1
|
Moubarak MM, Pagano Zottola AC, Larrieu CM, Cuvellier S, Daubon T, Martin OCB. Exploring the multifaceted role of NRF2 in brain physiology and cancer: A comprehensive review. Neurooncol Adv 2024; 6:vdad160. [PMID: 38221979 PMCID: PMC10785770 DOI: 10.1093/noajnl/vdad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Chronic oxidative stress plays a critical role in the development of brain malignancies due to the high rate of brain oxygen utilization and concomitant production of reactive oxygen species. The nuclear factor-erythroid-2-related factor 2 (NRF2), a master regulator of antioxidant signaling, is a key factor in regulating brain physiology and the development of age-related neurodegenerative diseases. Also, NRF2 is known to exert a protective antioxidant effect against the onset of oxidative stress-induced diseases, including cancer, along with its pro-oncogenic activities through regulating various signaling pathways and downstream target genes. In glioblastoma (GB), grade 4 glioma, tumor resistance, and recurrence are caused by the glioblastoma stem cell population constituting a small bulk of the tumor core. The persistence and self-renewal capacity of these cell populations is enhanced by NRF2 expression in GB tissues. This review outlines NRF2's dual involvement in cancer and highlights its regulatory role in human brain physiology and diseases, in addition to the development of primary brain tumors and therapeutic potential, with a focus on GB.
Collapse
Affiliation(s)
- Maya M Moubarak
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | | | | | | | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | | |
Collapse
|
2
|
Romo-González M, Ijurko C, Hernández-Hernández Á. Reactive Oxygen Species and Metabolism in Leukemia: A Dangerous Liaison. Front Immunol 2022; 13:889875. [PMID: 35757686 PMCID: PMC9218220 DOI: 10.3389/fimmu.2022.889875] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Reactive oxygen species (ROS), previously considered toxic by-products of aerobic metabolism, are increasingly recognized as regulators of cellular signaling. Keeping ROS levels low is essential to safeguard the self-renewal capacity of hematopoietic stem cells (HSC). HSC reside in a hypoxic environment and have been shown to be highly dependent on the glycolytic pathway to meet their energy requirements. However, when the differentiation machinery is activated, there is an essential enhancement of ROS together with a metabolic shift toward oxidative metabolism. Initiating and sustaining leukemia depend on the activity of leukemic stem cells (LSC). LSC also show low ROS levels, but unlike HSC, LSC rely on oxygen to meet their metabolic energetic requirements through mitochondrial respiration. In contrast, leukemic blasts show high ROS levels and great metabolic plasticity, both of which seem to sustain their invasiveness. Oxidative stress and metabolism rewiring are recognized as hallmarks of cancer that are intimately intermingled. Here we present a detailed overview of these two features, sustained at different levels, that support a two-way relationship in leukemia. Modifying ROS levels and targeting metabolism are interesting therapeutic approaches. Therefore, we provide the most recent evidence on the modulation of oxidative stress and metabolism as a suitable anti-leukemic approach.
Collapse
Affiliation(s)
- Marta Romo-González
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Carla Ijurko
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ángel Hernández-Hernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
3
|
Xing F, Hu Q, Qin Y, Xu J, Zhang B, Yu X, Wang W. The Relationship of Redox With Hallmarks of Cancer: The Importance of Homeostasis and Context. Front Oncol 2022; 12:862743. [PMID: 35530337 PMCID: PMC9072740 DOI: 10.3389/fonc.2022.862743] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 12/18/2022] Open
Abstract
Redox homeostasis is a lifelong pursuit of cancer cells. Depending on the context, reactive oxygen species (ROS) exert paradoxical effects on cancers; an appropriate concentration stimulates tumorigenesis and supports the progression of cancer cells, while an excessive concentration leads to cell death. The upregulated antioxidant system in cancer cells limits ROS to a tumor-promoting level. In cancers, redox regulation interacts with tumor initiation, proliferation, metastasis, programmed cell death, autophagy, metabolic reprogramming, the tumor microenvironment, therapies, and therapeutic resistance to facilitate cancer development. This review discusses redox control and the major hallmarks of cancer.
Collapse
Affiliation(s)
- Faliang Xing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qiangsheng Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- *Correspondence: Wei Wang, ; Xianjun Yu, ; Bo Zhang,
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- *Correspondence: Wei Wang, ; Xianjun Yu, ; Bo Zhang,
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- *Correspondence: Wei Wang, ; Xianjun Yu, ; Bo Zhang,
| |
Collapse
|
4
|
Pulmonary Inflammation and KRAS Mutation in Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33788188 DOI: 10.1007/978-3-030-63046-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2023]
Abstract
Chronic lung infection and lung cancer are two of the most important pulmonary diseases. Respiratory infection and its associated inflammation have been increasingly investigated for their role in increasing the risk of respiratory diseases including chronic obstructive pulmonary disease (COPD) and lung cancer. Kirsten rat sarcoma viral oncogene (KRAS) is one of the most important regulators of cell proliferation, differentiation, and survival. KRAS mutations are among the most common drivers of cancer. Lung cancer harboring KRAS mutations accounted for ~25% of the incidence but the relationship between KRAS mutation and inflammation remains unclear. In this chapter, we will describe the roles of KRAS mutation in lung cancer and how elevated inflammatory responses may increase KRAS mutation rate and create a vicious cycle of chronic inflammation and KRAS mutation that likely results in persistent potentiation for KRAS-associated lung tumorigenesis. We will discuss in this chapter regarding the studies of KRAS gene mutations in specimens from lung cancer patients and in animal models for investigating the role of inflammation in increasing the risk of lung tumorigenesis driven primarily by oncogenic KRAS.
Collapse
|
5
|
Ding Y, Yu J, Chen X, Wang S, Tu Z, Shen G, Wang H, Jia R, Ge S, Ruan J, Leong KW, Fan X. Dose-Dependent Carbon-Dot-Induced ROS Promote Uveal Melanoma Cell Tumorigenicity via Activation of mTOR Signaling and Glutamine Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002404. [PMID: 33898168 PMCID: PMC8061404 DOI: 10.1002/advs.202002404] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/07/2021] [Indexed: 05/04/2023]
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor in adults and has a low survival rate following metastasis; it is derived from melanocytes susceptible to reactive oxygen species (ROS). Carbon dot (Cdot) nanoparticles are a promising tool in cancer detection and therapy due to their unique photophysical properties, low cytotoxicity, and efficient ROS productivity. However, the effects of Cdots on tumor metabolism and growth are not well characterized. Here, the effects of Cdots on UM cell metabolomics, growth, invasiveness, and tumorigenicity are investigated in vitro and in vivo zebrafish and nude mouse xenograft model. Cdots dose-dependently increase ROS levels in UM cells. At Cdots concentrations below 100 µg mL-1, Cdot-induced ROS promote UM cell growth, invasiveness, and tumorigenicity; at 200 µg mL-1, UM cells undergo apoptosis. The addition of antioxidants reverses the protumorigenic effects of Cdots. Cdots at 25-100 µg mL-1 activate Akt/mammalian target of rapamycin (mTOR) signaling and enhance glutamine metabolism, generating a cascade that promotes UM cell growth. These results demonstrate that moderate, subapoptotic doses of Cdots can promote UM cell tumorigenicity. This study lays the foundation for the rational application of ROS-producing nanoparticles in tumor imaging and therapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Jie Yu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Xingyu Chen
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Shaoyun Wang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Zhaoxu Tu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Guangxia Shen
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Huixue Wang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Renbing Jia
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Shengfang Ge
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| | - Jing Ruan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Xianqun Fan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011China
| |
Collapse
|
6
|
Linking Serine/Glycine Metabolism to Radiotherapy Resistance. Cancers (Basel) 2021; 13:cancers13061191. [PMID: 33801846 PMCID: PMC8002185 DOI: 10.3390/cancers13061191] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Hyperactivation of the de novo serine/glycine biosynthesis across different cancer types and its critical contribution in tumor initiation, progression, and therapy resistance indicate the relevance of serine/glycine metabolism-targeted therapies as therapeutic intervention in cancer. In this review, we specifically focus on the contribution of the de novo serine/glycine biosynthesis pathway to radioresistance. We provide a future perspective on how de novo serine/glycine biosynthesis inhibition and serine-free diets may improve the outcome of radiotherapy. Future research in this field is needed to better understand serine/glycine metabolic reprogramming of cancer cells in response to radiation and the influence of this pathway in the tumor microenvironment, which may provide the rationale for the optimal combination therapies. Abstract The activation of de novo serine/glycine biosynthesis in a subset of tumors has been described as a major contributor to tumor pathogenesis, poor outcome, and treatment resistance. Amplifications and mutations of de novo serine/glycine biosynthesis enzymes can trigger pathway activation; however, a large group of cancers displays serine/glycine pathway overexpression induced by oncogenic drivers and unknown regulatory mechanisms. A better understanding of the regulatory network of de novo serine/glycine biosynthesis activation in cancer might be essential to unveil opportunities to target tumor heterogeneity and therapy resistance. In the current review, we describe how the activation of de novo serine/glycine biosynthesis in cancer is linked to treatment resistance and its implications in the clinic. To our knowledge, only a few studies have identified this pathway as metabolic reprogramming of cancer cells in response to radiation therapy. We propose an important contribution of de novo serine/glycine biosynthesis pathway activation to radioresistance by being involved in cancer cell viability and proliferation, maintenance of cancer stem cells (CSCs), and redox homeostasis under hypoxia and nutrient-deprived conditions. Current approaches for inhibition of the de novo serine/glycine biosynthesis pathway provide new opportunities for therapeutic intervention, which in combination with radiotherapy might be a promising strategy for tumor control and ultimately eradication. Further research is needed to gain molecular and mechanistic insight into the activation of this pathway in response to radiation therapy and to design sophisticated stratification methods to select patients that might benefit from serine/glycine metabolism-targeted therapies in combination with radiotherapy.
Collapse
|
7
|
Free Radicals as a Double-Edged Sword: The Cancer Preventive and Therapeutic Roles of Curcumin. Molecules 2020; 25:molecules25225390. [PMID: 33217990 PMCID: PMC7698794 DOI: 10.3390/molecules25225390] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 01/07/2023] Open
Abstract
Free radicals, generally composed of reactive oxygen species (ROS) and reactive nitrogen species (RNS), are generated in the body by various endogenous and exogenous systems. The overproduction of free radicals is known to cause several chronic diseases including cancer. However, increased production of free radicals by chemotherapeutic drugs is also associated with apoptosis in cancer cells, indicating the dual nature of free radicals. Among various natural compounds, curcumin manifests as an antioxidant in normal cells that helps in the prevention of carcinogenesis. It also acts as a prooxidant in cancer cells and is associated with inducing apoptosis. Curcumin quenches free radicals, induces antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), and upregulates antioxidative protein markers-Nrf2 and HO-1 that lead to the suppression of cellular oxidative stress. In cancer cells, curcumin aggressively increases ROS that results in DNA damage and subsequently cancer cell death. It also sensitizes drug-resistant cancer cells and increases the anticancer effects of chemotherapeutic drugs. Thus, curcumin shows beneficial effects in prevention, treatment and chemosensitization of cancer cells. In this review, we will discuss the dual role of free radicals as well as the chemopreventive and chemotherapeutic effects of curcumin and its analogues against cancer.
Collapse
|
8
|
ROS and oncogenesis with special reference to EMT and stemness. Eur J Cell Biol 2020; 99:151073. [PMID: 32201025 DOI: 10.1016/j.ejcb.2020.151073] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
Elevation of the level of intracellular reactive oxygen species (ROS) has immense implication in the biological system. On the one hand, ROS promote the signaling cascades for the maintenance of normal physiological functions, the phenomenon referred to as redox biology, and on the other hand increased ROS can cause damages to the cellular macromolecules as well as genetic material, the process known as oxidative stress. Oxidative stress acts as an etiological factor for wide varieties of pathologies, cancer being one of them. ROS is regarded as a "double-edged sword" with respect to oncogenesis. It can suppress as well as promote the malignant progression depending on the type of signaling pathway it uses. Moreover, the attribution of ROS in promoting phenotypic plasticity as well as acquisition of stemness during neoplasia has become a wide area of research. The current review discussed all the aspects of ROS in the perspective of tumor biology with special reference to epithelial-mesenchymal transition (EMT) and cancer stem cells.
Collapse
|
9
|
Firczuk M, Bajor M, Graczyk-Jarzynka A, Fidyt K, Goral A, Zagozdzon R. Harnessing altered oxidative metabolism in cancer by augmented prooxidant therapy. Cancer Lett 2020; 471:1-11. [DOI: 10.1016/j.canlet.2019.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022]
|
10
|
Aberrant DNA Polymerase Beta Enhances H. pylori Infection Induced Genomic Instability and Gastric Carcinogenesis in Mice. Cancers (Basel) 2019; 11:cancers11060843. [PMID: 31216714 PMCID: PMC6627457 DOI: 10.3390/cancers11060843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 11/16/2022] Open
Abstract
H. pylori is a significant risk factor of gastric cancer that induces chronic inflammation and oxidative DNA damage to promote gastric carcinoma. Base excision repair (BER) is required to maintain the genome integrity and prevent oxidative DNA damage. Mutation in DNA polymerase beta (Pol β) impacts BER efficiency and has been reported in approximately 30-40% of gastric carcinoma tumors. In this study, we examined whether reduced BER capacity associated with mutation in the POLB gene, along with increased DNA damage generated by H. pylori infection, accelerates gastric cancer development. By infecting a Pol β mutant mouse model that lacks dRP lyase with H. pylori, we show that reactive oxygen and nitrogen species (RONS) mediated DNA damage is accumulated in Pol β mutant mice (L22P). In addition, H. pylori infection in Leu22Pro (L22P) mice significantly increases inducible nitric oxide synthesis (iNOS) mediated chronic inflammation. Our data show that L22P mice exhibited accelerated H. pylori induced carcinogenesis and increased tumor incidence. This work shows that Pol β mediated DNA repair under chronic inflammation conditions is an important suppressor of H. pylori induced stomach carcinogenesis.
Collapse
|
11
|
Abstract
The chemistry of DNA and its repair selectivity control the influence of genomic oxidative stress on the development of serious disorders such as cancer and heart diseases. DNA is oxidized by endogenous reactive oxygen species (ROS) in vivo or in vitro as a result of high energy radiation, non-radiative metabolic processes, and other consequences of oxidative stress. Some oxidations of DNA and tumor suppressor gene p53 are thought to be mutagenic when not repaired. For example, site-specific oxidations of p53 tumor suppressor gene may lead to cancer-related mutations at the oxidation site codon. This review summarizes the research on the primary products of the most easily oxidized nucleobase guanine (G) when different oxidation methods are used. Guanine is by far the most oxidized DNA base. The primary initial oxidation product of guanine for most, but not all, pathways is 8-oxoguanine (8-oxoG). With an oxidation potential much lower than G, 8-oxoG is readily susceptible to further oxidation, and the products often depend on the oxidants. Specific products may control the types of subsequent mutations, but mediated by gene repair success. Site-specific oxidations of p53 tumor suppressor gene have been reported at known mutation hot spots, and the codon sites also depend on the type of oxidants. Modern methodologies using LC-MS/MS for codon specific detection and identification of oxidation sites are summarized. Future work aimed at understanding DNA oxidation in nucleosomes and interactions between DNA damage and repair is needed to provide a better picture of how cancer-related mutations arise.
Collapse
Affiliation(s)
- Di Jiang
- Department of ChemistryUniversity of ConnecticutStorrsCT 06269United States
| | - James F. Rusling
- Department of ChemistryUniversity of ConnecticutStorrsCT 06269United States
- Department of SurgeryNeag Cancer Center, UConn HealthFarmingtonCT 06032United States
- Institute of Material ScienceUniversity of ConnecticutStorrsCT 06269United States
- School of ChemistryNational University of Ireland at GalwayIreland
| |
Collapse
|
12
|
Kidane D. Molecular Mechanisms of H. pylori-Induced DNA Double-Strand Breaks. Int J Mol Sci 2018; 19:ijms19102891. [PMID: 30249046 PMCID: PMC6213211 DOI: 10.3390/ijms19102891] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/11/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022] Open
Abstract
Infections contribute to carcinogenesis through inflammation-related mechanisms. H. pylori infection is a significant risk factor for gastric carcinogenesis. However, the molecular mechanism by which H. pylori infection contributes to carcinogenesis has not been fully elucidated. H. pylori-associated chronic inflammation is linked to genomic instability via reactive oxygen and nitrogen species (RONS). In this article, we summarize the current knowledge of H. pylori-induced double strand breaks (DSBs). Furthermore, we provide mechanistic insight into how processing of oxidative DNA damage via base excision repair (BER) leads to DSBs. We review recent studies on how H. pylori infection triggers NF-κB/inducible NO synthase (iNOS) versus NF-κB/nucleotide excision repair (NER) axis-mediated DSBs to drive genomic instability. This review discusses current research findings that are related to mechanisms of DSBs and repair during H. pylori infection.
Collapse
Affiliation(s)
- Dawit Kidane
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, USA.
| |
Collapse
|
13
|
Du S, Miao J, Zhu Z, Xu E, Shi L, Ai S, Wang F, Kang X, Chen H, Lu X, Guan W, Xia X. NADPH oxidase 4 regulates anoikis resistance of gastric cancer cells through the generation of reactive oxygen species and the induction of EGFR. Cell Death Dis 2018; 9:948. [PMID: 30237423 PMCID: PMC6148243 DOI: 10.1038/s41419-018-0953-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/22/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023]
Abstract
Anoikis is a type of programmed cell death induced by detachment from the extracellular matrix. In cancer cells, anoikis resistance is essential for cancer cell survival in blood circulation and distant metastasis. However, the mechanisms behind anoikis resistance of gastric cancer remain largely unknown. Herein, we demonstrate that NADPH oxidase 4 (NOX4) expression and reactive oxygen species (ROS) generation are upregulated in suspension gastric cell cultures compared with adherent cultures. Silencing of NOX4 decreases ROS generation and downregulates EGFR, sensitizing cells to anoikis. NOX4 overexpression upregulates ROS and EGFR levels and promotes anoikis resistance. NOX4 depletion inhibits gastric cancer survival in blood circulation and attenuates distant metastasis. NOX4 expression is correlated with EGFR expression in patients. In conclusion, induction of NOX4 expression by detachment promotes anoikis resistance of gastric cancer through ROS generation and downstream upregulation of EGFR, which is critical for the metastatic progression of gastric cancer.
Collapse
Affiliation(s)
- Shangce Du
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Ji Miao
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Zhouting Zhu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - En Xu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Linsen Shi
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Shichao Ai
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Feng Wang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Xing Kang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Hong Chen
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Xiaofeng Lu
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Wenxian Guan
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China. .,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.
| | - Xuefeng Xia
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China. .,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.
| |
Collapse
|
14
|
Redox control in cancer development and progression. Mol Aspects Med 2018; 63:88-98. [PMID: 29501614 DOI: 10.1016/j.mam.2018.02.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Cancer is the leading cause of death worldwide after cardiovascular diseases. This has been the case for the last few decades despite there being an increase in the number of cancer treatments. One reason for the apparent lack of drug effectiveness might be, at least in part, due to unspecificity for tumors; which often leads to substantial side effects. One way to improve the treatment of cancer is to increase the specificity of the treatment in accordance with the concept of individualized medicine. This will help to prevent further progression of an existing cancer or even to reduce the tumor burden. Alternatively it would be much more attractive and efficient to prevent the development of cancer in the first place. Therefore, it is important to understand the risk factors and the mechanisms of carcinogenesis in detail. One such risk factor, often associated with tumorigenesis and tumor progression, is an increased abundance of reactive oxygen species (ROS) arising from an imbalance of ROS-producing and -eliminating components. A surplus of ROS can induce oxidative damage of macromolecules including proteins, lipids and DNA. In contrast, ROS are essential for an adequate signal transduction and are known to regulate crucial cellular processes like cellular quiescence, differentiation and even apoptosis. Therefore, regulated ROS-formation at physiological levels can inhibit tumor formation and progression. With this review we provide an overview on the current knowledge of redox control in cancer development and progression.
Collapse
|
15
|
Ethanol potentiates the genotoxicity of the food-derived mammary carcinogen PhIP in human estrogen receptor-positive mammary cells: mechanistic support for lifestyle factors (cooked red meat and ethanol) associated with mammary cancer. Arch Toxicol 2018; 92:1639-1655. [PMID: 29362861 PMCID: PMC5882637 DOI: 10.1007/s00204-018-2160-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
Consumption of cooked/processed meat and ethanol are lifestyle risk factors in the aetiology of breast cancer. Cooking meat generates heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Epidemiology, mechanistic and animal studies indicate that PhIP is a mammary carcinogen that could be causally linked to breast cancer incidence; PhIP is DNA damaging, mutagenic and oestrogenic. PhIP toxicity involves cytochrome P450 (CYP1 family)-mediated metabolic activation to DNA-damaging species, and transcriptional responses through Aryl hydrocarbon receptor (AhR) and estrogen-receptor-α (ER-α). Ethanol consumption is a modifiable lifestyle factor strongly associated with breast cancer risk. Ethanol toxicity involves alcohol dehydrogenase metabolism to reactive acetaldehyde, and is also a substrate for CYP2E1, which when uncoupled generates reactive oxygen species (ROS) and DNA damage. Here, using human mammary cells that differ in estrogen-receptor status, we explore genotoxicity of PhIP and ethanol and mechanisms behind this toxicity. Treatment with PhIP (10-7-10-4 M) significantly induced genotoxicity (micronuclei formation) preferentially in ER-α positive human mammary cell lines (MCF-7, ER-α+) compared to MDA-MB-231 (ER-α-) cells. PhIP-induced CYP1A2 in both cell lines but CYP1B1 was selectively induced in ER-α(+) cells. ER-α inhibition in MCF-7 cells attenuated PhIP-mediated micronuclei formation and CYP1B1 induction. PhIP-induced CYP2E1 and ROS via ER-α-STAT-3 pathway, but only in ER-α (+) MCF-7 cells. Importantly, simultaneous treatments of physiological concentrations ethanol (10-3-10-1 M) with PhIP (10-7-10-4 M) increased oxidative stress and genotoxicity in MCF-7 cells, compared to the individual chemicals. Collectively, these data offer a mechanistic basis for the increased risk of breast cancer associated with dietary cooked meat and ethanol lifestyle choices.
Collapse
|
16
|
Miyata Y, Matsuo T, Sagara Y, Ohba K, Ohyama K, Sakai H. A Mini-Review of Reactive Oxygen Species in Urological Cancer: Correlation with NADPH Oxidases, Angiogenesis, and Apoptosis. Int J Mol Sci 2017; 18:ijms18102214. [PMID: 29065504 PMCID: PMC5666894 DOI: 10.3390/ijms18102214] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress refers to elevated reactive oxygen species (ROS) levels, and NADPH oxidases (NOXs), which are one of the most important sources of ROS. Oxidative stress plays important roles in the etiologies, pathological mechanisms, and treatment strategies of vascular diseases. Additionally, oxidative stress affects mechanisms of carcinogenesis, tumor growth, and prognosis in malignancies. Nearly all solid tumors show stimulation of neo-vascularity, termed angiogenesis, which is closely associated with malignant aggressiveness. Thus, cancers can be seen as a type of vascular disease. Oxidative stress-induced functions are regulated by complex endogenous mechanisms and exogenous factors, such as medication and diet. Although understanding these regulatory mechanisms is important for improving the prognosis of urothelial cancer, it is not sufficient, because there are controversial and conflicting opinions. Therefore, we believe that this knowledge is essential to discuss observations and treatment strategies in urothelial cancer. In this review, we describe the relationships between members of the NOX family and tumorigenesis, tumor growth, and pathological mechanisms in urological cancers including prostate cancer, renal cell carcinoma, and urothelial cancer. In addition, we introduce natural compounds and chemical agents that are associated with ROS-induced angiogenesis or apoptosis.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Yuji Sagara
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kaname Ohyama
- Department of Pharmaceutical Science, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| |
Collapse
|
17
|
Huang H, Du W, Brekken RA. Extracellular Matrix Induction of Intracellular Reactive Oxygen Species. Antioxid Redox Signal 2017; 27:774-784. [PMID: 28791881 DOI: 10.1089/ars.2017.7305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) is the noncellular component secreted by cells and is present within all tissues and organs. The ECM provides the structural support required for tissue integrity and also contributes to diseases, including cancer. Many diseases rich in ECM are characterized by changes in reactive oxygen species (ROS) levels that have been shown to have important context-dependent functions. Recent Advances: Many studies have found that the ECM affects ROS production through integrins. The activation of integrins by ECM ligands results in stimulation of multiple pathways that can generate ROS. Furthermore, control of ECM-integrin interaction by matricellular proteins is an underappreciated pathway that functions as an ROS rheostat in remodeling tissues. CRITICAL ISSUES A better understanding of how the ECM affects the generation of intracellular ROS is required for advances in the development of therapeutic strategies that affect or exploit oxidative stress. FUTURE DIRECTIONS Targeting ROS generation can be therapeutic or can promote disease progression in a context-dependent manner. Many ECM proteins can impact ROS generation. However, given the breadth of different proteins that constitute the ECM and the cell surface receptors that interact with ECM proteins, there are likely many tissue and microenvironmental-specific ROS-generating pathways that have yet to be investigated in depth. Identifying canonical pathways of ECM-induced ROS generation should be a priority for the field. Antioxid. Redox Signal. 27, 774-784.
Collapse
Affiliation(s)
- Huocong Huang
- 1 Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research , Dallas, Texas
| | - Wenting Du
- 1 Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research , Dallas, Texas
| | - Rolf A Brekken
- 1 Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research , Dallas, Texas.,2 Department of Pharmacology, UT Southwestern, Dallas, Texas
| |
Collapse
|
18
|
Rockfield S, Raffel J, Mehta R, Rehman N, Nanjundan M. Iron overload and altered iron metabolism in ovarian cancer. Biol Chem 2017; 398:995-1007. [PMID: 28095368 DOI: 10.1515/hsz-2016-0336] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/09/2017] [Indexed: 12/28/2022]
Abstract
Iron is an essential element required for many processes within the cell. Dysregulation in iron homeostasis due to iron overload is detrimental. This nutrient is postulated to contribute to the initiation of cancer; however, the mechanisms by which this occurs remain unclear. Defining how iron promotes the development of ovarian cancers from precursor lesions is essential for developing novel therapeutic strategies. In this review, we discuss (1) how iron overload conditions may initiate ovarian cancer development, (2) dysregulated iron metabolism in cancers, (3) the interplay between bacteria, iron, and cancer, and (4) chemotherapeutic strategies targeting iron metabolism in cancer patients.
Collapse
|
19
|
Benfeitas R, Uhlen M, Nielsen J, Mardinoglu A. New Challenges to Study Heterogeneity in Cancer Redox Metabolism. Front Cell Dev Biol 2017; 5:65. [PMID: 28744456 PMCID: PMC5504267 DOI: 10.3389/fcell.2017.00065] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are important pathophysiological molecules involved in vital cellular processes. They are extremely harmful at high concentrations because they promote the generation of radicals and the oxidation of lipids, proteins, and nucleic acids, which can result in apoptosis. An imbalance of ROS and a disturbance of redox homeostasis are now recognized as a hallmark of complex diseases. Considering that ROS levels are significantly increased in cancer cells due to mitochondrial dysfunction, ROS metabolism has been targeted for the development of efficient treatment strategies, and antioxidants are used as potential chemotherapeutic drugs. However, initial ROS-focused clinical trials in which antioxidants were supplemented to patients provided inconsistent results, i.e., improved treatment or increased malignancy. These different outcomes may result from the highly heterogeneous redox responses of tumors in different patients. Hence, population-based treatment strategies are unsuitable and patient-tailored therapeutic approaches are required for the effective treatment of patients. Moreover, due to the crosstalk between ROS, reducing equivalents [e.g., NAD(P)H] and central metabolism, which is heterogeneous in cancer, finding the best therapeutic target requires the consideration of system-wide approaches that are capable of capturing the complex alterations observed in all of the associated pathways. Systems biology and engineering approaches may be employed to overcome these challenges, together with tools developed in personalized medicine. However, ROS- and redox-based therapies have yet to be addressed by these methodologies in the context of disease treatment. Here, we review the role of ROS and their coupled redox partners in tumorigenesis. Specifically, we highlight some of the challenges in understanding the role of hydrogen peroxide (H2O2), one of the most important ROS in pathophysiology in the progression of cancer. We also discuss its interplay with antioxidant defenses, such as the coupled peroxiredoxin/thioredoxin and glutathione/glutathione peroxidase systems, and its reducing equivalent metabolism. Finally, we highlight the need for system-level and patient-tailored approaches to clarify the roles of these systems and identify therapeutic targets through the use of the tools developed in personalized medicine.
Collapse
Affiliation(s)
- Rui Benfeitas
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden
| | - Jens Nielsen
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| |
Collapse
|
20
|
Yoon JH, Kim O, Nam SW, Lee JY, Park WS. NKX6.3 Regulates Reactive Oxygen Species Production by Suppressing NF-kB and DNMT1 Activities in Gastric Epithelial Cells. Sci Rep 2017; 7:2807. [PMID: 28584243 PMCID: PMC5459835 DOI: 10.1038/s41598-017-02901-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/20/2017] [Indexed: 12/22/2022] Open
Abstract
NKX6.3 plays an important role in gastric epithelial differentiation and also acts as a gastric tumor suppressor. The specific aim of this study was to determine whether NKX6.3 contributes to gastric mucosal barrier function by regulating reactive oxygen species (ROS) production. NKX6.3 reduced ROS production and regulated expression of anti-oxidant genes, including Hace1. In addition, NKX6.3 reduced DNMT1 expression and activity by down-regulating NF-kB family gene transcription. Silencing of Hace1 recovered ROS production, whereas knock-down of DNMT1 and NF-kB reduced ROS production and induced Hace1 expression by hypomethylating its promoter region. In addition, NKX6.3 inhibited CagA effects on cell growth, ROS production, and NF-kB and DNMT1 activity. In gastric mucosae and cancers, NKX6.3 and Hace1 expression was significantly reduced. The NKX6.3 expression was positively correlated with Hace1 and Nrf2 genes, but negatively correlated with DNMT1. Hypermethylation of Hace1 gene was observed only in gastric mucosae with H. pylori, atrophy and intestinal metaplasia. Thus, these results suggest that NKX6.3 inhibits ROS production by inducing the expression of Hace1 via down-regulating NF-kB and DNMT1 activity in gastric epithelial cells.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, South Korea
| | - Olga Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, South Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, South Korea
- Department of Functional RNomics, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, South Korea
| | - Jung Young Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, South Korea
- Department of Functional RNomics, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, South Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, South Korea.
- Department of Functional RNomics, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, South Korea.
| |
Collapse
|
21
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med 2017; 104:144-164. [PMID: 28088622 DOI: 10.1016/j.freeradbiomed.2017.01.004] [Citation(s) in RCA: 626] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS), a group of highly reactive ions and molecules, are increasingly being appreciated as powerful signaling molecules involved in the regulation of a variety of biological processes. Indeed, their role is continuously being delineated in a variety of pathophysiological conditions. For instance, cancer cells are shown to have increased ROS levels in comparison to their normal counterparts. This is partly due to an enhanced metabolism and mitochondrial dysfunction in cancer cells. The escalated ROS generation in cancer cells contributes to the biochemical and molecular changes necessary for the tumor initiation, promotion and progression, as well as, tumor resistance to chemotherapy. Therefore, increased ROS in cancer cells may provide a unique opportunity to eliminate cancer cells via elevating ROS to highly toxic levels intracellularly, thereby, activating various ROS-induced cell death pathways, or inhibiting cancer cell resistance to chemotherapy. Such results can be achieved by using agents that either increase ROS generation, or inhibit antioxidant defense, or even a combination of both. In fact, a large variety of anticancer drugs, and some of those currently under clinical trials, effectively kill cancer cells and overcome drug resistance via enhancing ROS generation and/or impeding the antioxidant defense mechanism. This review focuses on our current understanding of the tumor promoting (tumorigenesis, angiogenesis, invasion and metastasis, and chemoresistance) and the tumor suppressive (apoptosis, autophagy, and necroptosis) functions of ROS, and highlights the potential mechanism(s) involved. It also sheds light on a very novel and an actively growing field of ROS-dependent cell death mechanism referred to as ferroptosis.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE; Al Jalila Foundation Research Centre, P.O. Box 300100, Dubai, UAE.
| | - Anees Rahman
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
22
|
Li W, Guo Y, Zhang C, Wu R, Yang AY, Gaspar J, Kong ANT. Dietary Phytochemicals and Cancer Chemoprevention: A Perspective on Oxidative Stress, Inflammation, and Epigenetics. Chem Res Toxicol 2016; 29:2071-2095. [PMID: 27989132 DOI: 10.1021/acs.chemrestox.6b00413] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress occurs when cellular reactive oxygen species levels exceed the self-antioxidant capacity of the body. Oxidative stress induces many pathological changes, including inflammation and cancer. Chronic inflammation is believed to be strongly associated with the major stages of carcinogenesis. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway plays a crucial role in regulating oxidative stress and inflammation by manipulating key antioxidant and detoxification enzyme genes via the antioxidant response element. Many dietary phytochemicals with cancer chemopreventive properties, such as polyphenols, isothiocyanates, and triterpenoids, exert antioxidant and anti-inflammatory functions by activating the Nrf2 pathway. Furthermore, epigenetic changes, including DNA methylation, histone post-translational modifications, and miRNA-mediated post-transcriptional alterations, also lead to various carcinogenesis processes by suppressing cancer repressor gene transcription. Using epigenetic research tools, including next-generation sequencing technologies, many dietary phytochemicals are shown to modify and reverse aberrant epigenetic/epigenome changes, potentially leading to cancer prevention/treatment. Thus, the beneficial effects of dietary phytochemicals on cancer development warrant further investigation to provide additional impetus for clinical translational studies.
Collapse
Affiliation(s)
- Wenji Li
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Yue Guo
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Chengyue Zhang
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Renyi Wu
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Anne Yuqing Yang
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - John Gaspar
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Ah-Ng Tony Kong
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| |
Collapse
|
23
|
Accumulation of abasic sites induces genomic instability in normal human gastric epithelial cells during Helicobacter pylori infection. Oncogenesis 2014; 3:e128. [PMID: 25417725 PMCID: PMC4259965 DOI: 10.1038/oncsis.2014.42] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori infection of the human stomach is associated with inflammation that leads to the release of reactive oxygen and nitrogen species (RONs), eliciting DNA damage in host cells. Unrepaired DNA damage leads to genomic instability that is associated with cancer. Base excision repair (BER) is critical to maintain genomic stability during RONs-induced DNA damage, but little is known about its role in processing DNA damage associated with H. pylori infection of normal gastric epithelial cells. Here, we show that upon H. pylori infection, abasic (AP) sites accumulate and lead to increased levels of double-stranded DNA breaks (DSBs). In contrast, downregulation of the OGG1 DNA glycosylase decreases the levels of both AP sites and DSBs during H. pylori infection. Processing of AP sites during different phases of the cell cycle leads to an elevation in the levels of DSBs. Therefore, the induction of oxidative DNA damage by H. pylori and subsequent processing by BER in normal gastric epithelial cells has the potential to lead to genomic instability that may have a role in the development of gastric cancer. Our results are consistent with the interpretation that precise coordination of BER processing of DNA damage is critical for the maintenance of genomic stability.
Collapse
|
24
|
Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 2014; 94:329-54. [PMID: 24692350 DOI: 10.1152/physrev.00040.2012] [Citation(s) in RCA: 1395] [Impact Index Per Article: 139.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are generated as by-products of normal cellular metabolic activities. Superoxide dismutase, glutathione peroxidase, and catalase are the enzymes involved in protecting cells from the damaging effects of ROS. ROS are produced in response to ultraviolet radiation, cigarette smoking, alcohol, nonsteroidal anti-inflammatory drugs, ischemia-reperfusion injury, chronic infections, and inflammatory disorders. Disruption of normal cellular homeostasis by redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. ROS are produced within the gastrointestinal (GI) tract, but their roles in pathophysiology and disease pathogenesis have not been well studied. Despite the protective barrier provided by the mucosa, ingested materials and microbial pathogens can induce oxidative injury and GI inflammatory responses involving the epithelium and immune/inflammatory cells. The pathogenesis of various GI diseases including peptic ulcers, gastrointestinal cancers, and inflammatory bowel disease is in part due to oxidative stress. Unraveling the signaling events initiated at the cellular level by oxidative free radicals as well as the physiological responses to such stress is important to better understand disease pathogenesis and to develop new therapies to manage a variety of conditions for which current therapies are not always sufficient.
Collapse
|
25
|
Strickertsson JAB, Desler C, Rasmussen LJ. Impact of bacterial infections on aging and cancer: impairment of DNA repair and mitochondrial function of host cells. Exp Gerontol 2014; 56:164-74. [PMID: 24704713 DOI: 10.1016/j.exger.2014.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 02/06/2023]
Abstract
The commensal floras that inhabit the gastrointestinal tract play critical roles in immune responses, energy metabolism, and even cancer prevention. Pathogenic and out of place commensal bacteria, can however have detrimental effects on the host, by introducing genomic instability and mitochondrial dysfunction, which are hallmarks of both aging and cancer. Helicobacter pylori and Enterococcus faecalis are bacteria of the gastrointestinal tract that have been demonstrated to affect these two hallmarks. These, and other bacteria, have been shown to decrease the transcription and translation of essential DNA repair subunits of major DNA repair pathways and increase production of reactive oxygen species (ROS). Defects in DNA repair cause mutations and genomic instability and are found in several cancers as well as in progeroid syndromes. This review describes our contemporary view on how bacterial infections impact DNA repair and damage, and the consequence on the mitochondrial and nuclear genomes. We argue that in the gastrointestinal tract, these mechanisms can contribute to tumorigenesis as well as cellular aging of the digestive system.
Collapse
Affiliation(s)
- Jesper A B Strickertsson
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
26
|
Oxidative Stress and DNA Damage in Human Gastric Carcinoma: 8-Oxo-7'8-dihydro-2'-deoxyguanosine (8-oxo-dG) as a Possible Tumor Marker. Int J Mol Sci 2013; 14:3467-86. [PMID: 23389043 PMCID: PMC3588053 DOI: 10.3390/ijms14023467] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/22/2022] Open
Abstract
We characterized the oxidative stress (OS) status by the levels of reduced/oxidized glutathione (GSH/GSSG), malondialdehyde (MDA) and the mutagenic base 8-oxo-7′8-dihydro-2′-deoxyguanosine (8-oxo-dG) in human gastric carcinoma (HGC) samples and compared the results with normal tissue from the same patients. We also analyzed 8-oxo-dG in peripheral mononuclear cells (PMNC) and urine from healthy control subjects and in affected patients in the basal state and one, three, six, nine and twelve months after tumor resection. The levels of DNA repair enzyme mRNA expression (hOGG1, RAD51, MUYTH and MTH1) were determined in tumor specimens and compared with normal mucosa. Tumor specimens exhibited increased levels of MDA and 8-oxo-dG compared with normal gastric tissue. GSH levels were also increased, while GSSG levels remained stable. DNA repair enzyme mRNA expression was induced in the tumor tissues. Levels of 8-oxo-dG were significantly elevated in both urine and PMNC of gastric cancer patients compared with healthy controls. After gastrectomy, the levels of the damaged base in urine and PMNC decreased progressively to values close to those found in the healthy population. The high levels of 8-oxo-dG in urine may be related to the increased induction of DNA repair activity in tumor tissue, and the changes observed after tumor resection support its potential use as a tumor marker.
Collapse
|
27
|
Anter J, Campos-Sánchez J, Hamss RE, Rojas-Molina M, Muñoz-Serrano A, Analla M, Alonso-Moraga Á. Modulation of genotoxicity by extra-virgin olive oil and some of its distinctive components assessed by use of the Drosophila wing-spot test. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 703:137-42. [DOI: 10.1016/j.mrgentox.2010.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 07/26/2010] [Accepted: 08/12/2010] [Indexed: 11/30/2022]
|
28
|
Okoh V, Deoraj A, Roy D. Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:115-33. [PMID: 21036202 DOI: 10.1016/j.bbcan.2010.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 01/01/2023]
Abstract
Elevated lifetime estrogen exposure is a major risk factor for breast cancer. Recent advances in the understanding of breast carcinogenesis clearly indicate that induction of estrogen receptor (ER) mediated signaling is not sufficient for the development of breast cancer. The underlying mechanisms of breast susceptibility to estrogen's carcinogenic effect remain elusive. Physiologically achievable concentrations of estrogen or estrogen metabolites have been shown to generate reactive oxygen species (ROS). Recent data implicated that these ROS induced DNA synthesis, increased phosphorylation of kinases, and activated transcription factors, e.g., AP-1, NRF1, E2F, NF-kB and CREB of non-genomic pathways which are responsive to both oxidants and estrogen. Estrogen-induced ROS by increasing genomic instability and by transducing signal through influencing redox sensitive transcription factors play important role (s) in cell transformation, cell cycle, migration and invasion of the breast cancer. The present review discusses emerging data in support of the role of estrogen induced ROS-mediated signaling pathways which may contribute in the development of breast cancer. It is envisioned that estrogen induced ROS mediated signaling is a key complementary mechanism that drives the carcinogenesis process. ROS mediated signaling however occurs in the context of other estrogen induced processes such as ER-mediated signaling and estrogen reactive metabolite-associated genotoxicity. Importantly, estrogen-induced ROS can function as independent reversible modifiers of phosphatases and activate kinases to trigger the transcription factors of downstream target genes which participate in cancer progression.
Collapse
Affiliation(s)
- Victor Okoh
- Department of Environmental and Occupational Health, Florida International University, Miami, FL, USA
| | | | | |
Collapse
|
29
|
Hiraku Y. Formation of 8-nitroguanine, a nitrative DNA lesion, in inflammation-related carcinogenesis and its significance. Environ Health Prev Med 2010; 15:63-72. [PMID: 19921494 PMCID: PMC2824100 DOI: 10.1007/s12199-009-0118-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 10/15/2009] [Indexed: 12/24/2022] Open
Abstract
Chronic infection and inflammation contribute to a substantial part of environmental carcinogenesis. Recently, it has been estimated that chronic inflammation accounts for approximately 25% of cancer cases. Various infectious diseases and physical, chemical, and immunological factors participate in inflammation-related carcinogenesis. Under inflammatory conditions, reactive oxygen and nitrogen species, which are generated from inflammatory and epithelial cells, may play an important role in carcinogenesis by causing DNA damage. 8-Nitroguanine is a mutagenic DNA lesion formed during chronic inflammation. In an earlier publication, our group reported the results of an immunohistochemical analysis of animals infected with the liver fluke Opisthorchis viverrini and demonstrated for the first time that 8-nitroguanine was formed at the sites of carcinogenesis. This DNA lesion was found to accumulate in the carcinogenic process in clinical specimens of cancer-prone inflammatory diseases caused by various pathogens, including human papillomavirus and Epstein-Barr virus. Moreover, strong 8-nitroguanine formation in tumor tissues was closely associated with a poor prognosis. On the basis of these findings, 8-nitroguanine could be a potential biomarker to evaluate the risk of inflammation-related carcinogenesis and the prognosis of cancer patients. In this review, the significance of 8-nitroguanine formation in inflammation-related carcinogenesis and tumor progression will be discussed.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, 514-8507 Japan
| |
Collapse
|
30
|
Hiraku Y. Formation of 8-nitroguanine, a nitrative DNA lesion, in inflammation-related carcinogenesis and its significance. Environ Health Prev Med 2010; 15:63-72. [PMID: 19921494 DOI: 10.1007/s12199-009-0118-5/figures/5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 10/15/2009] [Indexed: 05/25/2023] Open
Abstract
Chronic infection and inflammation contribute to a substantial part of environmental carcinogenesis. Recently, it has been estimated that chronic inflammation accounts for approximately 25% of cancer cases. Various infectious diseases and physical, chemical, and immunological factors participate in inflammation-related carcinogenesis. Under inflammatory conditions, reactive oxygen and nitrogen species, which are generated from inflammatory and epithelial cells, may play an important role in carcinogenesis by causing DNA damage. 8-Nitroguanine is a mutagenic DNA lesion formed during chronic inflammation. In an earlier publication, our group reported the results of an immunohistochemical analysis of animals infected with the liver fluke Opisthorchis viverrini and demonstrated for the first time that 8-nitroguanine was formed at the sites of carcinogenesis. This DNA lesion was found to accumulate in the carcinogenic process in clinical specimens of cancer-prone inflammatory diseases caused by various pathogens, including human papillomavirus and Epstein-Barr virus. Moreover, strong 8-nitroguanine formation in tumor tissues was closely associated with a poor prognosis. On the basis of these findings, 8-nitroguanine could be a potential biomarker to evaluate the risk of inflammation-related carcinogenesis and the prognosis of cancer patients. In this review, the significance of 8-nitroguanine formation in inflammation-related carcinogenesis and tumor progression will be discussed.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, 514-8507 Japan
| |
Collapse
|
31
|
Kraft TE, Parisotto D, Schempp C, Efferth T. Fighting Cancer with Red Wine? Molecular Mechanisms of Resveratrol. Crit Rev Food Sci Nutr 2009; 49:782-99. [DOI: 10.1080/10408390802248627] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Futagami S, Hiratsuka T, Shindo T, Horie A, Hamamoto T, Suzuki K, Kusunoki M, Miyake K, Gudis K, Crowe SE, Tsukui T, Sakamoto C. Expression of apurinic/apyrimidinic endonuclease-1 (APE-1) in H. pylori-associated gastritis, gastric adenoma, and gastric cancer. Helicobacter 2008; 13:209-18. [PMID: 18466396 DOI: 10.1111/j.1523-5378.2008.00605.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Apurinic/apyrimidinic endonuclease-1 (APE-1) is a key enzyme in DNA base excision repair (BER), linked to cancer chemosensitivity. However, little is known about the localization of APE-1 in Helicobacter pylori-infected gastric mucosa or its role in the development of gastric cancer. To investigate the role of APE-1 in the development of gastric cancer, we examined APE-1 expression and localization in cultured cells and gastric biopsies from patients with H. pylori-infected gastritis or gastric adenoma, and from surgically resected gastric cancer. METHODS APE-1 mRNA and protein expression were determined in H. pylori (CagA+) water-extract protein (HPWEP)-stimulated MKN-28 cells, gastric adenocarcinoma cell-line (AGS) cells, and human peripheral macrophages by real-time polymerase chain reaction and Western blot analysis. APE-1 expression and 8-OHdG as a measure of oxidative DNA damage were evaluated by immunostaining. Localization of APE-1 and IkappaBalpha phosphorylation in gastric adenoma and gastric cancer tissues were evaluated by single- and double-label immunohistochemistry. RESULTS In studies in vitro, HPWEP-stimulation significantly increased APE-1 mRNA expression levels in both MKN-28 cells and human peripheral macrophages. Hypo/reoxygenation treatment significantly increased APE-1 protein expression in HPWEP-stimulated MKN-28 cells. HPWEP stimulation significantly increased both APE-1 expression and IkappaBalpha phosphorylation levels in MKN-28 and AGS cells. In human tissues, APE-1 expression in H. pylori-infected gastritis without goblet cell metaplasia was significantly increased as compared to that in tissues from uninfected subjects. Eradication therapy significantly reduced both APE-1 and 8-OHdG expression levels in the gastric mucosa. APE-1 expression was mainly localized in epithelial cells within gastric adenoma and in mesenchymal cells of gastric cancer tissues. APE-1 expression in gastric cancer tissues was significantly reduced compared to that in H. pylori-infected gastric adenoma, while 8-OHdG index and IkappaBalpha phosphorylation levels did not differ between these two neoplastic tissue types. Co-localization of APE-1 and IkappaBalpha phosphorylation was observed not in gastric cancer cells but in gastric adenoma cells. CONCLUSION H. pylori infection is associated with increased APE-1 expression in human cell lines and in gastric tissues from subjects with gastritis and gastric adenomas. The observed distinct expression patterns of APE-1 and 8-OHdG in gastric adenoma and gastric cancer tissues may provide insight into the progression of these conditions and warrants further investigation.
Collapse
Affiliation(s)
- Seiji Futagami
- Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Carcinogenesis and aging 20 years after: escaping horizon. Mech Ageing Dev 2008; 130:105-21. [PMID: 18372004 DOI: 10.1016/j.mad.2008.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 02/04/2008] [Accepted: 02/11/2008] [Indexed: 12/23/2022]
Abstract
Carcinogenesis is a multistage process: neoplastic transformation implies the engagement of a cell through sequential stages, and different agents may affect the transition between continuous stages. Multistage carcinogenesis is accompanied by disturbances in tissue homeostasis and perturbations in nervous, hormonal, and metabolic factors which may affect antitumor resistance. The development of these changes depends on the susceptibility of various systems to a carcinogen and on the dose of the carcinogen. Changes in the microenvironment may condition key carcinogenic events and determine the duration of each carcinogenic stage, and sometimes they may even reverse the process of carcinogenesis. These microenvironmental changes influence the proliferation rate of transformed cells, the total duration of carcinogenesis and, consequently, the latent period of tumor development. Aging may increase or decrease the susceptibility of various tissues to initiation of carcinogenesis and usually facilitates promotion and progression of carcinogenesis. Aging may predispose to cancer by two mechanisms: tissue accumulation of cells in late stages of carcinogenesis and alterations in internal homeostasis, in particular, alterations in immune and endocrine system. Aging is associated with number of events at molecular, cellular and physiological levels that influence carcinogenesis and subsequent cancer growth.
Collapse
|
34
|
Hiraku Y, Tabata T, Ma N, Murata M, Ding X, Kawanishi S. Nitrative and oxidative DNA damage in cervical intraepithelial neoplasia associated with human papilloma virus infection. Cancer Sci 2007; 98:964-72. [PMID: 17488337 PMCID: PMC11158700 DOI: 10.1111/j.1349-7006.2007.00497.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently, it was proposed that inflammation plays an integral role in the development of human papilloma virus (HPV)-induced cervical cancer. The present study sought to examine if 8-nitroguanine, a mutagenic nitrative DNA lesion formed during inflammation, contributes to cervical carcinogenesis. We obtained biopsy specimens from 30 patients with cervical intraepithelial neoplasia (CIN)1 (n = 9), CIN2 (n = 10), CIN3 (n = 6) and condyloma acuminatum (n = 5). We used immunohistochemistry to detect the formation of 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an oxidative DNA lesion, and compared it with the expression of the cyclin-dependent kinase inhibitor p16, which is considered to be a biomarker for cervical neoplasia. Double immunofluorescence labeling revealed that 8-nitroguanine and 8-oxodG were colocalized in cervical epithelial cells. Samples from CIN2-3 patients, most of whom were infected with high-risk HPV subtypes, exhibited significantly more intense staining for 8-nitroguanine than those with condyloma acuminatum. 8-Nitroguanine and 8-oxodG immunoreactivities correlated significantly with the CIN grade. We observed the expression of inducible nitric oxide synthase in epithelial and inflammatory cells from CIN lesions. Proliferating cell nuclear antigen was expressed specifically in dysplastic epithelial cells, but not in those of condyloma acuminatum. There were no statistically significant differences in p16 expression between CIN and condyloma acuminatum samples. These results suggest that high-risk HPV types promote inducible nitric oxide synthase-dependent DNA damage, which leads to dysplastic changes and carcinogenesis; in contrast, p16 appears to be merely a marker of HPV infection. Thus, 8-nitroguanine is a more suitable and promising biomarker for evaluating the risk of inflammation-mediated cervical carcinogenesis than p16.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Aldo-keto reductases (AKRs) are soluble NAD(P)(H) oxidoreductases that primarily reduce aldehydes and ketones to primary and secondary alcohols, respectively. The ten known human AKR enzymes can turnover a vast range of substrates, including drugs, carcinogens, and reactive aldehydes. They play central roles in the metabolism of these agents, and this can lead to either their bioactivation or detoxication. AKRs are Phase I drug metabolizing enzymes for a variety of carbonyl-containing drugs and are implicated in cancer chemotherapeutic drug resistance. They are involved in tobacco-carcinogenesis because they activate polycyclic aromatic trans-dihydrodiols to yield reactive and redox active o-quinones, but they also catalyze the detoxication of nicotine derived nitrosamino ketones. They also detoxify reactive aldehydes formed from exogenous toxicants, e.g., aflatoxin, endogenous toxicants, and those formed from the breakdown of lipid peroxides. AKRs are stress-regulated genes and play a central role in the cellular response to osmotic, electrophilic, and oxidative stress.
Collapse
Affiliation(s)
- Yi Jin
- Department of Pharmacology, Center of Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
36
|
Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 2006; 5:14. [PMID: 16689993 PMCID: PMC1479806 DOI: 10.1186/1477-3163-5-14] [Citation(s) in RCA: 920] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 05/11/2006] [Indexed: 12/12/2022] Open
Abstract
Oxygen derived species such as superoxide radical, hydrogen peroxide, singlet oxygen and hydroxyl radical are well known to be cytotoxic and have been implicated in the etiology of a wide array of human diseases, including cancer. Various carcinogens may also partly exert their effect by generating reactive oxygen species (ROS) during their metabolism. Oxidative damage to cellular DNA can lead to mutations and may, therefore, play an important role in the initiation and progression of multistage carcinogenesis. The changes in DNA such as base modification, rearrangement of DNA sequence, miscoding of DNA lesion, gene duplication and the activation of oncogenes may be involved in the initiation of various cancers. Elevated levels of ROS and down regulation of ROS scavengers and antioxidant enzymes are associated with various human diseases including various cancers. ROS are also implicated in diabtes and neurodegenerative diseases. ROS influences central cellular processes such as proliferation a, apoptosis, senescence which are implicated in the development of cancer. Understanding the role of ROS as key mediators in signaling cascades may provide various opportunities for pharmacological intervention.
Collapse
Affiliation(s)
- Gulam Waris
- Moores UCSD Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Haseeb Ahsan
- Department of Dermatology, University of Wisconsin – Madison, Medical Science Center, Madison, WI 53706, USA
| |
Collapse
|
37
|
Sanchez M, Torres JV, Tormos C, Iradi A, Muñiz P, Espinosa O, Salvador A, Rodriguez-Delgado J, Fandos M, Sáez GT. Impairment of antioxidant enzymes, lipid peroxidation and 8-oxo-2′-deoxyguanosine in advanced epithelial ovarian carcinoma of a Spanish community. Cancer Lett 2006; 233:28-35. [PMID: 15899547 DOI: 10.1016/j.canlet.2005.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 02/20/2005] [Accepted: 02/25/2005] [Indexed: 01/10/2023]
Abstract
In the present study, we describe the changes of antioxidant enzyme activities and other oxidative stress-related parameters in a mediterranean cohort of women affected with epithelial ovarian carcinoma (EOC). For that purpose, the most representative enzymatic activities, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and the oxidized/reduced glutathione (GSSG/GSH) ratio have been analyzed in tumor tissue biopsies and compared with the normal tissue of the same patient. As oxidation products, the levels of malondialdehyde (MDA) as an indication of lipid peroxidation, and the DNA damaged base 8-oxo-2'-deoxyguanosine (8-oxo-dG) have been also measured. Advanced EOC show reduced levels of SOD and CAT, while that of GPx is increased when compared with non-neoplastic tissue. The levels of GSH are increased giving as a result a reduction of the oxidative stress marker GSSG/GSH ratio comparing normal ovarian tissue with tumor tissue. In addition, the oxidation products MDA and 8-oxo-dG are significantly increased in tumor tissue, suggesting a shift of oxidative metabolisms towards a pro-oxidation state and potential gene instability in malignant ovary cells. The possible implication of the redox changes and DNA damage in tumor development is discussed.
Collapse
Affiliation(s)
- Maria Sanchez
- Department of Pediatry, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Romero-Jiménez M, Campos-Sánchez J, Analla M, Muñoz-Serrano A, Alonso-Moraga A. Genotoxicity and anti-genotoxicity of some traditional medicinal herbs. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 585:147-55. [PMID: 16005256 DOI: 10.1016/j.mrgentox.2005.05.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 04/22/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
Six herbal infusions used worldwide (Matricaria chamomilla, Tilia cordata, Mentha piperita, Mentha pulegium, Uncaria tomentosa and Valeriana officinalis) were assayed for anti-genotoxicity using the Somatic Mutation And Recombination Test (SMART) in Drosophila melanogaster. All these infusions are traditionally used for various medical purposes, including anti-inflammatory processes. Hydrogen peroxide was used as an oxidative genotoxicant to test the anti-genotoxic potency of the medicinal infusions. None of these infusions showed a significant genotoxicity, quite the reverse they were able to behave as desmutagens, detoxifying the mutagen hydrogen peroxide. The phenolic content of such herbal infusions is argued to be the possible scavenger of reactive oxygen radicals produced by the hydrogen peroxide.
Collapse
Affiliation(s)
- Magdalena Romero-Jiménez
- University of Cordoba, Department of Genetics, Campus Universitario Rabanales, Edificio Gregor Mendel, C-5, 14071 Cordoba, Spain
| | | | | | | | | |
Collapse
|
39
|
Farinati F, Cardin R, Russo VM, Busatto G, Franco M, Falda A, Mescoli C, Rugge M. Differential Effects of Helicobacter pylori Eradication on Oxidative DNA Damage at the Gastroesophageal Junction and at the Gastric Antrum. Cancer Epidemiol Biomarkers Prev 2004. [DOI: 10.1158/1055-9965.1722.13.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background and Aim: Helicobacter pylori–associated gastritis causes accumulation of reactive oxygen species in the mucosal compartment. This prospective study evaluates DNA oxidative damage in biopsy samples obtained from both the antrum and the gastroesophageal junction (GEJ) before and after H. pylori eradication.
Patients and Methods: Thirty-two consecutive H. pylori–positive patients underwent endoscopy with multiple biopsy sampling (i.e., antrum, incisura angularis, fundus, and cardia at the GEJ). After H. pylori eradication, 32 patients underwent a checkup endoscopy (mean interval, 5.7 months); in a subgroup of 13 subjects, a third endoscopy procedure was also performed (mean interval, 18 months). Additional biopsy samples (two from the antrum and two from the GEJ) were used to assess 8-hydroxydeoxyguanosine (8OHdG) levels using both high-pressure liquid chromatography with electrochemical detector and ELISA.
Results: In the antral compartment, no significant modifications of 8OHdG levels were assessed after H. pylori eradication. Conversely, following eradication, 8OHdG levels significantly increased (high-pressure liquid chromatography with electrochemical detector, P = 0.04; ELISA method, P = 0.05) in biopsy samples taken from the GEJ, and a further increase was documented in the subgroup of patients who underwent a third endoscopy (P = 0.01). The increasing trend was more relevant in patients in whom H. pylori-cagA–positive strains were eradicated and in those affected by hiatal hernia.
Conclusions: The levels of DNA adducts in the antral mucosa are not modified by H. pylori eradication; conversely, H. pylori eradication significantly increases the oxidative adducts at the GEJ. The clinical and biological importance of this situation and whether and how it relates to a higher risk of precancerous lesions is open to debate.
Collapse
Affiliation(s)
- Fabio Farinati
- 1Dipartimento di Scienze Chirurgiche e Gastroenterologiche, Sezione di Gastroenterologia and
| | - Romilda Cardin
- 1Dipartimento di Scienze Chirurgiche e Gastroenterologiche, Sezione di Gastroenterologia and
| | - Valentina M. Russo
- 2Dipartimento di Scienze Oncologiche & Chirurgiche, III° Cattedra Anatomia Patologica, Università degli Studi di Padova and
| | - Graziella Busatto
- 3Unità Operativa di Anatomia Patologica, Azienda Ospedaliera Alta Padovana, Ospedale di Cittadella, Padova, Italy
| | - Monica Franco
- 1Dipartimento di Scienze Chirurgiche e Gastroenterologiche, Sezione di Gastroenterologia and
| | - Alessandra Falda
- 1Dipartimento di Scienze Chirurgiche e Gastroenterologiche, Sezione di Gastroenterologia and
| | - Claudia Mescoli
- 1Dipartimento di Scienze Chirurgiche e Gastroenterologiche, Sezione di Gastroenterologia and
| | - Massimo Rugge
- 2Dipartimento di Scienze Oncologiche & Chirurgiche, III° Cattedra Anatomia Patologica, Università degli Studi di Padova and
| |
Collapse
|
40
|
D'Incà R, Cardin R, Benazzato L, Angriman I, Martines D, Sturniolo GC. Oxidative DNA damage in the mucosa of ulcerative colitis increases with disease duration and dysplasia. Inflamm Bowel Dis 2004; 10:23-7. [PMID: 15058522 DOI: 10.1097/00054725-200401000-00003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic inflammation may contribute to cancer risk through the accumulation of specific products as a result of DNA damage. The role of free radical mediated oxidative DNA damage during inflammation was determined in patients with ulcerative colitis by measuring 8-hydroxydeoxyguanosine (8-OHdG). METHODS Patients with ulcerative colitis were compared according to age, gender, duration and extent of disease, endoscopic and histologic activity, presence or absence of dysplasia/cancer, and biochemical parameters of inflammation. Patients with sporadic colon cancer and irritable bowel syndrome served as controls. Levels of 8-OHdG were assessed by high pressure liquid chromatography with electrochemical detection (mean number of adducts/10(5) dG residues). RESULTS Patients with ulcerative colitis and dysplasia had significantly higher mucosal 8-OHdG concentrations (P = 0.011). 8-OHdG concentrations were significantly higher in older patients (P = 0.010), patients with long-standing disease (P = 0.015), active endoscopic (P = 0.006) or histologic disease (P = 0.003). Covariance analysis showed significant effect of dysplasia on 8-OHdG levels: values higher than 100 adducts/10(5) dG had a diagnostic value of 80.9% (SE 6.2%). CONCLUSIONS Oxidative DNA damage accumulates with the duration of the disease in ulcerative colitis reaching maximal increase if dysplastic lesions are found with possible implications for mutagenic and carcinogenic progression.
Collapse
Affiliation(s)
- Renata D'Incà
- Department of Surgical and Gastroenterological Sciences, University of Padua, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Jałoszyński P, Masutani C, Hanaoka F, Perez AB, Nishimura S. 8-Hydroxyguanine in a mutational hotspot of the c-Ha-ras gene causes misreplication, 'action-at-a-distance' mutagenesis and inhibition of replication. Nucleic Acids Res 2003; 31:6085-95. [PMID: 14576295 PMCID: PMC275471 DOI: 10.1093/nar/gkg829] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 09/11/2003] [Accepted: 09/11/2003] [Indexed: 11/14/2022] Open
Abstract
Mutations in particular codons of c-Ha-ras have a strong activating potential, and an activated ras oncogene has been found in a number of human cancers. Using fragments of the human c-Ha-ras gene containing 8-hydroxyguanine (8-OH-G) in codon 12, we provide evidence for highly complex biochemical events leading to activation of the oncogene. Replication with DNA polymerases alpha (Pol(alpha)) and beta (Pol(beta)) led to misincorporation of dAMP, while DNA polymerase eta (Pol(eta)) caused additional insertion of dGMP. For the first time we report an 'action-at-a-distance' mutagenic effect for Pol(eta). Replication catalyzed by this enzyme resulted in misincorporating dAMP, dTMP and dGMP opposite non-oxidized guanine 3'-flanked by 8-OH-G. Interestingly, two adjacent 8-OH-G residues greatly relaxed the specificity of Pol(eta), which in this system was able to incorporate all four nucleotides. Moreover, two adjacent 8-OH-G residues completely blocked Pol(alpha) and strongly inhibited Pol(beta), whereas Pol(eta) was entirely resistant to this inhibition. These results suggest an important role for Pol(eta) in inducing hypermutability in codon 12. Our observations are important for understanding the consequences of 8-OH-G being positioned within the mutational hot spots of oncogenes, the outcome of which appears to be relatively complex even in minimal in vitro systems.
Collapse
Affiliation(s)
- Paweł Jałoszyński
- Banyu Tsukuba Research Institute in Collaboration with Merck Research Laboratories, Okubo 3, Tsukuba, Ibaraki 300-2611, Japan
| | | | | | | | | |
Collapse
|
42
|
Hanausek M, Walaszek Z, Slaga T. Redox Modulation in Tumor Initiation, Promotion, and Progression. OXIDATIVE STRESS AND DISEASE 2003. [DOI: 10.1201/9780203912874.ch9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
43
|
Abstract
Of all the hepatitis viruses, only the hepatitis B virus (HBV) and hepatitis C virus (HCV) cause chronic hepatitis, which can progress to cirrhosis and hepatocellular carcinoma. In this review, we discuss how these two biologically diverse viruses use common pathways to induce oxidative stress and activation of key transcription factors, known to be involved in inflammatory processes in cells. Activation of NF-kB and STAT-3 most likely contribute to the progression of viral infections to chronic hepatitis and liver oncogenesis associated with HBV and HCV infections. In this review, we focus on the mechanisms of action of HBx and HCV NS5A proteins in inducing intracellular events associated with the viral infections.
Collapse
Affiliation(s)
- G Waris
- Department of Microbiology, University of Colorado Health Sciences Center, 4200 E, 9th Ave, Denver, Colorado 80262, USA
| | | |
Collapse
|
44
|
Abstract
The incidence of cancer increases with age in humans and in laboratory animals alike. There are different patterns of age-related distribution of tumors in different organs and tissues. Aging may increase or decrease the susceptibility of various tissues to initiation of carcinogenesis and usually facilitates promotion and progression of carcinogenesis. Aging may predispose to cancer by several mechanisms: (1) tissue accumulation of cells in late stages of carcinogenesis; (2) alterations in homeostasis, in particular, alterations in immune and endocrine system and (3) telomere instability linking aging and increased cancer risk. Increased susceptibility to the effects of tumor promoters is found both in aged animals and aged humans, as predicted by the multistage model of carcinogenesis. Available evidence supporting the relevance of replicative senescence of human cells and telomere biology to human cancer seems quite strong, however, the evidence linking cellular senescence to human aging is controversial and required additional studies. Data on the acceleration of aging by carcinogenic agents as well as on increased cancer risk in patients with premature aging are critically discussed. In genetically modified mouse models (transgenic, knockout or mutant) characterized by the aging delay, the incidence of tumors usually similar to those in controls, whereas the latent period of tumor development is increased. Practically all models of accelerated of aging in genetically modified animals show the increase in the incidence and the reduction in the latency of tumors. Strategies for cancer prevention must include not only measures to minimize exposure to exogenous carcinogenic agents, but also measures to normalize the age-related alterations in internal milieu. Life-span prolonging drugs (geroprotectors) may either postpone population aging and increase of tumor latency or decrease the mortality in long-living individuals in populations and inhibit carcinogenesis. At least some geroprotectors may increase the survival of a short-living individuals in populations but increase the incidence of malignancy.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, 68 Leningradskaya St., St. Petersburg 197758, Russia.
| |
Collapse
|
45
|
Olinski R, Gackowski D, Foksinski M, Rozalski R, Roszkowski K, Jaruga P. Oxidative DNA damage: assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome. Free Radic Biol Med 2002; 33:192-200. [PMID: 12106815 DOI: 10.1016/s0891-5849(02)00878-x] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Free radical attack upon DNA generates a multiplicity of DNA damage, including modified bases. Some of these modifications have considerable potential to damage the integrity of the genome. This article reviews recent data that suggest the involvement of oxidative DNA damage in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome (AIDS). There is evidence that oxidative DNA damage may play a causative role in atherosclerosis. Oxidative DNA damage may lead to apoptotic cell death of patients infected with human immunodeficiency virus (HIV) and may influence the progression of AIDS. While many details regarding the role of reactive oxygen species-induced DNA damage in the etiology of complex multifactorial diseases like cancer are yet to be discovered, evidence suggests that oxidants act at several stages in the malignant transformation of cells. However, the quantitative relationship between the measured DNA damage and the development of cancer is still lacking.
Collapse
Affiliation(s)
- Ryszard Olinski
- Department of Clinical Biochemistry, The Ludwik Rydygier Medical University, Bydgoszcz, Poland.
| | | | | | | | | | | |
Collapse
|
46
|
Farhadi A, Fields J, Banan A, Keshavarzian A. Reactive oxygen species: are they involved in the pathogenesis of GERD, Barrett's esophagus, and the latter's progression toward esophageal cancer? Am J Gastroenterol 2002; 97:22-6. [PMID: 11808965 DOI: 10.1111/j.1572-0241.2002.05444.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ashkan Farhadi
- Department of Medicine, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
47
|
Abstract
To fulfill their role in host-defense, granulocytes secrete chemically reactive oxidants, radicals, and electrophilic mediators. While this is an effective way to eradicate pathogenic microbes or parasites, it inevitably exposes epithelium and connective tissue to certain endogenous genotoxic agents. In ordinary circumstances, cells have adequate mechanisms to reduce the genotoxic burden imposed by these agents to a negligible level. However, inflammation persisting for a decade eventually elevates the risk of cancer sufficiently that it is discernible in case control epidemiological studies. Advances in our understanding of tumor suppressors and inflammatory mediators offer an opportunity to assess the molecular and cellular models used to guide laboratory investigations of this phenomenon. Disappointing results from recent clinical trials with anti-oxidant interventions raise questions about the risks from specific endogenous agents such as hydrogen peroxide and oxy radicals. Simultaneously, the results from the anti-oxidant trials draw attention to an alternate hypothesis, favoring epigenetic inactivation of key tumor suppressors, such as p53, and the consequent liability this places on genomic integrity.
Collapse
Affiliation(s)
- F A Fitzpatrick
- Huntsman Cancer Institute, University of Utah, Salt Lake City 84112-5550, USA.
| |
Collapse
|
48
|
Oltra AM, Carbonell F, Tormos C, Iradi A, Sáez GT. Antioxidant enzyme activities and the production of MDA and 8-oxo-dG in chronic lymphocytic leukemia. Free Radic Biol Med 2001; 30:1286-92. [PMID: 11368926 DOI: 10.1016/s0891-5849(01)00521-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a neoplastic disease susceptible to antioxidant enzyme alterations and oxidative stress. We have examined the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the oxidized/reduced glutathione (GSSG/GSH) ratio together with the levels of malondialdehyde (MDA) and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lymphocytes of CLL patients and compared them with those of normal subjects of the same age. SOD and CAT activity decreased in CLL lymphocytes while GPx activity increased. GSH content of CLL lymphocytes also increased, and GSSG concentration remained constant. Thus, a reduced GSSG/GSH ratio was obtained. The oxidation product MDA, and the damaged DNA base 8-oxo-dG were also increased in CLL. The observed changes in enzyme activities, GSSG/GSH ratio, and MDA were significantly enhanced as the duration of the disease increased in years. The results support a predominant oxidative stress status in CLL lymphocytes and emphasize the role of the examined parameters as markers of the disease evolution.
Collapse
Affiliation(s)
- A M Oltra
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | | | | | | | | |
Collapse
|
49
|
Ramos KS. Redox regulation of c-Ha-ras and osteopontin signaling in vascular smooth muscle cells: implications in chemical atherogenesis. Annu Rev Pharmacol Toxicol 1999; 39:243-65. [PMID: 10331084 DOI: 10.1146/annurev.pharmtox.39.1.243] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reduction/oxidation (redox) reactions play a central role in the regulation of vascular cell functions. Recent studies in this laboratory have identified c-Ha-ras and osteopontin genes as critical molecular targets during oxidant-induced atherogenesis. This review focuses on the deregulation of gene transcription by redox-activated trans-acting factors after benzo(a)pyrene challenge and the modulation of extracellular matrix signaling in vascular smooth muscle cells by allylamine-induced oxidative injury. The induction of atherogenic vascular smooth muscle cell phenotypes by chemical injury exhibits remarkable parallels with those seen in other forms of atherogenesis.
Collapse
Affiliation(s)
- K S Ramos
- Department of Physiology and Pharmacology, Texas A&M University College of Veterinary Medicine, College Station 77843-4466, USA.
| |
Collapse
|
50
|
Yen GC, Chen HY. Scavenging effect of various tea extracts on superoxide derived from the metabolism of mutagens. Biosci Biotechnol Biochem 1998; 62:1768-70. [PMID: 9805379 DOI: 10.1271/bbb.62.1768] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We determine the superoxide formed in the self-degradation of mutagens activated by cytochrome enzymes and evaluated the scavenging effect of various tea extracts. Benzo[a]pyrene (B[a]P) and 2-amino-6-methyldipyrido(1,2-a:3',2'-d)imidazole (Glu-P-1) each produced a large amount of superoxide after activation by cytochrome enzymes. However, 2-amino-3-methyl-imidazo(4,5-f)quinoline (IQ), 3-amino-1,4-dimethyl-5H-pyridol(4,3-b)indole (Trp-P-1) and alfatoxin B1 (AFB1) failed to generate a significant amount of superoxide. The addition of a tea extract to the reaction system marked inhibited the derivation of superoxide from Glu-P-1. However, the tea extracts showed weaker inhibition of the B[a]P-mediated formation of superoxide. Among the four teas tested, the oolong tea extract tended to exhibit the strongest inhibitory effect. Our results suggest that the chemopreventive efficacy of a tea extract is partly associated with its antioxidative activity.
Collapse
Affiliation(s)
- G C Yen
- Department of Food Science, National Chung Hsing University, Taiwan, Republic of China.
| | | |
Collapse
|