncogenic potential of HER2. In contrast to wild-type HER2, the mutant-inhibited anchorage-independent growth (mean number of colonies: mutant, 70, 95% confidence interval [CI] = 55 to 85; wild-type, 400, 95% CI = 320 to 480, P < .001) increased sensitivity to paclitaxel treatment in both transformed and nontransformed cells. Overexpression of HER2Δ451-466 efficiently inhibited activation of HER1, HER2, and HER3 in all cell lines tested. CONCLUSIONS These findings reveal that an essential "activating" sequence exists in the extracellular domain of HER2. Disruption of this sequence disables the HER2 dimerization loop, blocks subsequent activation of HER2-driven oncogenic signaling, and generates a dominant-negative form of HER2. Reagents specifically against this molecular activation switch may represent a novel targeted approach for the management of HER2-overexpressing carcinomas.
Collapse
Affiliation(s)
- Javier A Menendez
- Catalan Institute of Oncology and Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia, Spain (JAM); Department of Medicine and Experimental Pathology (BS, IE, RL) and Mayo Clinic Cancer Center (per institutional guidelines) (BS, RL), Mayo Clinic, Rochester, MN; Kateric CRO, Clemson, SC (SKP); IBYME, CONICET-Laboratorio de Immunohematología, Laboratorio de Química de Proteoglicanos y Matriz Extracelular, Buenos Aires, Argentina (LV); Laboratory of Molecular Biology and Immunobiotechnology, Hellenic Pasteur Institute, Athens, Greece (AP); Cancer Institute, University of Mississippi Medical Center, Jackson, MS (IE)
| | - Barbara Schroeder
- Catalan Institute of Oncology and Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia, Spain (JAM); Department of Medicine and Experimental Pathology (BS, IE, RL) and Mayo Clinic Cancer Center (per institutional guidelines) (BS, RL), Mayo Clinic, Rochester, MN; Kateric CRO, Clemson, SC (SKP); IBYME, CONICET-Laboratorio de Immunohematología, Laboratorio de Química de Proteoglicanos y Matriz Extracelular, Buenos Aires, Argentina (LV); Laboratory of Molecular Biology and Immunobiotechnology, Hellenic Pasteur Institute, Athens, Greece (AP); Cancer Institute, University of Mississippi Medical Center, Jackson, MS (IE)
| | - Susan K Peirce
- Catalan Institute of Oncology and Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia, Spain (JAM); Department of Medicine and Experimental Pathology (BS, IE, RL) and Mayo Clinic Cancer Center (per institutional guidelines) (BS, RL), Mayo Clinic, Rochester, MN; Kateric CRO, Clemson, SC (SKP); IBYME, CONICET-Laboratorio de Immunohematología, Laboratorio de Química de Proteoglicanos y Matriz Extracelular, Buenos Aires, Argentina (LV); Laboratory of Molecular Biology and Immunobiotechnology, Hellenic Pasteur Institute, Athens, Greece (AP); Cancer Institute, University of Mississippi Medical Center, Jackson, MS (IE)
| | - Luciano Vellon
- Catalan Institute of Oncology and Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia, Spain (JAM); Department of Medicine and Experimental Pathology (BS, IE, RL) and Mayo Clinic Cancer Center (per institutional guidelines) (BS, RL), Mayo Clinic, Rochester, MN; Kateric CRO, Clemson, SC (SKP); IBYME, CONICET-Laboratorio de Immunohematología, Laboratorio de Química de Proteoglicanos y Matriz Extracelular, Buenos Aires, Argentina (LV); Laboratory of Molecular Biology and Immunobiotechnology, Hellenic Pasteur Institute, Athens, Greece (AP); Cancer Institute, University of Mississippi Medical Center, Jackson, MS (IE)
| | - Adriana Papadimitropoulou
- Catalan Institute of Oncology and Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia, Spain (JAM); Department of Medicine and Experimental Pathology (BS, IE, RL) and Mayo Clinic Cancer Center (per institutional guidelines) (BS, RL), Mayo Clinic, Rochester, MN; Kateric CRO, Clemson, SC (SKP); IBYME, CONICET-Laboratorio de Immunohematología, Laboratorio de Química de Proteoglicanos y Matriz Extracelular, Buenos Aires, Argentina (LV); Laboratory of Molecular Biology and Immunobiotechnology, Hellenic Pasteur Institute, Athens, Greece (AP); Cancer Institute, University of Mississippi Medical Center, Jackson, MS (IE)
| | - Ingrid Espinoza
- Catalan Institute of Oncology and Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia, Spain (JAM); Department of Medicine and Experimental Pathology (BS, IE, RL) and Mayo Clinic Cancer Center (per institutional guidelines) (BS, RL), Mayo Clinic, Rochester, MN; Kateric CRO, Clemson, SC (SKP); IBYME, CONICET-Laboratorio de Immunohematología, Laboratorio de Química de Proteoglicanos y Matriz Extracelular, Buenos Aires, Argentina (LV); Laboratory of Molecular Biology and Immunobiotechnology, Hellenic Pasteur Institute, Athens, Greece (AP); Cancer Institute, University of Mississippi Medical Center, Jackson, MS (IE)
| | - Ruth Lupu
- Catalan Institute of Oncology and Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia, Spain (JAM); Department of Medicine and Experimental Pathology (BS, IE, RL) and Mayo Clinic Cancer Center (per institutional guidelines) (BS, RL), Mayo Clinic, Rochester, MN; Kateric CRO, Clemson, SC (SKP); IBYME, CONICET-Laboratorio de Immunohematología, Laboratorio de Química de Proteoglicanos y Matriz Extracelular, Buenos Aires, Argentina (LV); Laboratory of Molecular Biology and Immunobiotechnology, Hellenic Pasteur Institute, Athens, Greece (AP); Cancer Institute, University of Mississippi Medical Center, Jackson, MS (IE).
| |
Collapse
|
5
|
Shriver M, Stroka KM, Vitolo MI, Martin S, Huso DL, Konstantopoulos K, Kontrogianni-Konstantopoulos A. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. Oncogene 2014; 34:4248-59. [PMID: 25381817 DOI: 10.1038/onc.2014.358] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Obscurins, encoded by the single OBSCN gene, are giant cytoskeletal proteins with structural and regulatory roles. The OBSCN gene is highly mutated in different types of cancers. Loss of giant obscurins from breast epithelial cells confers them with a survival and growth advantage, following exposure to DNA-damaging agents. Here we demonstrate that the expression levels and subcellular distribution of giant obscurins are altered in human breast cancer biopsies compared with matched normal samples. Stable clones of non-tumorigenic MCF10A cells lacking giant obscurins fail to form adhesion junctions, undergo epithelial-to-mesenchymal transition and generate >100-μm mammospheres bearing markers of cancer-initiating cells. Obscurin-knockdown MCF10A cells display markedly increased motility as a sheet in 2-dimensional (2D) substrata and individually in confined spaces and invasion in 3D matrices. In line with these observations, actin filaments redistribute to extending filopodia where they exhibit increased dynamics. MCF10A cells that stably express the K-Ras oncogene and obscurin short hairpin RNA (shRNA), but not scramble control shRNA, exhibit increased primary tumor formation and lung colonization after subcutaneous and tail vein injections, respectively. Collectively, our findings reveal that loss of giant obscurins from breast epithelium results in disruption of the cell-cell contacts and acquisition of a mesenchymal phenotype that leads to enhanced tumorigenesis, migration and invasiveness in vitro and in vivo.
Collapse
Affiliation(s)
- M Shriver
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - K M Stroka
- 1] Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA [2] Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA [3] Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA
| | - M I Vitolo
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Martin
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - D L Huso
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - K Konstantopoulos
- 1] Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA [2] Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, USA [3] Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA
| | - A Kontrogianni-Konstantopoulos
- 1] Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA [2] Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Metabotropic glutamate receptor-1 contributes to progression in triple negative breast cancer. PLoS One 2014; 9:e81126. [PMID: 24404125 PMCID: PMC3880256 DOI: 10.1371/journal.pone.0081126] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/09/2013] [Indexed: 12/31/2022] Open
Abstract
TNBC is an aggressive breast cancer subtype that does not express hormone receptors (estrogen and progesterone receptors, ER and PR) or amplified human epidermal growth factor receptor type 2 (HER2), and there currently exist no targeted therapies effective against it. Consequently, finding new molecular targets in triple negative breast cancer (TNBC) is critical to improving patient outcomes. Previously, we have detected the expression of metabotropic glutamate receptor-1 (gene: GRM1; protein: mGluR1) in TNBC and observed that targeting glutamatergic signaling inhibits TNBC growth both in vitro and in vivo. In this study, we explored how mGluR1 contributes to TNBC progression, using the isogenic MCF10 progression series, which models breast carcinogenesis from nontransformed epithelium to malignant basal-like breast cancer. We observed that mGluR1 is expressed in human breast cancer and that in MCF10A cells, which model nontransformed mammary epithelium, but not in MCF10AT1 cells, which model atypical ductal hyperplasia, mGluR1 overexpression results in increased proliferation, anchorage-independent growth, and invasiveness. In contrast, mGluR1 knockdown results in a decrease in these activities in malignant MCF10CA1d cells. Similarly, pharmacologic inhibition of glutamatergic signaling in MCF10CA1d cells results in a decrease in proliferation and anchorage-independent growth. Finally, transduction of MCF10AT1 cells, which express c-Ha-ras, using a lentiviral construct expressing GRM1 results in transformation to carcinoma in 90% of resultant xenografts. We conclude that mGluR1 cooperates with other factors in hyperplastic mammary epithelium to contribute to TNBC progression and therefore propose that glutamatergic signaling represents a promising new molecular target for TNBC therapy.
Collapse
|
7
|
Jaiswal AS, Panda H, Pampo CA, Siemann DW, Gairola CG, Hromas R, Narayan S. Adenomatous polyposis coli-mediated accumulation of abasic DNA lesions lead to cigarette smoke condensate-induced neoplastic transformation of normal breast epithelial cells. Neoplasia 2013; 15:454-60. [PMID: 23555190 PMCID: PMC3612917 DOI: 10.1593/neo.13176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 11/18/2022]
Abstract
Adenomatous polyposis coli (APC) is a multifunctional protein having diverse cellular functions including cell migration, cell-cell adhesion, cell cycle control, chromosomal segregation, and apoptosis. Recently, we found a new role of APC in base excision repair (BER) and showed that it interacts with DNA polymerase β and 5'-flap endonuclease 1 and interferes in BER. Previously, we have also reported that cigarette smoke condensate (CSC) increases expression of APC and enhances the growth of normal human breast epithelial (MCF10A) cells in vitro. In the present study, using APC overexpression and knockdown systems, we have examined the molecular mechanisms by which CSC and its major component, Benzo[α]pyrene, enhances APC-mediated accumulation of abasic DNA lesions, which is cytotoxic and mutagenic in nature, leading to enhanced neoplastic transformation of MCF10A cells in an orthotopic xenograft model.
Collapse
Affiliation(s)
- Aruna S Jaiswal
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL
- Department of Medicine, University of Florida, Gainesville, FL
| | - Harekrushna Panda
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL
| | - Christine A Pampo
- Department of Radiation Oncology, University of Florida, Gainesville, FL
| | - Dietmar W Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, FL
| | - C Gary Gairola
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY
| | - Robert Hromas
- Department of Medicine, University of Florida, Gainesville, FL
| | - Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL
| |
Collapse
|
8
|
Yin Yang 1 plays an essential role in breast cancer and negatively regulates p27. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2120-33. [PMID: 22440256 DOI: 10.1016/j.ajpath.2012.01.037] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/10/2012] [Accepted: 01/24/2012] [Indexed: 02/06/2023]
Abstract
Yin Yang 1 (YY1) is highly expressed in various types of cancers and regulates tumorigenesis through multiple pathways. In the present study, we evaluated YY1 expression levels in breast cancer cell lines, a breast cancer TMA, and two gene arrays. We observed that, compared with normal samples, YY1 is generally overexpressed in breast cancer cells and tissues. In functional studies, depletion of YY1 inhibited the clonogenicity, migration, invasion, and tumor formation of breast cancer cells, but did not affect the clonogenicity of nontumorigenic cells. Conversely, ectopically expressed YY1 enhanced the migration and invasion of nontumorigenic MCF-10A breast cells. In both a monolayer culture condition and a three-dimensional Matrigel system, silenced YY1 expression changed the architecture of breast cancer MCF-7 cells to that resembling MCF-10A cells, whereas ectopically expressed YY1 in MCF-10A cells had the opposite effect. Furthermore, we detected an inverse correlation between YY1 and p27 expression in both breast cancer cells and xenograft tumors with manipulated YY1 expression. Counteracting the changes in p27 expression attenuated the effects of YY1 alterations on these cells. In addition, YY1 promoted p27 ubiquitination and physically interacted with p27. In conclusion, our data suggest that YY1 is an oncogene and identify p27 as a new target of YY1.
Collapse
|
9
|
Leslie K, Gao SP, Berishaj M, Podsypanina K, Ho H, Ivashkiv L, Bromberg J. Differential interleukin-6/Stat3 signaling as a function of cellular context mediates Ras-induced transformation. Breast Cancer Res 2010; 12:R80. [PMID: 20929542 PMCID: PMC3096973 DOI: 10.1186/bcr2725] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 10/07/2010] [Indexed: 12/31/2022] Open
Abstract
Introduction Tyrosine phosphorylated signal transducer and activator of transcription 3 (pStat3) is expressed in numerous cancers and is required for mediating tumorigenesis. Autocrine and paracrine interleukin (IL)-6 signaling is the principal mechanism by which Stat3 is persistently phosphorylated in epithelial tumors including breast, lung, colon and gastric cancer. The Ras oncogene mediates cellular transformation without evidence of pStat3 in cultured cells. However, non-tyrosine phosphorylated Stat3 was shown to function as a transcriptional activator, localize to the mitochondria and regulate ATP synthesis and mediate cell migration. Here we examined the role of Stat3 in Ras mediated transformation. Methods Ha-rasV12 transformed mammary epithelial cells (MCF10A-Ras) cells were transduced with a Stat3shRNA, IL-6shRNA and/or treated with inhibitors of Janus kinases (JAKs) to examine the role of the IL-6 signaling pathway in Ras mediated migration, invasion and tumorigenesis. Results Cellular migration, invasion, anchorage independent growth and tumorigenesis were largely abrogated in the Stat3-reduced cells compared to control cells. Analysis of MCF10A-Ras tumors revealed high levels of pStat3 and interleukin-6. Tumors derived from transgenic MMTV-K-Ras mice were also found to express pStat3 and IL-6. MCF10A-Ras cells, when grown in a three-dimensional Matrigel culture system revealed the appearance of the junctional protein E-Cadherin as a consequence of reducing Stat3 levels or inhibiting Stat3 activity. Decreasing IL-6 levels in the MCF10A-Ras cells abrogated tumorigenesis and reduced cell migration. By isolating Ras-expressing primary tumors and serially passaging these cells in two-dimensional culture led to a decrease in IL-6 and pStat3 levels with the reappearance of E-Cadherin. Conclusions The cellular and environmental context can lead to differential IL-6/pStat3 signaling and a dependency on this cytokine and transcription factor for migration, invasion and tumorigenesis.
Collapse
Affiliation(s)
- Kenneth Leslie
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Vitolo MI, Weiss MB, Szmacinski M, Tahir K, Waldman T, Park BH, Martin SS, Weber DJ, Bachman KE. Deletion of PTEN promotes tumorigenic signaling, resistance to anoikis, and altered response to chemotherapeutic agents in human mammary epithelial cells. Cancer Res 2009; 69:8275-83. [PMID: 19843859 PMCID: PMC2783190 DOI: 10.1158/0008-5472.can-09-1067] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many cancers, including breast cancer, harbor loss-of-function mutations in the catalytic domain of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) or have reduced PTEN expression through loss of heterozygosity and/or epigenetic silencing mechanisms. However, specific phenotypic effects of PTEN inactivation in human cancer cells remain poorly defined without a direct causal connection between the loss of PTEN function and the development or progression of cancer. To evaluate the biological and clinical relevance of reduced or deleted PTEN expression, a novel in vitro model system was generated using human somatic cell knockout technologies. Targeted homologous recombination allowed for a single and double allelic deletion, which resulted in reduced and deleted PTEN expression, respectively. We determined that heterozygous loss of PTEN in the nontumorigenic human mammary epithelial cell line MCF-10A was sufficient for activation of the phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase pathways, whereas the homozygous absence of PTEN expression led to a further increased activation of both pathways. The deletion of PTEN was able to confer growth factor-independent proliferation, which was confirmed by the resistance of the PTEN(-/-) MCF-10A cells to small-molecule inhibitors of the epidermal growth factor receptor. However, neither heterozygous nor homozygous loss of PTEN expression was sufficient to promote anchorage-independent growth, but the loss of PTEN did confer apoptotic resistance to cell rounding and matrix detachment. Finally, MCF-10A cells with the reduction or loss of PTEN showed increased susceptibility to the chemotherapeutic drug doxorubicin but not paclitaxel.
Collapse
Affiliation(s)
| | - Michele B. Weiss
- University of Maryland Greenebaum NCI Cancer Center, Baltimore, MD,University of Maryland Graduate Program in Molecular Medicine, Baltimore, MD
| | | | - Khola Tahir
- University of Maryland Greenebaum NCI Cancer Center, Baltimore, MD,Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Todd Waldman
- Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Department of Oncology, Baltimore, MD
| | - Stuart S. Martin
- University of Maryland Greenebaum NCI Cancer Center, Baltimore, MD
| | - David J. Weber
- University of Maryland Greenebaum NCI Cancer Center, Baltimore, MD,Department of Biochemistry and Molecular Biology, Baltimore, MD
| | - Kurtis E. Bachman
- University of Maryland Greenebaum NCI Cancer Center, Baltimore, MD,Department of Biochemistry and Molecular Biology, Baltimore, MD
| |
Collapse
|
11
|
Vazquez-Martin A, Colomer R, Brunet J, Lupu R, Menendez JA. Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine kinase receptors in human breast epithelial cells. Cell Prolif 2008; 41:59-85. [PMID: 18211286 DOI: 10.1111/j.1365-2184.2007.00498.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES More than 50 years ago, we learned that breast cancer cells (and those of many other types of tumour) endogenously synthesize 95% of fatty acids (FAs) de novo, despite having adequate nutritional lipid supply. Today, we know that breast cancer cells benefit from this phenomenon in terms of enhanced cell proliferation, survival, chemoresistance and metastasis. However, the exact role of the major lipogenic enzyme fatty acid synthase (FASN) as cause, correlate or facilitator of breast cancer remains unidentified. MATERIALS AND METHODS To evaluate a causal effect of FASN-catalysed endogenous FA biosynthesis in the natural history of breast cancer disease, HBL100 cells (an SV40-transformed in vitro model for near-normal gene expression in the breast epithelium), and MCF10A cells (a non-transformed, near diploid, spontaneously immortalized human mammary epithelial cell line) were acutely forced to overexpress the human FASN gene. RESULTS Following transient transfection with plasmid pCMV6-XL4 carrying full-length human FASN cDNA (gi: NM 004104), HBL100 cells enhanced their endogenous lipid synthesis while acquiring canonical oncogenic properties such as increased size and number of colonies in semisolid (i.e. soft-agar) anchorage-independent cultures. Anchorage-dependent cell proliferation assays in low serum (0.1% foetal bovine serum), MTT-based assessment of cell metabolic status and cell death ELISA-based detection of apoptosis-induced DNA-histone fragmentation, together revealed that sole activation of endogenous FA biosynthesis was sufficient to significantly enhance breast epithelial cell proliferation and survival. When analysing molecular mechanisms by which acute activation of de novo FA biosynthesis triggered a transformed phenotype, HBL100 cells, transiently transfected with pCMV6-XL4/FASN, were found to exhibit a dramatic increase in the number of phosphor-tyrosine (Tyr)-containing proteins, as detected by 4G10 antiphosphor-Tyr monoclonal antibody. Phosphor-Tyr-specific antibodies recognizing the phosphorylation status of either the 1173 Tyr residue of epidermal growth factor receptor (HER1) or the 1248 Tyr residue of HER2, further revealed that FASN-induced Tyr-phosphorylation at approximately 180 kDa region mainly represented that of these key members of the HER (erbB) network, which remained switched-off in mock-transfected HBL100 cells. ELISA and immunoblotting procedures demonstrated that FASN overactivation significantly increased (> 200%) expression levels of epidermal growth factor receptor and HER2 proteins in HBL100 cells. Proteome Profilertrade mark antibody arrays capable of simultaneously detecting relative levels of phosphorylation of 42 phospho-receptor Tyr-kinases (RTKs) confirmed that acute activation of endogenous FA biosynthesis specifically promoted hyper-Tyr-phosphorylation of HER1 and HER2 in MCF10A cells. This FASN-triggered HER1/HER2-breast cancer-like phenotype was specifically inhibitable either by FASN inhibitor C75 or by Tyr-kinase inhibitors (TKIs) gefitinib (Iressa) and lapatinib (Tykerb) but not by chemotherapeutic agents such as cisplatin. Transient overexpression of FASN dramatically increased HBL100 breast epithelial cells' sensitivity to cytotoxic effects of C75, gefitinib and lapatinib (approximately 8, 10 and > 15 times, respectively), while significantly decreasing (approximately 3 times) cisplatin efficacy. CONCLUSIONS Although we cannot definitely establish FASN as a novel oncogene in breast cancer, this study reveals for the first time that exacerbated endogenous FA biosynthesis in non-cancerous epithelial cells is sufficient to induce a cancer-like phenotype functionally dependent on the HER1/HER2 duo. These findings may perhaps radically amend our current perspective of endogenously synthesized fat, as on its own, it appears to actively increase signal-to-noise ratio in the HER1/HER2-driven progression of human breast epithelial cells towards malignancy.
Collapse
Affiliation(s)
- A Vazquez-Martin
- Catalan Institute of Oncology, Health Services Division of Catalonia, Catalonia, Spain
| | | | | | | | | |
Collapse
|
12
|
Lee Y, Ise T, Ha D, Saint Fleur A, Hahn Y, Liu XF, Nagata S, Lee B, Bera TK, Pastan I. Evolution and expression of chimeric POTE-actin genes in the human genome. Proc Natl Acad Sci U S A 2006; 103:17885-90. [PMID: 17101985 PMCID: PMC1693842 DOI: 10.1073/pnas.0608344103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously described a primate-specific gene family, POTE, that is expressed in many cancers but in a limited number of normal organs. The 13 POTE genes are dispersed among eight different chromosomes and evolved by duplications and remodeling of the human genome from an ancestral gene, ANKRD26. Based on sequence similarity, the POTE gene family members can be divided into three groups. By genome database searches, we identified an actin retroposon insertion at the carboxyl terminus of one of the ancestral POTE paralogs. By Northern blot analysis, we identified the expected 7.5-kb POTE-actin chimeric transcript in a breast cancer cell line. The protein encoded by the POTE-actin transcript is predicted to be 120 kDa in size. Using anti-POTE mAbs that recognize the amino-terminal portion of the POTE protein, we detected the 120-kDa POTE-actin fusion protein in breast cancer cell lines known to express the fusion transcript. These data demonstrate that insertion of a retroposon produced an altered functional POTE gene. This example indicates that new functional human genes can evolve by insertion of retroposons.
Collapse
Affiliation(s)
- Yoomi Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Tomoko Ise
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Duc Ha
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Ashley Saint Fleur
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Yoonsoo Hahn
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Xiu-Fen Liu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Satoshi Nagata
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Byungkook Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Tapan K. Bera
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| |
Collapse
|
13
|
Tanaka H, Shirkoohi R, Nakagawa K, Qiao H, Fujita H, Okada F, Hamada JI, Kuzumaki S, Takimoto M, Kuzumaki N. siRNA gelsolin knockdown induces epithelial-mesenchymal transition with a cadherin switch in human mammary epithelial cells. Int J Cancer 2006; 118:1680-91. [PMID: 16217750 DOI: 10.1002/ijc.21559] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Epithelial-mesenchymal transition (EMT) describes a process occurring during development and oncogenesis by which epithelial cells obtain fibroblast-like properties and show reduced cell adhesion and increased motility. In this report, we demonstrated typical EMT in human mammary epithelial MCF10A small interfering (si)RNA gelsolin-knockdown cells. EMT was characterized by fibroblastic morphology, loss of contact inhibition and focus formation in monolayer growth, enhanced motility and invasiveness in vitro, increased actin filaments, overexpression of RAC, activation of both extracellular signal-regulated kinase and AKT, inactivation of glycogen synthase kinase-3, conversion of cadherin from the E- to N-type and induction of the transcription factor Snail. These results suggested that gelsolin functions as a switch that controls E- and N-cadherin conversion via Snail, and demonstrated that its knockdown leads to EMT in human mammary epithelial cells and possibly to the development of human mammary tumors.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Division of Cancer Gene Regulation, Research Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gruvberger-Saal SK, Parsons R. Is the small heat shock protein alphaB-crystallin an oncogene? J Clin Invest 2006; 116:30-2. [PMID: 16395401 PMCID: PMC1323271 DOI: 10.1172/jci27462] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the last 5 years, global gene expression profiling has allowed for the subclassification of the heterogeneous disease of breast cancer into new subgroups with prognostic significance. However, for most subgroups, the nature of the contributions of individual genes to the clinical phenotypes remains largely unknown. In this issue of the JCI, Moyano and colleagues further examine the oncogenic potential of the small heat shock protein alpha-basic-crystallin, commonly expressed in tumors of the basal-like breast cancer subtype associated with poor prognosis, and show that it is an oncogenic protein in the breast.
Collapse
|
15
|
Moyano JV, Evans JR, Chen F, Lu M, Werner ME, Yehiely F, Diaz LK, Turbin D, Karaca G, Wiley E, Nielsen TO, Perou CM, Cryns VL. AlphaB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 2006; 116:261-70. [PMID: 16395408 PMCID: PMC1323258 DOI: 10.1172/jci25888] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 09/27/2005] [Indexed: 01/13/2023] Open
Abstract
Recent gene profiling studies have identified a new breast cancer subtype, the basal-like group, which expresses genes characteristic of basal epithelial cells and is associated with poor clinical outcomes. However, the genes responsible for the aggressive behavior observed in this group are largely unknown. Here we report that the small heat shock protein alpha-basic-crystallin (alphaB-crystallin) was commonly expressed in basal-like tumors and predicted poor survival in breast cancer patients independently of other prognostic markers. We also demonstrate that overexpression of alphaB-crystallin transformed immortalized human mammary epithelial cells (MECs). In 3D basement membrane culture, alphaB-crystallin overexpression induced luminal filling and other neoplastic-like changes in mammary acini, while silencing alphaB-crystallin by RNA interference inhibited these abnormalities. alphaB-Crystallin overexpression also induced EGF- and anchorage-independent growth, increased cell migration and invasion, and constitutively activated the MAPK kinase/ERK (MEK/ERK) pathway. Moreover, the transformed phenotype conferred by alphaB-crystallin was suppressed by MEK inhibitors. In addition, immortalized human MECs overexpressing alphaB-crystallin formed invasive mammary carcinomas in nude mice that recapitulated aspects of human basal-like breast tumors. Collectively, our results indicate that alphaB-crystallin is a novel oncoprotein expressed in basal-like breast carcinomas that independently predicts shorter survival. Our data also implicate the MEK/ERK pathway as a potential therapeutic target for these tumors.
Collapse
Affiliation(s)
- Jose V Moyano
- Cell Death Regulation Laboratory, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ramljak D, Romanczyk LJ, Metheny-Barlow LJ, Thompson N, Knezevic V, Galperin M, Ramesh A, Dickson RB. Pentameric procyanidin from Theobroma cacao selectively inhibits growth of human breast cancer cells. Mol Cancer Ther 2005; 4:537-46. [PMID: 15827326 DOI: 10.1158/1535-7163.mct-04-0286] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A naturally occurring, cocoa-derived pentameric procyanidin (pentamer) was previously shown to cause G0/G1 cell cycle arrest in human breast cancer cells by an unknown molecular mechanism. Here, we show that pentamer selectively inhibits the proliferation of human breast cancer cells (MDA MB-231, MDA MB-436, MDA MB-468, SKBR-3, and MCF-7) and benzo(a)pyrene-immortalized 184A1N4 and 184B5 cells. In contrast, normal human mammary epithelial cells in primary culture and spontaneously immortalized MCF-10A cells were significantly resistant. We evaluated whether this differential response to pentamer may involve depolarization of the mitochondrial membrane. Pentamer caused significant depolarization of mitochondrial membrane in MDA MB231 cells but not the more normal MCF-10A cells, whereas other normal and tumor cell lines tested gave variable results. Further investigations, using a proteomics approach with pentamer-treated MDA MB-231, revealed a specific dephosphorylation, without changes in protein expression, of several G1-modulatory proteins: Cdc2 (at Tyr15), forkhead transcription factor (at Ser256, the Akt phosphorylation site) and p53 (Ser392). Dephosphorylation of p53 (at Ser392) by pentamer was confirmed in MDA MB-468 cells. However, both expression and phosphorylation of retinoblastoma protein were decreased after pentamer treatment. Our results show that breast cancer cells are selectively susceptible to the cytotoxic effects of pentameric procyanidin, and suggest that inhibition of cellular proliferation by this compound is associated with the site-specific dephosphorylation or down-regulation of several cell cycle regulatory proteins.
Collapse
Affiliation(s)
- Danica Ramljak
- Department of Oncology, The Research Building, Room W417, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, District of Columbia 20057, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Narayan S, Jaiswal AS, Kang D, Srivastava P, Das GM, Gairola CG. Cigarette smoke condensate-induced transformation of normal human breast epithelial cells in vitro. Oncogene 2004; 23:5880-9. [PMID: 15208684 DOI: 10.1038/sj.onc.1207792] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 04/06/2004] [Accepted: 04/06/2004] [Indexed: 12/21/2022]
Abstract
In the present study, we showed that a single-dose treatment of normal breast epithelial cell line, MCF10A, for 72 h with cigarette smoke condensate (CSC) resulted in a transformed phenotype. The anchorage-dependent growth of these cells was decreased due to increased cell cycle arrest in S-G2/M phase; however, the surviving cells developed resistance due to an increased Bcl-xL to Bax ratio. Levels of PCNA and gadd45 proteins--involved in DNA repair in response to genomic damage--were increased, suggesting that the cells were responding to CSC-induced genomic damage. The transformation of MCF10A cells was determined by their colony-forming efficiency in soft-agar in an anchorage-independent manner. CSC-treated MCF10A cells efficiently formed colonies in soft-agar. We then re-established cell lines from the soft-agar colonies and further examined the persistence of their transforming characteristics. The re-established cell lines, when plated after 17 passages without CSC treatment, still formed colonies in the soft-agar. An increased staining of neuropilin-1 (NRP-1) further showed a transformation characteristic of MCF10A cells treated with CSC. In summary, our results suggest that CSC is capable of transforming the MCF10A cells in vitro, supporting the role of cigarette smoking and increased risk for breast cancer.
Collapse
Affiliation(s)
- Satya Narayan
- Department of Anatomy and Cell Biology, UF Shands Cancer Center, Academic Research Building, Room R4-216, PO Box 100232, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Dechow TN, Pedranzini L, Leitch A, Leslie K, Gerald WL, Linkov I, Bromberg JF. Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by Stat3-C. Proc Natl Acad Sci U S A 2004; 101:10602-7. [PMID: 15249664 PMCID: PMC489981 DOI: 10.1073/pnas.0404100101] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Indexed: 01/24/2023] Open
Abstract
Persistently activated Stat3 is found in many different cancers, including approximately 60% of breast tumors. Here, we demonstrate that a constitutively activated Stat3 transforms immortalized human mammary epithelial cells and that this oncogenic event requires the activity of matrix metalloproteinase-9 (MMP-9). By immunohistochemical analysis, we observe a positive correlation between strong MMP-9 expression and tyrosine phosphorylated Stat3 in primary breast cancer specimens. These results demonstrate a relationship between activated Stat3 and MMP-9 in breast oncogenesis.
Collapse
Affiliation(s)
- Tobias N Dechow
- Laboratory of Molecular Cell Biology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Roy D, Calaf G, Hei TK. Allelic imbalance at 11p15.5-15.4 correlated with c-Ha-ras mutation during radiation-induced neoplastic transformation of human breast epithelial cells. Int J Cancer 2003; 103:730-7. [PMID: 12516091 DOI: 10.1002/ijc.10895] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Breast cancer is the most frequent malignancy in women throughout much of the developed world and is associated with a multistage process involving a number of genetic mutations and their corresponding cellular phenotypic alterations. It has already been shown that neoplastic transformation of a spontaneously immortalized human breast epithelial (MCF-10F) cell line by radiation, in combination with estrogen, represents a successful model in studying the molecular and biological alterations that may contribute to the tumorigenic process. In the present study, the incidence of allelic alterations (microsatellite instability/loss of heterozygosity) on chromosome 11 in different radiation-induced primary and secondary tumorigenic cell lines, relative to the control MCF-10F cells was investigated. We identified 3 regions of the chromosome 11 (11p15-p15.5, 11q13 and 11q23) that showed high incidence of LOH among these tumor cell lines and suggested a potential role for these chromosomal regions in breast carcinogenesis. Among them, locus 11p15.5, where c-Ha-ras oncogene is located, had incidence of allelic imbalance between 25-40%. Furthermore, direct sequencing analysis of codons 12 and 61 of the c-Ha-ras oncogene identified various point mutations. These data highlight the importance of chromosome 11 in radiation induced malignant transformation of human breast epithelial cells and suggest the usefulness of the model in uncovering specific derangements during breast cancer progression.
Collapse
Affiliation(s)
- Debasish Roy
- Center for Radiological Research, Vanderbilt Clinic, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
20
|
Yu BW, Bowers M, Witkowski G, Huang M, Ramachandran S. Episomally mediated overexpression of wild-type erbB-2 transforms MCF-10A breast epithelial cells. Breast Cancer Res Treat 2002; 76:181-93. [PMID: 12462379 DOI: 10.1023/a:1020895504260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MCF-10A are human non-transformed, EGF and insulin dependent breast epithelial cells. The cells were transfected with an episomal pCEP4 vector library containing cDNA from SKBR3 breast carcinoma cells, and selected in media without EGF. After two cycles of expression cloning, morphologically transformed cells appeared. Extracted episomes contained a high proportion of erbB-2 cDNA with wild-type transmembrane domains. Transfection of MCF-10A with individual erbB-2 containing episomes induced significant foci formation in low serum (0.1%) without EGF. MCF-10A sublines expanded from these foci contained a high number of erbB-2 gene copies, highly expressed erbB-2, and lost E-cadherin expression. These results show that if wild-type erbB-2 is sufficiently overexpressed, erbB-2 alone can cause EGF independent transformation of these nonmalignant breast cells. This expression system may be useful for expression cloning in MCF-10A cells, and simulating the effects of high erbB-2 gene amplification in breast epithelial cells.
Collapse
Affiliation(s)
- Bennett W Yu
- Oncology Lab, Division of Hematology and Oncology, Josephine Ford Cancer Center, Henry Ford Health System, Detroit, MI, USA.
| | | | | | | | | |
Collapse
|
21
|
Ryo A, Liou YC, Wulf G, Nakamura M, Lee SW, Lu KP. PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol Cell Biol 2002; 22:5281-95. [PMID: 12101225 PMCID: PMC133940 DOI: 10.1128/mcb.22.15.5281-5295.2002] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oncogenes Neu/HER2/ErbB2 and Ras can induce mammary tumorigenesis via upregulation of cyclin D1. One major regulatory mechanism in these oncogenic signaling pathways is phosphorylation of serines or threonines preceding proline (pSer/Thr-Pro). Interestingly, the pSer/Thr-Pro motifs in proteins exist in two completely distinct cis and trans conformations, whose conversion is catalyzed specifically by the essential prolyl isomerase Pin1. By isomerizing pSer/Thr-Pro bonds, Pin1 can regulate the conformation and function of certain phosphorylated proteins. We have previously shown that Pin1 is overexpressed in breast tumors and positively regulates cyclin D1 by transcriptional activation and posttranslational stabilization. Moreover, in Pin1 knockout mice, mammary epithelial cells fail to undergo massive proliferation during pregnancy, as is the case in cyclin D1 null mice. These results indicate that Pin1 is upregulated in breast cancer and may be involved in mammary tumors. However, the mechanism of Pin1 overexpression in cancer and its significance in cell transformation remain largely unknown. Here we demonstrate that PIN1 expression is mediated by the transcription factor E2F and enhanced by c-Neu and Ha-Ras via E2F. Furthermore, overexpression of Pin1 not only confers transforming properties on mammary epithelial cells but also enhances the transformed phenotypes of Neu/Ras-transformed mammary epithelial cells. In contrast, inhibition of Pin1 suppresses Neu- and Ras-induced transformed phenotypes, which can be fully rescued by overexpression of a constitutively active cyclin D1 mutant that is refractory to the Pin1 inhibition. Thus, Pin1 is an E2F target gene that is essential for the Neu/Ras-induced transformation of mammary epithelial cells through activation of cyclin D1.
Collapse
Affiliation(s)
- Akihide Ryo
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
22
|
Rasmussen SB, Kordon E, Callahan R, Smith GH. Evidence for the transforming activity of a truncated Int6 gene, in vitro. Oncogene 2001; 20:5291-301. [PMID: 11536042 DOI: 10.1038/sj.onc.1204624] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2001] [Revised: 04/26/2001] [Accepted: 05/08/2001] [Indexed: 11/09/2022]
Abstract
Int6/eIF3-p48 was first identified as a common integration site for MMTV in mouse mammary tumors. In all cases, the MMTV integration event resulted in an interruption of the normal Int6 transcript from one allele leaving the second allele intact and operative. We hypothesize that insertion of MMTV into Int6 results in a mutated allele that encodes a shortened Int6 mRNA and protein (Int6sh), which either modifies normal Int6 function or possesses a new independent function. To confirm the transforming potential of the mutation and its dominant function, we transfected two mammary epithelial cell lines, MCF10A (human), and HC11 (mouse), with Int6sh under the control of the elongation factor-1alpha (eEF1A) promoter. Expression of Int6sh in MCF10A and HC11 mammary epithelial cells leads to anchorage-independent growth in soft agar indicative of a transformed phenotype. Colonies selected from agar exhibited high levels of mutated Int6sh and wild type Int6 RNA transcripts by RT-PCR and Northern blot analysis. In addition, Int6sh transformed MCF10A and HC11 cells formed nodular growths, in vivo, in immune compromised hosts. NIH3T3 cells, mouse embryo fibroblasts, were also transformed to anchorage-independent growth in vitro by Int6sh expression. These observations provide direct evidence that the Int6 mutations observed in MMTV-induced tumors and hyperplasia contribute to the malignant transformation of the mammary epithelial cells.
Collapse
Affiliation(s)
- S B Rasmussen
- National Institutes of Health, National Cancer Institute, Laboratory of Tumor Immunology and Biology, 10 Center Drive Room 8B07, Bethesda, Maryland, MD 20892-1750, USA
| | | | | | | |
Collapse
|
23
|
Chen CR, Kang Y, Massagué J. Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci U S A 2001; 98:992-9. [PMID: 11158583 PMCID: PMC14697 DOI: 10.1073/pnas.98.3.992] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2000] [Indexed: 01/07/2023] Open
Abstract
Loss of growth inhibitory responses to the cytokine transforming growth factor beta (TGF-beta) in cancer cells may result from mutational inactivation of TGF-beta receptors or their signal transducers, the Smad transcription factors. In breast cancer, however, loss of TGF-beta growth inhibition often occurs without a loss of these signaling components. A genome-wide analysis of rapid TGF-beta gene responses in MCF-10A human mammary epithelial cells and MDA-MB-231 breast cancer cells shows that c-myc repression, a response that is key to the TGF-beta program of cell cycle arrest, is selectively lost in the cancer cell line. Transformation of MCF-10A cells with c-Ha-ras and c-erbB2 oncogenes also led to a selective loss of c-myc repression and cell cycle arrest response. TGF-beta stimulation of epithelial cells rapidly induces the formation of a Smad complex that specifically recognizes a TGF-beta inhibitory element in the c-myc promoter. Formation of this complex is deficient in the oncogenically transformed breast cells. These results suggest that a Smad complex that specifically mediates c-myc repression is a target of oncogenic signals in breast cancer.
Collapse
Affiliation(s)
- C R Chen
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center and Howard Hughes Medical Institute, New York, NY 10021, USA
| | | | | |
Collapse
|
24
|
Stampfer MR, Yaswen P. Immortal transformation and telomerase reactivation of human mammary epithelial cells in culture. TELOMERASE, AGING AND DISEASE 2001. [DOI: 10.1016/s1566-3124(01)08006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Abstract
The Ras superfamily of GTPases act as important regulatory switches to co-ordinate extracellular stimuli with activation of intracellular signaling pathways and appropriate biological responses. The Ras branch of this superfamily includes H-, K- and N-Ras, which are commonly mutated in particular human cancers, but notably not in those of the breast. Instead, in breast cancer the signaling pathways involving these GTPases may be upregulated due to increased coupling to growth factor receptors or other tyrosine kinases commonly overexpressed in this disease, or increased expression of regulators, the Ras protein itself, or downstream effectors. Functional studies utilizing both in vitro and in vivo models demonstrate that Ras signaling can regulate a variety of endpoints relevant to breast cancer progression, including anchorage dependent and independent growth, tumorigenesis, steroid sensitivity and invasion. Finally, analysis of the processing and signaling mechanisms of the Ras superfamily has identified potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- S Malaney
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | |
Collapse
|
26
|
Abstract
Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS) already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene, and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies of in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the known in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TGFbeta. We propose that overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.
Collapse
Affiliation(s)
- M R Stampfer
- Lawrence Berkeley National Laboratory, University of California, Life Sciences Division, Berkeley 94720, USA.
| | | |
Collapse
|
27
|
Abstract
Dysplastic and hyperplastic proliferative lesions with graded severity of atypia are recognized in a number of tissues and are generally suspected to be premalignant, that is to say at high risk for further progressing to carcinoma in situ and invasive cancer. However, few xenograft models of premalignancy for any organ site have been successfully developed. A good model of human premalignant breast disease would lead to lesions which resemble high risk human breast disease in xenografts and sporadically progress to invasive cancer with time. In this chapter the use of breast tissue pieces and epithelial cells for establishment of xenografts and the development of human breast epithelial cell lines that form premalignant xenograft lesions are described. MCF10AT cells not only form simple differentiated ducts which persist in xenografts and sporadically progress to carcinoma, but also form intermediate proliferative lesions resembling proliferative disease without atypia, atypical hyperplasia, and carcinoma in situ.
Collapse
Affiliation(s)
- F R Miller
- Barbara Ann Karmanos Cancer Institute and Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| |
Collapse
|
28
|
Ciardiello F, Caputo R, Pomatico G, De Laurentiis M, De Placido S, Bianco AR, Tortora G. Resistance to taxanes is induced by c-erbB-2 overexpression in human MCF-10A mammary epithelial cells and is blocked by combined treatment with an antisense oligonucleotide targeting type I protein kinase A. Int J Cancer 2000; 85:710-5. [PMID: 10699953 DOI: 10.1002/(sici)1097-0215(20000301)85:5<710::aid-ijc18>3.0.co;2-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have tested the sensitivity of human MCF-10A mammary epithelial cells and of their transformed derivatives overexpressing an activated c-Ha-ras gene (MCF-10A Ha-ras cells), the c-erbB-2 gene (MCF-10A c-erbB-2 cells) or both genes (MCF-10A HE cells) to different cytotoxic drugs. As compared with parental MCF-10A cells, the transformed cells exhibited an increased sensitivity to topoisomerase I- and topoisomerase II-inhibitors, and to platinum-derivatives with a 2- to 10-fold reduction in IC(50) values. A remarkable difference in sensitivity was observed following treatment with taxanes. While MCF-10A Ha-ras cells showed an increased sensitivity, MCF-10A c-erbB-2 and MCF-10A HE cells exhibited a relative resistance to taxol and taxotere, with an approximately 3.5- to 6.5-fold higher IC(50) as compared with MCF-10A cells suggesting that c-erbB-2 overexpression has a dominant effect compared with an activated c-Ha-ras gene. The type I cAMP-dependent protein kinase (PKAI) is overexpressed in cancer cells. Inhibition of PKAI by antisense oligonucleotides targeting its RIalpha regulatory subunit results in cancer cell growth inhibition. To evaluate the effect of blocking PKAI on MCF-10A cell sensitivity to taxanes, we treated these cells with taxol or taxotere in combination with a PKAI antisense oligonucleotide. Treatment with this agent, but not with a control scramble sequence, was able to overcome the effect of c-erbB-2 overexpression on MCF-10A cell sensitivity to taxol and taxotere, with a 20- to 40-fold shift in the IC(50) values for the 2 drugs.
Collapse
Affiliation(s)
- F Ciardiello
- Cattedra di Oncologia Medica, Dipartimento di Endocrinologia e Oncologia Molecolare e Clinica, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Hamburger AW, Fernandes A, Murakami M, Gerwin BI. The role of transforming growth factor alpha production and ErbB-2 overexpression in induction of tumorigenicity of lung epithelial cells. Br J Cancer 1998; 77:1066-71. [PMID: 9569041 PMCID: PMC2150121 DOI: 10.1038/bjc.1998.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over-expression of erbB-2 is associated with shortened survival of patients with lung adenocarcinomas. We demonstrated that human lung epithelial cells, overexpressing erbB-2, formed tumours in nude mice only when high levels of transforming growth factor (TGF)-alpha were produced (E6T cells). To define the role that TGF-alpha production played in induction of tumorigenicity, a non-tumorigenic TGF-alpha-negative clone of ErbB-2 overexpressing cells (E2 cells) was transfected with an expression vector for TGF-alpha (E2alpha cells). Transfected clones produced TGF-alpha at 11-25% of the level produced by the E6T cell line. Tumorigenic E6T cells transfected with a TGF-alpha antisense vector (E6TA cells) expressed only 6% of the TGF-alpha level of the parental cells. Clones of E6T, E6TA, E2 and E2alpha were inoculated into athymic nude mice to measure tumorigenic potential. E6T cells formed tumours with a 70% efficiency. E2, E6TA and E2alpha cells failed to form tumours. The levels of EGFR were similar in non-tumorigenic E2 and tumorigenic E6T cells but higher in E2alpha and E6TA cells, and ErbB-2 were greatly overexpressed in an E2alpha clone. In vitro, ErbB-2 co-immunoprecipitated with EGFR in lysates of unstimulated E6T and E2alpha TGF-alpha-producing cells, indicating that the lower TGF-alpha levels were sufficient to induce in vitro heterodimerization. These studies suggest that induction of the tumorigenic phenotype depends on achieving a threshold level of TGF-alpha sufficient to activate downstream signalling by ErbB-2 containing active heterodimers.
Collapse
Affiliation(s)
- A W Hamburger
- Marlene and Stewart Greenebaum Cancer Center, Department of Pathology, University of Maryland at Baltimore, 21201, USA
| | | | | | | |
Collapse
|
30
|
Kang KS, Sun W, Nomata K, Morita I, Cruz A, Liu CJ, Trosko JE, Chang CC. Involvement of tyrosine phosphorylation of p185c-erbB2/neu in tumorigenicity induced by x-rays and theneu oncogene in human breast epithelial cells. Mol Carcinog 1998. [DOI: 10.1002/(sici)1098-2744(199804)21:4<225::aid-mc1>3.0.co;2-j] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Bui TD, Tortora G, Ciardiello F, Harris AL. Expression of Wnt5a is downregulated by extracellular matrix and mutated c-Ha-ras in the human mammary epithelial cell line MCF-10A. Biochem Biophys Res Commun 1997; 239:911-7. [PMID: 9367869 DOI: 10.1006/bbrc.1997.7530] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Wnt genes are involved in tumour growth and regulate cell adhesion. Some (Wnt5a and Wnt7b) are more highly expressed in human breast cancer compared to normal tissues. Wnt5a is involved in the regulation of cell movement in Xenopus and is upregulated in several human cancers. Factors regulating Wnt gene expression in human breast epithelium are poorly understood, but c-erbB2 is amplified in many breast cancers and associated with rapid growth and metastasis, as is high expression of c-Ha-ras. To further understand the regulation of Wnt gene expression, this study investigated the effect of proto-oncogenes c-Ha-ras and c-erbB2, and collagen on Wnt mRNA expression, in a normal spontaneously immortalised human mammary epithelial cell line MCF-10A. Out of nine human Wnt genes investigated, Wnt5a and Wnt7b were expressed in the parental cell line, and neomycin-, c-Ha-ras- and c-erbB2-transfected cell lines. The level of Wnt5a mRNA expression was decreased 40-fold and 3-fold when parental cells were grown on collagen and in collagen, respectively. This downregulation correlated with cell branching. However, Wnt7b was not regulated by collagen. In the presence of activated c-Ha-ras, the level of Wnt5a mRNA expression was markedly decreased (> 200-fold) and cell growth rate was elevated. When treated with p21ras inhibitor, BZA-5B, there was a moderate reversal of Wnt5a mRNA expression (2-fold) with a parallel decrease in cell growth. The data indicate that c-Ha-ras is an upstream inhibitory regulator of Wnt5a, and provide further evidence of an inverse relationship between Wnt5a mRNA expression and cell branching. This demonstrates selectivity of regulation of individual members of the Wnt gene family by the ras pathway. Overexpression of c-erbB2 had no effect on Wnt5a or Wnt7b mRNA expression. Thus, extracellular matrix and ras regulate Wnt5a, providing a mechanism for feedback of morphogenetic movements, which is relevant also to cancer biology.
Collapse
Affiliation(s)
- T D Bui
- Molecular Oncology Laboratory, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
32
|
Dickson R, Low J, Johnson M, Hawkins M, Trock B. Blood-borne indicators of breast cancer and their use in experimental, medical oncologic, and prevention studies. Breast 1996. [DOI: 10.1016/s0960-9776(96)90009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Basolo F, Fiore L, Calvo S, Falcone V, Conaldi PG, Fontanini G, Caligo AM, Merlo G, Gluzman Y, Toniolo A. Defective interleukin six expression and responsiveness in human mammary cells transformed by an adeno 5/SV40 hybrid virus. Br J Cancer 1996; 73:1356-61. [PMID: 8645579 PMCID: PMC2074491 DOI: 10.1038/bjc.1996.258] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mammary epithelial cells (MECs) were isolated and cultured from mammary glands of healthy women undergoing reduction mammoplasty. Normal MECs were infected with the transforming hybrid virus adeno-5/SV40. Two transformed epithelial cell lines, M1 and M2, were obtained, characterised phenotypically and studied for the production of and the response to cytokines and growth regulators. In both cell lines, expression of the SV40 large T antigen was associated with loss of interleukin 6 (IL-6) production and responsiveness as well as with down-regulation of IL-8 and transforming growth factor (TGF)-alpha production. Both M1 and M2 cell lines were capable of forming colonies in semisolid media, but upon injection into severe combined immunodeficient (SCID) mice only M2 cells were tumorigenic. DNA synthesis in M1 cells was partially inhibited by serum or TNF-alpha and weakly stimulated by hydrocortisone (HC) and IL-8. In contrast, M2 cells were totally unresponsive to a variety of growth regulators. Both lines overexpressed the p53 protein at levels about 20-fold higher than those observed in primary MEC cultures, but no mutations of the p53 gene could be detected. The date confirm the view that the expression in human mammary cells of different oncogenes - including the SV40 T antigen - is frequently associated with alterations of cytokine production and responsiveness.
Collapse
Affiliation(s)
- F Basolo
- Institute of Pathological Anatomy, University of Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mincione G, Bianco C, Kannan S, Colletta G, Ciardiello F, Sliwkowski M, Yarden Y, Normanno N, Pramaggiore A, Kim N, Salomon DS. Enhanced expression of heregulin in c-erb B-2 and c-Ha-ras transformed mouse and human mammary epithelial cells. J Cell Biochem 1996; 60:437-46. [PMID: 8707884 DOI: 10.1002/(sici)1097-4644(19960315)60:4<437::aid-jcb1>3.0.co;2-t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Heregulin beta 1 was found to stimulate the anchorage-dependent, serum-free growth of nontransformed human MCF-10A mammary epithelial cells. Unlike epidermal growth factor, transforming growth factor alpha, or amphiregulin, heregulin beta 1 was also able to induce the anchorage-independent growth of MCF-10A cells. In contrast, the anchorage-independent, serum-free growth of c-Ha-ras or c-erb B-2 transformed MCF-10A cells was unaffected by heregulin beta 1, whereas heregulin beta 1 was able to stimulate the anchorage-independent growth of these cells. c-Ha-ras or c-erb B-2 (c-neu) transformed MCF-10A or mouse NOG-8 mammary epithelial cells express elevated levels of 2.5, 5.0, 6.5, 6.8, and 8.5 kb heregulin mRNA transcripts and/or synthesize cell-associated 25, 29, 50, and 115 kDa isoforms of heregulin. Since the MCF-10A cells and transformants also express c-erb B-3, these data suggest that endogenous heregulin might function as an autocrine growth factor for Ha-ras or erb B-2 transformed mammary epithelial cells.
Collapse
Affiliation(s)
- G Mincione
- Istituto di Patologia Umana e Medicina Sociale, Facoltà di Medicina e Chirurgia, Università D'Annunzio, Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ram TG, Dilts CA, Dziubinski ML, Pierce LJ, Ethier SP. Insulin-like growth factor and epidermal growth factor independence in human mammary carcinoma cells with c-erbB-2 gene amplification and progressively elevated levels of tyrosine-phosphorylated p185erbB-2. Mol Carcinog 1996; 15:227-38. [PMID: 8597535 DOI: 10.1002/(sici)1098-2744(199603)15:3<227::aid-mc8>3.0.co;2-e] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Growth factor-independent proliferation is an essential aspect of the transformation process. To study the influence of c-erbB-2 overexpression on the autonomous growth of human mammary cancer cells, we used a series of non-neoplastic and neoplastic human mammary epithelial cell lines isolated from a patient with intraductal and invasive ductal carcinoma of the breast. The non-neoplastic cell line, H16N-2, which expresses a normal level (single gene copy) of c-erbB-2, was used for comparison with the neoplastic cell lines. Both the metastatic tumor cell lines, 21MT-1 and 21 MT-2, showed equivalent amplification of the c-erbB-2 gene; however, 21MT-1 cells showed a higher level of c-erbB-2 overexpression. Therefore, the H16N-2, 21MT-2, and 21MT-1 cell series forms a distinct gradient of progressively increasing c-erbB-2 gene expression. Furthermore, the overexpression of c-erbB-2 in the 21MT cell lines was concordant with increases in the constitutive tyrosine kinase activity of p185erb-2 measured in the absence of exogenous growth factors in culture. Normal mammary epithelial cells require both insulin-like growth factor (IGF)-l (or supraphysiological concentrations of insulin) and epidermal growth factor (EGF) to proliferate under serum-free conditions in culture. By contrast, 21MT-2 cells showed a reduced requirement for IGF but still required EGF to proliferate. 21MT-1 cells did not require either insulin or EGF to proliferate. Therefore, the progressive increases in constitutive p185erbB-2, tyrosine kinase activity in the 21MT-2 and 21MT-1 cell lines was directly correlated with IGF independence and combined IGF and EGF independence under defined conditions in culture. Experiments using conditioned media and anti-IGF-1 receptor and anti-EGF receptor neutralizing antibodies showed that the growth-factor independence of the tumor cells did not involve detectable IGF- or EGF-like autocrine activity expressed by the 21MT cells. Furthermore, neu differentiation factor/heregulin, a ligand that indirectly activates p185erbB-2 by direct binding to erbB-3 receptors, potently stimulated the proliferation of the growth factor-dependent H16N-2 cells (which expressed c-erbB-2 and c-erbB-3 but not c-erbB-4) in the absence of both IGF and EGF. Thus, HRG-induced mitogenesis mimicked the autonomous growth seen in the 21MT cells that have the highest level of constitutive p185erbB-2 activation. These data support the hypothesis that the constitutive activation of p185erbB-2 in human mammary carcinoma cells causes growth-factor independence by directly activating multiple signal-transduction pathways that substitute for both IGF and EGF during proliferation.
Collapse
Affiliation(s)
- T G Ram
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor 48105-0582, USA
| | | | | | | | | |
Collapse
|
36
|
Nesterova M, Yokozaki H, McDuffie E, Cho-Chung YS. Overexpression of RII beta regulatory subunit of protein kinase A in human colon carcinoma cell induces growth arrest and phenotypic changes that are abolished by site-directed mutation of RII beta. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:486-94. [PMID: 8654392 DOI: 10.1111/j.1432-1033.1996.00486.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
LS-174T human colon carcinoma cells that contain approximately equal amounts of cAMP-dependent protein kinase (PKA) isozymes, PKA-I and PKA-II, were infected with retroviral vectors coding for regulatory (R) and catalytic (C) subunits of human PKA. In cells overexpressing RII alpha, RII beta and RII beta-P (a RII beta mutant at the autophosphorylation site), PKA-II levels increased while PK-A levels decreased. PKA-I was almost completely eliminated in cells overexpressing RII beta or RII beta-P. In contrast, overexpression of either RI alpha or C alpha had little or no effect on PKA isozyme levels. Although all infectants expressed high levels of PKA subunit mRNAs in accordance with gene introduction, the R subunit protein expression was reflected in PKA isozyme levels rather than in subunit mRNA levels. Only RII beta infectants demonstrated marked growth inhibition in monolayer culture, reduced thymidine incorporation into DNA, and inability to grow in semisolid medium or in serum-free medium. Conversely, all other infectants displayed growth properties similar to uninfected parental cells. The growth-retardation properties of RII beta infectants were reflected in their altered phenotypic appearances. Our findings that the mutant RII beta-P could not mimic the growth-inhibitory effect of RII beta suggest the functional importance of the authophosphorylation site in RII beta. Our results suggest a role for RII beta in the suppression of neoplastic cell growth, and thus abnormal expression of R subunit isoforms of PKA may be involved in neoplastic transformation.
Collapse
Affiliation(s)
- M Nesterova
- Celluar Biochemistry Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
37
|
Abstract
c-erb B2/neu has been demonstrated to be a transforming oncogene in both rodent and human prostatic epithelial cells. To understand the potential role of neu in human prostatic cancer progression, we used a transfer procedure to determine whether neu amplification/overexpression leads to increased tumor growth and metastasis. We chose an androgen-independent human prostatic epithelial cell line, PC-3, as the target for gene transfer. PC-3 cells were cotransfected with pSVneu-T (a point-mutated rat neu oncogene construct) and pSV2neo, and single-cell cloned. Fifty cell clones were isolated and characterized, of which two neu-transfected clones (N17 and N35) and a neo control clone (C32) were studied extensively with respect to neu gene integration, levels of neu mRNA and protein expression, anchorage-independent growth, and tumorigenic and metastatic potential. Results showed that: 1) Clone N35 contained 70 copies of the neu oncogene and a high level of neu mRNA transcripts. It acquired increased anchorage-independent growth potential in vitro and increased tumorigenicity in vivo. 2) Clone N17 contained 10 copies of the neu oncogene and a low level of neu mRNA transcripts. It did not acquire additional capability for anchorage-independent growth and tumorigenic potential as compared to the controls. 3) Despite an increased level of neu mRNA transcripts present in clone N35, there was no corresponding increase of the steady-state levels of neu protein in this particular clone. 4) When administered subcutaneously, none of the cell clones tested, including the control neomycin-resistant clone, acquired metastatic potential. However, clone N35 exhibited marked metastatic potential when administered orthotopically; this cell clone was found to disseminate widely to the lymph nodes, kidney, skeletal muscle, lung, liver, and bone. 5) When neu-transfected cell subclones from N35-induced primary and metastatic lymph node, kidney, and bone tumors were analyzed for cytoskeletal, extracellular matrix, and cell adhesion protein expression, the bone metastatic subclone exhibited increased levels of vimentin and collagen IV and decreased levels of cytokeratin and ICAM-1. These results, taken together, suggest that neu transfection induces secondary changes, which, rather than neu protein per se, are responsible for the acquisition of tumorigenic and metastatic potential of prostate cancer cells when an appropriate host microenvironment is present.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Southern
- DNA Primers/chemistry
- DNA, Neoplasm/analysis
- Extracellular Matrix Proteins/biosynthesis
- Extracellular Matrix Proteins/genetics
- Gene Expression Regulation, Neoplastic
- Genes, erbB-2
- Growth Substances/biosynthesis
- Growth Substances/genetics
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Sequence Data
- Neoplasm Metastasis/genetics
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- RNA, Messenger/biosynthesis
- Rats
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- H Y Zhau
- Urology Research Laboratory, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Most of the pharmaceuticals in clinical practice today for treatment of breast and other cancers are cytotoxic or cytostatic inhibitors of tumor growth. While this type of drug has found its place, along with surgery and radiotherapy, in treatment of disease, the breast cancer death rate has not decreased. This appears to be the result of rising incidence, resistance to therapy, and metastasis of the disease. Since distant metastasis (usually indicated by lymph node involvement) of breast cancer is related only indirectly to tumor size, it would appear that a concerted effort should be made to discover drugs which directly interfere with this complex process. Metastasis appears to depend upon tumor cell motility, dedifferentiation, local invasion, and angiogenesis. Significant progress has been recently made in the creation of new animal models of metastasis and in identifying several new drugs which may be suitable for clinical inhibition of this process. This article reviews current findings on anti-invasion/metastasis drugs with a focus on breast cancer.
Collapse
Affiliation(s)
- R B Dickson
- Lombardi Cancer Research Center, Georgetown University, Washington, DC, USA
| | | | | | | |
Collapse
|
39
|
Giunciuglio D, Culty M, Fassina G, Masiello L, Melchiori A, Paglialunga G, Arand G, Ciardiello F, Basolo F, Thompson EW. Invasive phenotype of MCF10A cells overexpressing c-Ha-ras and c-erbB-2 oncogenes. Int J Cancer 1995; 63:815-22. [PMID: 8847140 DOI: 10.1002/ijc.2910630612] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Infection with erbB-2 (E) of Ha-ras (H) oncogene-transfected cells has been previously shown to cooperatively induce anchorage-independent growth of the MCF10A human mammary epithelial cell line in vitro, but not to induce nude mouse tumorigenicity. Here we show that oncogene-transformed MCF10A are able to halt in the lungs of nude mice, a sign of organ colonization potential. We have therefore studied the transformants for in vitro migratory and invasive properties known to correlate with the metastatic potential of human mammary carcinoma cells in nude mice. MCF10A transfected with Ha-ras, infected with a recombinant retroviral vector containing the human c-erB-2 proto-oncogene (MCF10A-HE cells), show a higher invasive index than either the single transfectant (MCF10A-H) or MCF10A-erB-2(MCF10A-E) cells in the Boyden chamber chemotaxis and chemoinvasion assays. The MCF10A-HE cells also adopted an invasive stellate growth pattern when plated or embedded in Matrigel, in contrast to the spherical colonies formed by the single transformants MCF10A-H, MCF10A-E, and the parental cells. Dot-blot analysis of gelatinase A and TIMP-2 mRNA levels revealed increasing gelatinase A mRNA levels (HE > E > H > MCF10A) and reduced TIMP-2 expression in both single and double transformants. Furthermore, MCF10A-HE cells show more MMP-2 activity than parental MCF10A cells or the single transformants. CD44 analysis revealed differential isoform banding for the MCF10A-HE cells compared to parental cells, MCF10A-H and MCF10A-E, accompanied by increased binding of hyaluronan by the double transformants. Our results indicate that erB-2 and Ha-ras co-expression can induce a more aggressive phenotype in vitro, representative of the malignancy of mammary carcinomas.
Collapse
Affiliation(s)
- D Giunciuglio
- Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Harris RA, Hiles ID, Page MJ, O'Hare MJ. The induction of apoptosis in human mammary luminal epithelial cells by expression of activated c-neu and its abrogation by glucocorticoids. Br J Cancer 1995; 72:386-92. [PMID: 7640223 PMCID: PMC2033972 DOI: 10.1038/bjc.1995.343] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The effects of expressing neu-T, a mutated constitutively activated form of c-neu, have been examined in the non-transformed conditionally immortalised human mammary luminal epithelial cell line, HB4a. A variant cell line, N4.1, which expressed neu-T, showed evidence of transformation, including partial loss of growth factor dependence and acquisition of anchorage-independent growth, but failed to give rise to tumours in nude mice, indicating that expression of neu-T alone was probably insufficient to cause tumorigenic progression to a full malignant phenotype. During characterisation of the N4.1 cell line, it was observed that under conditions of serum deprivation, it underwent apoptotic cell death, as demonstrated by light microscopy, flow cytometry and DNA gel electrophoresis. The induction of apoptotic cell death in the N4.1 cell line by serum deprivation was abrogated specifically by the addition of steroids with glucocorticoid activity but not any peptide growth factors studied. This study shows the induction of apoptosis by serum deprivation, and its abrogation by glucocorticoids occurring in human mammary luminal epithelial cells transformed by expression of neu-T, and implicates the involvement of receptor protein tyrosine kinases in an apoptotic signalling pathway in this cell type.
Collapse
Affiliation(s)
- R A Harris
- Cell Signalling Group, Wellcome Research Laboratories, Beckenham, Kent, UK
| | | | | | | |
Collapse
|
41
|
Ram TG, Kokeny KE, Dilts CA, Ethier SP. Mitogenic activity of neu differentiation factor/heregulin mimics that of epidermal growth factor and insulin-like growth factor-I in human mammary epithelial cells. J Cell Physiol 1995; 163:589-96. [PMID: 7775601 DOI: 10.1002/jcp.1041630320] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recently, a family of growth factors has been described that activates erbB-2 receptors. These factors, known as the neu differentiation factors (NDF) or heregulins (HRG), induce tyrosine phosphorylation of erbB-2 receptors as a result of their direct interaction with either erbB-3 or erbB-4 receptors. Although it is known that expression of erbB-2 receptors has relevance in human breast cancer progression, how erbB-2, -3 and -4 receptors regulate mammary epithelial cell proliferation is not known. Therefore, experiments were carried out to study the mitogenic activity of NDF/HRG on the human mammary epithelial cell line MCF-10A which can be cultured continuously under serum-free conditions. MCF-10A cells, like primary cultures of normal human mammary epithelial cells, express an absolute requirement for exogenous epidermal growth factor (EGF) and insulinlike growth factor I (IGF-I) for growth. The results of these experiments indicate that NDF/HRG can induce tyrosine phosphorylation of p185erbB-2 in MCF-10A cells and is mitogenic for these cells. This is consistent with the coexpression of erbB-2 and erbB-3 mRNA that we have observed in MCF-10A cells. In addition, we found that NDF/HRG can substitute for either EGF or IGF-I to stimulate proliferation of these cells. The ability to substitute for both EGF and IGF-I is a unique property of NDF/HRG and is not shared by other members of the EGF or IGF family of growth factors, nor by other factors that we have studied. A striking isoform specificity was also observed which indicated that the beta-isoforms of NDF/HRG were greater than ten times more mitogenic than the alpha-isoforms. We also examined the mitogenic activity of NDF/HRG on MCF-10A cells that overexpress the erbB-2 receptor as a result of infection with a retroviral vector containing the human c-erbB-2 gene (MCF-10AerbB-2 cells). These studies indicated that MCF-10AerbB-2 cells have increased sensitivity to the mitogenic effects of NDF/HRG and that these cells are responsive to the alpha-isoforms of NDF/HRG at physiological concentrations. Thus, NDF/HRG is a dual specificity growth factor for human mammary epithelial cells, and the responsiveness of the cells to NDF/HRG is influenced by the level of expression of erbB-2 receptors.
Collapse
Affiliation(s)
- T G Ram
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor 48109-0582, USA
| | | | | | | |
Collapse
|
42
|
Liu Y, el-Ashry D, Chen D, Ding IY, Kern FG. MCF-7 breast cancer cells overexpressing transfected c-erbB-2 have an in vitro growth advantage in estrogen-depleted conditions and reduced estrogen-dependence and tamoxifen-sensitivity in vivo. Breast Cancer Res Treat 1995; 34:97-117. [PMID: 7647336 DOI: 10.1007/bf00665783] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A c-erbB-2 expression vector was transfected into the estrogen receptor positive (ER+) MCF-7 human breast cancer cell line to determine if overexpression of this transmembrane tyrosine kinase could increase the malignant phenotype of this cell line. Loss of transfected c-erbB-2 expression was observed when cells were carried in medium containing estrogen. Homogeneous populations stably overexpressing levels of the 185 kDa c-erbB-2 observed in the SKBR-3 a breast cancer cell line which overexpresses c-erbB-2 as a result of gene amplification could be obtained by continually maintaining the transfected cell lines in estrogen-free conditions. Levels of constitutively activated c-erbB-2 varied among clonal isolates. Whereas some overexpressing lines did acquire the ability to form transient tumor nodules in ovariectomized nude mice without estrogen supplementation, as well as in mice that received the antiestrogen tamoxifen, one cell line that exhibited the highest levels of constitutively activated c-erbB-2 was able to form static tumors of a larger size under both conditions. This same cell line formed progressively growing tumors in estrogen-supplemented mice that were much larger than observed in mice injected with control cell lines, and also showed reduced sensitivity to antiestrogens in vitro, but it continued to have a low metastatic phenotype. These results suggest that signal transduction mediated by the c-erbB-2 tyrosine kinase can partially overcome the estrogen dependence of ER+breast cancer cells for growth and that c-erbB-2 overexpression confers a selective advantage to such cells in the absence of estrogen.
Collapse
MESH Headings
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Division/drug effects
- DNA, Neoplasm/genetics
- Estrogens/deficiency
- Estrogens/metabolism
- Estrogens/physiology
- Flow Cytometry
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, erbB-2
- Humans
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/pathology
- Phosphorylation
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/drug effects
- Sensitivity and Specificity
- Tamoxifen/pharmacology
- Transfection
- Tumor Cells, Cultured
- Tyrosine/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Y Liu
- Lombardi Cancer Research Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
43
|
Merlo GR, Basolo F, Fiore L, Duboc L, Hynes NE. p53-dependent and p53-independent activation of apoptosis in mammary epithelial cells reveals a survival function of EGF and insulin. J Cell Biol 1995; 128:1185-96. [PMID: 7896881 PMCID: PMC2120420 DOI: 10.1083/jcb.128.6.1185] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The p53 tumor suppressor protein has been implicated as a mediator of programmed cell death (PCD). A series of nontransformed mammary epithelial cell (MEC) lines were used to correlate p53 function with activation of PCD. Treatment of MECs expressing mutant, inactive, or no p53 with DNA-damaging agents did not induce apoptosis. Upon introduction of temperature-sensitive p53 into HC11 cells, which lack wild-type (wt) p53, PCD was observed after mitomycin treatment at 32 degrees, when the ts p53 protein is in wt conformation. Thus, wt p53 mediates activation of PCD in response to mitomycin in HC11 cells. Treatment of the MCF10-A cells, which express wt p53, with various DNA-damaging agents led to nuclear accumulation of p53. Only mitomycin treatment led to an increase in the number of apoptotic nuclei. ErbB-2-transformed MCF10-A cells responded to mitomycin, cisplatin, and 5-Fl-uracil, suggesting that signaling from activated ErbB-2 enhances the cells ability to respond to DNA damage. A combination of high cell density and serum-free medium induces apoptosis in all MECs tested, irrespective of their p53 status. Under these conditions, EGF or insulin act as survival factors in preventing PCD. These data might elucidate some aspects of breast involution and tumorigenesis.
Collapse
Affiliation(s)
- G R Merlo
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Salomon DS, Normanno N, Ciardiello F, Brandt R, Shoyab M, Todaro GJ. The role of amphiregulin in breast cancer. Breast Cancer Res Treat 1995; 33:103-14. [PMID: 7749138 DOI: 10.1007/bf00682718] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Amphiregulin (AR) is an epidermal growth factor (EGF)-related peptide that operates exclusively through the EGF receptor and that can bind to heparin. AR also possesses nuclear localization sequences in the extended NH2-terminal region suggesting an additional intracellular site of action. AR mRNA and protein expression have been detected in primary human mammary epithelial cell strains, nontransformed human mammary epithelial cell lines, several human breast cancer cell lines, and primary human breast carcinomas. The frequency and levels of AR protein expression are generally higher in invasive breast carcinomas than in ductal carcinomas in situ or in normal, noninvolved mammary epithelium. In addition, AR can function as an autocrine and/or juxtacrine growth factor in human mammary epithelial cells that have been transformed by an activated c-Ha-ras proto-oncogene or by overexpression of c-erb B-2. AR expression is also enhanced by mammotrophic hormones such as estrogens and other growth factors such as EGF.
Collapse
Affiliation(s)
- D S Salomon
- Tumor Growth Factor Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
45
|
Sabbatini AR, Basolo F, Valentini P, Mattii L, Calvo S, Fiore L, Ciardiello F, Petrini M. Induction of multidrug resistance (MDR) by transfection of MCF-10A cell line with c-Ha-ras and c-erbB-2 oncogenes. Int J Cancer 1994; 59:208-11. [PMID: 7927921 DOI: 10.1002/ijc.2910590212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To investigate the relationship between oncogene activation and appearance of multidrug resistance (MDR) we transfected the human breast epithelial cell line MCF-10A, negative for the expression of the P-glycoprotein, with c-Ha-ras and/or c-erbB-2 oncogenes. The appearance of the MDR phenotype was then studied by evaluating mdr-1 mRNA expression, the presence of P-glycoprotein on the cell membrane and the onset of doxorubicin resistance, together with the effect of the reversing agent verapamil. We found that only MCF-10A transfected with both c-Ha-ras and c-erbB-2 oncogenes acquired the MDR phenotype.
Collapse
|
46
|
Brandt R, Normanno N, Gullick W, Lin J, Harkins R, Schneider D, Jones B, Ciardiello F, Persico M, Armenante F. Identification and biological characterization of an epidermal growth factor-related protein: cripto-1. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32557-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Basolo F, Fiore L, Ciardiello F, Calvo S, Fontanini G, Conaldi PG, Toniolo A. Response of normal and oncogene-transformed human mammary epithelial cells to transforming growth factor beta 1 (TGF-beta 1): lack of growth-inhibitory effect on cells expressing the simian virus 40 large-T antigen. Int J Cancer 1994; 56:736-42. [PMID: 8314352 DOI: 10.1002/ijc.2910560521] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The relationship between the expression of selected oncogenes having different modes of action and the loss of the capacity to respond in vitro to transforming growth factor-beta I (TGF-beta I) was analyzed in human mammary epithelial cells (MEC). Primary MEC cultures from healthy donors and the spontaneously immortalized MCF-10A cell line were used as normal controls. Various assays (employing both complete and chemically defined media) were used: short-term DNA synthesis, long-term cell proliferation under anchorage-dependent and -independent conditions, expression of surface-differentiation molecules. Whereas primary MEC and the MCF-10A cell line were fully responsive to the growth-inhibitory activity of TGF-beta I under different test conditions, MEC transformed by c-Ha-ras, c-erbB2, int-2, or SV40-large-T antigen were not inhibited by TGF-beta I in a short-term DNA-synthesis assay. However, in anchorage-dependent conditions TGF-beta I inhibited the proliferation of all lines investigated, with the exception of SV40-T-antigen-transformed MEC. The colony-formation assay in soft agar revealed that all lines, but not those expressing the int-2 or the SV40-T-antigen genes, were inhibited by TGF-beta I. Neutralizing antibody to TGF-beta had no significant effects on oncogene-transformed lines, suggesting that the endogenous production of an active form of this growth factor is not a major determinant in MEC transformation by the oncogenes investigated. The only observed effect of TGF-beta I on selected surface-differentiation molecules was that normal MEC produced increased levels of the human milk fat globule antigen-I. Thus it appears that the response of MEC to TGF-beta I is consistently attenuated by the insertion of a variety of oncogenes and that it is abolished only by the expression of the SV40-large-T antigen. Whereas no single in vitro assay was capable of accurately reflecting the actual responsiveness of different lines, the growth-curve assay in anchorage-dependent conditions was the best single predictive test.
Collapse
Affiliation(s)
- F Basolo
- Institute of Pathological Anatomy, University of Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Chrysogelos SA, Dickson RB. EGF receptor expression, regulation, and function in breast cancer. Breast Cancer Res Treat 1994; 29:29-40. [PMID: 8018962 DOI: 10.1007/bf00666179] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Epidermal growth factor receptor (EGFR) overexpression correlates with both loss of estrogen receptor (ER) and poor prognosis in breast cancer. Interestingly, in normal breast EGFR appears to be expressed more frequently than in malignant tissue, and there may be a different relationship between ER and EGFR. A variety of cellular regulators, such as EGF, TGF alpha, phorbol esters, and steroid hormones, are capable of altering the level of EGFR expression in breast cells. However, much work remains to be done on the mechanistic details of EGFR regulation in this disease. The significance of EGFR as an oncogene in breast cancer is compounded by its potential interactions with other oncogenes such as c-erbB-2 and c-myc. Additionally, several recent studies have placed EGFR prominently in the signal transduction pathway, demonstrating that the EGFR-ligand system may play important roles throughout the course of malignant progression in breast cancer.
Collapse
Affiliation(s)
- S A Chrysogelos
- Lombardi Cancer Research Center, Georgetown University, Washington, DC 20007
| | | |
Collapse
|
49
|
Ciardiello F, Tortora G, Pepe S, Bianco C, Baldassarre G, Ruggiero A, Bianco C, Selvam MP, Bianco AR. Reduction of RI alpha subunit of cAMP-dependent protein kinase expression induces growth inhibition of human mammary epithelial cells transformed by TGF-alpha, c-Ha-ras, and c-erbB-2 genes. Ann N Y Acad Sci 1993; 698:102-7. [PMID: 7904135 DOI: 10.1111/j.1749-6632.1993.tb17194.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- F Ciardiello
- Cattedra di Oncologia Medica, II Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Basolo F, Calvo S, Fiore L, Serra C, Conaldi PG, Falcone V, Morganti M, Squartini F, Toniolo A. Production of cytokines and response to them in normal and transformed human mammary epithelial cells. Ann N Y Acad Sci 1993; 698:126-30. [PMID: 8279749 DOI: 10.1111/j.1749-6632.1993.tb17198.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- F Basolo
- Institute of Pathological Anatomy, University of Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|