1
|
Marinković M, Rožić A, Polančec D, Novak I. Cost-effective and simple flow cytometry quantification of receptor-mediated autophagy using fluorescent tagging. FEBS Open Bio 2025; 15:587-598. [PMID: 39716041 PMCID: PMC11961372 DOI: 10.1002/2211-5463.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
Mitophagy, a selective clearance of damaged or superfluous mitochondria via autophagy machinery and lysosomal degradation, is an evolutionarily conserved process essential for various physiological functions, including cellular differentiation and immune responses. Defects in mitophagy are implicated in numerous human diseases, such as neurodegenerative disorders, cancer, and metabolic conditions. Despite significant advancements in mitophagy research over recent decades, novel and robust methodologies are necessary to elucidate its molecular mechanisms comprehensively. In this study, we present a detailed protocol for quantitatively assessing mitophagy through flow cytometry using a mitochondria-targeted fluorescent mitophagy receptor, GFP-BNIP3L/NIX. This method offers a rapid alternative to conventional microscopy or immunoblotting techniques for analyzing mitophagy activity. Additionally, this approach can theoretically be adapted to utilize any fluorescent-tagged selective autophagy receptor, enabling the direct and rapid analysis of various types of receptor-mediated selective autophagy.
Collapse
Affiliation(s)
| | - Ana Rožić
- School of MedicineUniversity of SplitCroatia
| | | | - Ivana Novak
- School of MedicineUniversity of SplitCroatia
| |
Collapse
|
2
|
Junyent M, Noori H, De Schepper R, Frajdenberg S, Elsaigh RKAH, McDonald PH, Duckett D, Maudsley S. Unravelling Convergent Signaling Mechanisms Underlying the Aging-Disease Nexus Using Computational Language Analysis. Curr Issues Mol Biol 2025; 47:189. [PMID: 40136443 PMCID: PMC11941692 DOI: 10.3390/cimb47030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/12/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Multiple lines of evidence suggest that multiple pathological conditions and diseases that account for the majority of human mortality are driven by the molecular aging process. At the cellular level, aging can largely be conceptualized to comprise the progressive accumulation of molecular damage, leading to resultant cellular dysfunction. As many diseases, e.g., cancer, coronary heart disease, Chronic obstructive pulmonary disease, Type II diabetes mellitus, or chronic kidney disease, potentially share a common molecular etiology, then the identification of such mechanisms may represent an ideal locus to develop targeted prophylactic agents that can mitigate this disease-driving mechanism. Here, using the input of artificial intelligence systems to generate unbiased disease and aging mechanism profiles, we have aimed to identify key signaling mechanisms that may represent new disease-preventing signaling pathways that are ideal for the creation of disease-preventing chemical interventions. Using a combinatorial informatics approach, we have identified a potential critical mechanism involving the recently identified kinase, Dual specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3) and the epidermal growth factor receptor (EGFR) that may function as a regulator of the pathological transition of health into disease via the control of cellular fate in response to stressful insults.
Collapse
Affiliation(s)
- Marina Junyent
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
- IMIM, Hospital del Mar Research Institute, 08003 Barcelona, Spain
| | - Haki Noori
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
- Department of Chemistry, KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - Robin De Schepper
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
| | - Shanna Frajdenberg
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
| | | | - Patricia H. McDonald
- Lexicon Pharmaceuticals Inc., 2445 Technology Forest Blvd Fl 1, The Woodlands, TX 77381, USA;
| | - Derek Duckett
- Department of Drug Discovery, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Stuart Maudsley
- Receptor Biology Lab., University of Antwerp, 2610 Wilrijk, Belgium; (M.J.); (H.N.); (R.D.S.); (S.F.); (R.K.A.H.E.)
- Department of Drug Discovery, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| |
Collapse
|
3
|
Tang M, Rong D, Gao X, Lu G, Tang H, Wang P, Shao NY, Xia D, Feng XH, He WF, Chen W, Lu JH, Liu W, Shen HM. A positive feedback loop between SMAD3 and PINK1 in regulation of mitophagy. Cell Discov 2025; 11:22. [PMID: 40064862 PMCID: PMC11894195 DOI: 10.1038/s41421-025-00774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/14/2025] [Indexed: 03/14/2025] Open
Abstract
PTEN-induced kinase-1 (PINK1) is a crucial player in selective clearance of damaged mitochondria via the autophagy-lysosome pathway, a process termed mitophagy. Previous studies on PINK1 mainly focused on its post-translational modifications, while the transcriptional regulation of PINK1 is much less understood. Herein, we reported a novel mechanism in control of PINK1 transcription by SMAD Family Member 3 (SMAD3), an essential component of the transforming growth factor beta (TGFβ)-SMAD signaling pathway. First, we observed that mitochondrial depolarization promotes PINK1 transcription, and SMAD3 is likely to be the nuclear transcription factor mediating PINK1 transcription. Intriguingly, SMAD3 positively transactivates PINK1 transcription independent of the canonical TGFβ signaling components, such as TGFβ-R1, SMAD2 or SMAD4. Second, we found that mitochondrial depolarization activates SMAD3 via PINK1-mediated phosphorylation of SMAD3 at serine 423/425. Therefore, PINK1 and SMAD3 constitute a positive feedforward loop in control of mitophagy. Finally, activation of PINK1 transcription by SMAD3 provides an important pro-survival signal, as depletion of SMAD3 sensitizes cells to cell death caused by mitochondrial stress. In summary, our findings identify a non-canonical function of SMAD3 as a nuclear transcriptional factor in regulation of PINK1 transcription and mitophagy and a positive feedback loop via PINK1-mediated SMAD3 phosphorylation and activation. Understanding this novel regulatory mechanism provides a deeper insight into the pathological function of PINK1 in the pathogenesis of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Mingzhu Tang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Dade Rong
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Xiangzheng Gao
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Guang Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haimei Tang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Peng Wang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Ning-Yi Shao
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin-Hua Feng
- Life Science Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei-Feng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weilin Chen
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wei Liu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Han-Ming Shen
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China.
| |
Collapse
|
4
|
Liang N, Cao Y, Li J, Zhang K. Normal dermal mesenchymal stem cells improve the functions of psoriatic keratinocytes by inducing autophagy. Acta Histochem 2025; 127:152229. [PMID: 39864345 DOI: 10.1016/j.acthis.2025.152229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation and abnormal differentiation of keratinocytes. Although stem cell-based therapies have shown promise in treating psoriasis, the underlying mechanisms remain unclear. This study aimed to established a psoriatic cell model to investigate the effect of normal dermal mesenchymal stem cell (DMSCs) on keratinocyte proliferation, inflammation responses and the associated mechanism. METHODS To create an in vitro model of psoriasis, HaCaT cells were stimulated with a mixture of five inflammatory cytokines including IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5). A transwell co-culture system was employed to assess the influence of normal DMSCs on proliferation and inflammation response of HaCaT cells. Cell viability was assessed using the CCK-8 assay and EDU incorporation assay. The expression levels of mRNA for inflammatory cytokines (IL-8, IL-17A and TNF-α) in HaCaT cells co-cultured with either normal or psoriatic DMSCs were quantified by qRT-PCR. Apoptosis was evaluated by annexin V-FITC/PI double staining and TUNEL/DAPI staining assay. Autophagy was detected by immunostaining, RT-PCR and western blotting. Additionally, the expression levels of mRNA and protein of both Akt and mammalin target of rapamycin(mTOR) were also determined. RESULTS Normal DMSCs were found to decrease the viability and promote apoptosis of HaCaT cells treated with M5. Furthermore, DMSCs reduced the secretion of proinflammatory cytokines, such as IL-8, IL-17A and TNF-α. Importantly, normal DMSCs were shown to induced autophagy in HaCaT cell. Pretreatment of HaCaT cells with autophagy inhibitor 3-methyladenine (3-MA) reversed the anti-psoriatic effect of normal DMSCs. Notably, DMSCs promote autophagy in M5-treated HaCaT cells by inhibition of p-Akt/Akt and p-mTOR/mTOR ratio. CONCLUSION Normal mesenchymal stem cells promote autophagy through the inhibition of Akt/mTOR signaling pathway, leading to the alleviation of psoriasis in vitro. These findings provide insights into the potential mechanisms by which DMSCs may exert therapeutic effects in psoriasis and support further investigation into their clinical applications.
Collapse
Affiliation(s)
- Nannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
5
|
Yi YS. Functional interplay between non-canonical inflammasomes and autophagy in inflammatory responses and diseases. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2025; 29:129-138. [PMID: 39539180 PMCID: PMC11842290 DOI: 10.4196/kjpp.24.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024]
Abstract
The inflammasome is a cytosolic multiprotein platform that plays a key role in the inflammatory response, an essential innate immune response that protects the body from pathogens and cellular danger signals. Autophagy is a fundamental cellular mechanism that maintains homeostasis through the elimination and recycling of dysfunctional molecules and subcellular elements. Many previous studies have demonstrated a functional interplay between canonical inflammasomes that were earlier discovered and autophagy in inflammatory responses and diseases. Given the increasing evidence that non-canonical inflammasomes are unique and key factors in inflammatory responses, the functional interplay between non-canonical inflammasomes and autophagy is noteworthy. Recent studies have demonstrated that non-canonical inflammasomes and autophagy are functionally correlated with inflammatory responses and diseases. This review comprehensively discusses recent studies that have investigated the functional interplay of non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4, with autophagy and autophagy-related proteins in inflammatory responses and diseases and provides insight into the development of novel anti-inflammatory therapeutics by modulating the functional interplay between non-canonical inflammasomes and autophagy.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Korea
| |
Collapse
|
6
|
Chen S, Cai D, Zhao Q, Wu J, Zhou X, Xu H, Li X, Zhang R, Peng W, Li G, Nan A. NSUN2-mediated m5C modification of circFAM190B promotes lung cancer progression by inhibiting cellular autophagy. Int J Biol Macromol 2025; 306:141528. [PMID: 40020806 DOI: 10.1016/j.ijbiomac.2025.141528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
5-Methylcytosine (m5C) modification is an important type of RNA methylation. Diverse noncoding RNAs can undergo m5C modification and play important roles in tumour development, but circRNA m5C modifications have not been fully revealed in tumours. Here, circFAM190B, which was significantly overexpressed in lung cancer cells and tissues, was identified by constructing a differential expression profile of m5C-modified circRNAs. circFAM190B was found to be associated with lung cancer stage and prognosis. Moreover, we proposed the novel hypothesis that NSUN2 can mediate circFAM190B m5C modification and enhance circFAM190B stability in an m5C-dependent manner. We also clarified the biological function of circFAM190B in significantly promoting the development of lung cancer. Mechanistically, circFAM190B targets SFN and regulates its ubiquitination, thereby inhibiting cellular autophagy through the SFN/mTOR/ULK1 pathway and ultimately promoting lung cancer development. This study reveals the existence of m5C modification of circRNAs, and circRNAs modified by m5C can play important roles in the development of lung cancer, which provides a new theoretical basis for elucidating the molecular mechanism of lung cancer development.
Collapse
Affiliation(s)
- Sixian Chen
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Dunyu Cai
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Qingyun Zhao
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Jiaxi Wu
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Xiaodong Zhou
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Haotian Xu
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Xiaofei Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Ruirui Zhang
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Wenyi Peng
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| | - Aruo Nan
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
7
|
Moreno-Blas D, Adell T, González-Estévez C. Autophagy in Tissue Repair and Regeneration. Cells 2025; 14:282. [PMID: 39996754 PMCID: PMC11853389 DOI: 10.3390/cells14040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Autophagy is a cellular recycling system that, through the sequestration and degradation of intracellular components regulates multiple cellular functions to maintain cellular homeostasis and survival. Dysregulation of autophagy is closely associated with the development of physiological alterations and human diseases, including the loss of regenerative capacity. Tissue regeneration is a highly complex process that relies on the coordinated interplay of several cellular processes, such as injury sensing, defense responses, cell proliferation, differentiation, migration, and cellular senescence. These processes act synergistically to repair or replace damaged tissues and restore their morphology and function. In this review, we examine the evidence supporting the involvement of the autophagy pathway in the different cellular mechanisms comprising the processes of regeneration and repair across different regenerative contexts. Additionally, we explore how modulating autophagy can enhance or accelerate regeneration and repair, highlighting autophagy as a promising therapeutic target in regenerative medicine for the development of autophagy-based treatments for human diseases.
Collapse
Affiliation(s)
| | | | - Cristina González-Estévez
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain; (D.M.-B.); (T.A.)
| |
Collapse
|
8
|
Xu P, Zhang T, Yu F, Guo L, Yang Y. ATG9 promotes autophagosome formation through interaction with LC3. Biochem Biophys Res Commun 2025; 747:151254. [PMID: 39787789 DOI: 10.1016/j.bbrc.2024.151254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
The autophagosome is a double-membrane organelle that executes macroautophagy. Previous studies have shown that the autophagosome formation is driven by autophagy-related genes, among which ATG9 is the only conserved transmembrane protein and has been shown to play a critical role in the autophagosome formation. However, how ATG9 binds to the growing autophagosome membrane has remained uncertain. Herein, we report that ATG9 binds to LC3, an essential membrane component of the autophagosome, thereby allowing ATG9 to incorporate into the autophagosome membrane. Mechanistically, we show that ATG9 interacts with LC3 through its UIM motives, which bind to the UDS site of LC3. Interrupting such UIM-UDS interaction abolishes the autophagosome association of ATG9 and suppresses the autophagosome formation. Collectively, our findings reveal a novel mechanism regulating autophagosome biogenesis and suggest that the interaction of ATG9 with LC3 is critical for ATG9 binding to the growing autophagosome membrane.
Collapse
Affiliation(s)
- Peiqi Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ting Zhang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fangfang Yu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lixia Guo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yanan Yang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
9
|
Bhole RP, Kute P, Gurav SS. PROTACs in the treatment of viral diseases. Future Med Chem 2025; 17:267-269. [PMID: 39814466 PMCID: PMC11792865 DOI: 10.1080/17568919.2025.2453418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Affiliation(s)
- Ritesh P. Bhole
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
- Dr. D. Y. Patil Vidyapeeth, Dr. D. Y. Patil Dental College Hospital and Research Centre, Pimpri, India
| | - Payal Kute
- SSR College of Pharmacy, Silvassa, India
| | - Shilendra S. Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, India
| |
Collapse
|
10
|
Tian RZ, Zhuang DL, Vong CT, He X, Ouyang Q, Liang JH, Guo YP, Wang YH, Zhao S, Yuan H, Ide Nasser M, Li G, Zhu P. Role of Autophagy in Myocardial Remodeling After Myocardial Infarction. J Cardiovasc Pharmacol 2025; 85:1-11. [PMID: 39454200 DOI: 10.1097/fjc.0000000000001646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/08/2024] [Indexed: 10/27/2024]
Abstract
ABSTRACT Autophagy is the process of reusing the body's senescent and damaged cell components, which can be regarded as the cellular circulatory system. There are 3 distinct forms of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. In the heart, autophagy is regulated mainly through mitophagy because of the metabolic changes of cardiomyocytes caused by ischemia and hypoxia. Myocardial remodeling is characterized by gradual heart enlargement, cardiac dysfunction, and extraordinary molecular changes. Cardiac remodeling after myocardial infarction is almost inevitable, which is the leading cause of heart failure. Autophagy has a protective effect on myocardial remodeling improvement. Autophagy can minimize cardiac remodeling by preventing misfolded protein accumulation and oxidative stress. This review summarizes the nestest molecular mechanisms of autophagy and myocardial remodeling, the protective effects, and the new target of autophagy medicine in cardiac remodeling. The future development and challenges of autophagy in heart disease are also summarized.
Collapse
Affiliation(s)
- Run-Ze Tian
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Dong-Lin Zhuang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China
| | - Xuyu He
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Ouyang
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jing-Hua Liang
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Ping Guo
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yu-Hong Wang
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China; and
| | - Haiyun Yuan
- Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Moussa Ide Nasser
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Yi J, Wang HL, Lu G, Zhang H, Wang L, Li ZY, Wang L, Wu Y, Xia D, Fang EF, Shen HM. Spautin-1 promotes PINK1-PRKN-dependent mitophagy and improves associative learning capability in an alzheimer disease animal model. Autophagy 2024; 20:2655-2676. [PMID: 39051473 PMCID: PMC11587853 DOI: 10.1080/15548627.2024.2383145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Spautin-1 is a well-known macroautophagy/autophagy inhibitor via suppressing the deubiquitinases USP10 and USP13 and promoting the degradation of the PIK3C3/VPS34-BECN1 complex, while its effect on selective autophagy remains poorly understood. Mitophagy is a selective form of autophagy for removal of damaged and superfluous mitochondria via the autophagy-lysosome pathway. Here, we report a surprising discovery that, while spautin-1 remains as an effective autophagy inhibitor, it promotes PINK1-PRKN-dependent mitophagy induced by mitochondrial damage agents. Mechanistically, spautin-1 facilitates the stabilization and activation of the full-length PINK1 at the outer mitochondrial membrane (OMM) via binding to components of the TOMM complex (TOMM70 and TOMM20), leading to the disruption of the mitochondrial import of PINK1 and prevention of PARL-mediated PINK1 cleavage. Moreover, spautin-1 induces neuronal mitophagy in Caenorhabditis elegans (C. elegans) in a PINK-1-PDR-1-dependent manner. Functionally, spautin-1 is capable of improving associative learning capability in an Alzheimer disease (AD) C. elegans model. In summary, we report a novel function of spautin-1 in promoting mitophagy via the PINK1-PRKN pathway. As deficiency of mitophagy is closely implicated in the pathogenesis of neurodegenerative disorders, the pro-mitophagy function of spautin-1 might suggest its therapeutic potential in neurodegenerative disorders such as AD.Abbreviations: AD, Alzheimer disease; ATG, autophagy related; BafA1, bafilomycin A1; CALCOCO2/NDP52, calcium binding and coiled-coil domain 2; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; COX4/COX IV, cytochrome c oxidase subunit 4; EBSS, Earle's balanced salt; ECAR, extracellular acidification rate; GFP, green fluorescent protein; IA, isoamyl alcohol; IMM, inner mitochondrial membrane; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MMP, mitochondrial membrane potential; mtDNA, mitochondrial DNA; nDNA, nuclear DNA; O/A, oligomycin-antimycin; OCR, oxygen consumption rate; OMM, outer mitochondrial membrane; OPTN, optineurin; PARL, presenilin associated rhomboid like; PINK1, PTEN induced kinase 1; PRKN, parkin RBR E3 ubiquitin protein ligase; p-Ser65-Ub, phosphorylation of Ub at Ser65; TIMM23, translocase of inner mitochondrial membrane 23; TOMM, translocase of outer mitochondrial membrane; USP10, ubiquitin specific peptidase 10; USP13, ubiquitin specific peptidase 13; VAL, valinomycin; YFP, yellow fluorescent protein.
Collapse
Affiliation(s)
- Juan Yi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hailong Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Lina Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhen-Yu Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yihua Wu
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Dajing Xia
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
12
|
Toader C, Tataru CP, Munteanu O, Serban M, Covache-Busuioc RA, Ciurea AV, Enyedi M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer's, Parkinson's, and ALS. Int J Mol Sci 2024; 25:12613. [PMID: 39684324 PMCID: PMC11641752 DOI: 10.3390/ijms252312613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, ALS, and Huntington's, remain formidable challenges in medicine, with their relentless progression and limited therapeutic options. These diseases arise from a web of molecular disturbances-misfolded proteins, chronic neuroinflammation, mitochondrial dysfunction, and genetic mutations-that slowly dismantle neuronal integrity. Yet, recent scientific breakthroughs are opening new paths to intervene in these once-intractable conditions. This review synthesizes the latest insights into the underlying molecular dynamics of neurodegeneration, revealing how intertwined pathways drive the course of these diseases. With an eye on the most promising advances, we explore innovative therapies emerging from cutting-edge research: nanotechnology-based drug delivery systems capable of navigating the blood-brain barrier, gene-editing tools like CRISPR designed to correct harmful genetic variants, and stem cell strategies that not only replace lost neurons but foster neuroprotective environments. Pharmacogenomics is reshaping treatment personalization, enabling tailored therapies that align with individual genetic profiles, while molecular diagnostics and biomarkers are ushering in an era of early, precise disease detection. Furthermore, novel perspectives on the gut-brain axis are sparking interest as mounting evidence suggests that microbiome modulation may play a role in reducing neuroinflammatory responses linked to neurodegenerative progression. Taken together, these advances signal a shift toward a comprehensive, personalized approach that could transform neurodegenerative care. By integrating molecular insights and innovative therapeutic techniques, this review offers a forward-looking perspective on a future where treatments aim not just to manage symptoms but to fundamentally alter disease progression, presenting renewed hope for improved patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Ophthalmology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
13
|
Vafiadaki E, Kranias EG, Eliopoulos AG, Sanoudou D. The phospholamban R14del generates pathogenic aggregates by impairing autophagosome-lysosome fusion. Cell Mol Life Sci 2024; 81:450. [PMID: 39527246 PMCID: PMC11554986 DOI: 10.1007/s00018-024-05471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Phospholamban (PLN) plays a crucial role in regulating sarcoplasmic reticulum (SR) Ca2+ cycling and cardiac contractility. Mutations within the PLN gene have been detected in patients with cardiomyopathy, with the heterozygous variant c.40_42delAGA (p.R14del) of PLN being the most prevalent. Investigations into the mechanisms underlying the pathology of PLN-R14del have revealed that cardiac cells from affected patients exhibit pathological aggregates containing PLN. Herein, we performed comprehensive molecular and cellular analyses to delineate the molecular aberrations associated with the formation of these aggregates. We determined that PLN aggregates contain autophagic proteins, indicating inefficient degradation via the autophagy pathway. Our findings demonstrate that the expression of PLN-R14del results in diminished autophagic flux due to impaired fusion between autophagosomes and lysosomes. Mechanistically, this defect is linked to aberrant recruitment of key membrane fusion proteins to autophagosomes, which is mediated in part by changes in Ca2+ homeostasis. Collectively, these results highlight a novel function of PLN-R14del in regulating autophagy, that may contribute to the formation of pathogenic aggregates in patients with cardiomyopathy. Prospective strategies tailored to ameliorate impaired autophagy may hold promise against PLN-R14del disease.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece.
| | - Evangelia G Kranias
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Aristides G Eliopoulos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, Athens, 11527, Greece
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Despina Sanoudou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece.
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece.
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece.
| |
Collapse
|
14
|
Huang G, Zhao X, Bai Y, Liu J, Li W, Wu Y. Regulation of mitochondrial autophagy by lncRNA MALAT1 in sepsis-induced myocardial injury. Eur J Med Res 2024; 29:524. [PMID: 39487520 PMCID: PMC11531147 DOI: 10.1186/s40001-024-02098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Sepsis-induced myocardial injury (SIMI) is a severe complication of sepsis, contributing significantly to mortality. Mitochondrial dysfunction and dysregulated autophagy are implicated in SIMI pathogenesis. Long non-coding RNA MALAT1 has been associated with various diseases, including sepsis, but its role in SIMI remains unclear. OBJECTIVE This study aimed to investigate the role of lncRNA MALAT1 in SIMI, specifically in the regulation of mitochondrial autophagy. METHODS A sepsis-induced cardiomyopathy model was established in mice, and the cardiac tissues were analyzed. The expression of lncRNA MALAT1 was modulated and its effects on mitochondrial autophagy, myocardial injury, inflammation, and apoptosis were assessed. Furthermore, the interaction between MALAT1 and miR-146a was explored, as well as the involvement of the TLR4/NF-kB/MAPK signaling pathway. RESULTS Activation of mitochondrial autophagy by urolithin A (UA) alleviated SIMI, inflammation, and cardiac dysfunction. Downregulation of MALAT1 enhanced mitochondrial autophagy, stabilized the mitochondrial membrane potential, and inhibited mitochondrial reactive oxygen species (ROS) production, leading to improved cell viability and reduced myocardial injury. Furthermore, MALAT1 interacted with miR-146a, and their modulation influenced mitochondrial autophagy, myocardial injury, and inflammation. The TLR4/NF-kB/MAPK signaling pathway was implicated in these processes. CONCLUSION Our findings suggest that lncRNA MALAT1 plays a crucial role in SIMI by modulating miR-146a-mediated mitochondrial autophagy and the TLR4/NF-kB/MAPK signaling pathway. These results provide new insights into the pathogenesis of SIMI and potential therapeutic targets.
Collapse
Affiliation(s)
- Guangqing Huang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, China
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xu Zhao
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yong Bai
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jie Liu
- Maternal and Child Health Care Hospital Affiliated to Hubei University of Medicine, Shiyan, Hubei, China
| | - Wei Li
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yongquan Wu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
15
|
Reis AB, Martínez LC, de Oliveira MS, Souza DDS, Gomes DS, Silva LLD, Serrão JE. Sublethal Effects Induced by a Cyflumetofen Formulation on Honeybee Apis mellifera L. Workers: Assessment of Midgut, Hypopharyngeal Glands, and Fat Body Integrity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2455-2465. [PMID: 39171958 DOI: 10.1002/etc.5980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Worldwide, both cultivated and wild plants are pollinated by the honey bee, Apis mellifera. Bee numbers are declining as a result of a variety of factors, including increased pesticide use. Cyflumetofen controls pest mites in some plantations pollinated by bees, which may be contaminated with residual sublethal concentrations of this pesticide, in nectar and pollen. We evaluated the effects of a sublethal concentration of a cyflumetofen formulation on the midgut, hypopharyngeal gland, and fat body of A. mellifera workers orally exposed for 72 h or 10 days. The midgut epithelium of treated bees presented digestive cells with cytoplasm vacuoles and some cell fragmentation, indicating autophagy and cell death. After being exposed to the cyflumetofen formulation for 72 h, the midgut showed a higher injury rate than the control bees, but after 10 days, the organs had recovered. In the hypopharyngeal gland of treated bees, the end apparatus was filled with secretion, suggesting that the acaricide interferes with the secretory regulation of this gland. Histochemical tests revealed differences in the treated bees in both exposure periods in the midgut and hypopharyngeal glands. The acaricide caused cytotoxic effects on the midgut digestive cells, with apical protrusions, plasma membrane rupture, and several vacuoles in the cytoplasm, features of cell degeneration. In the hypopharyngeal glands of the treated bees, the secretory cells presented small electron-dense and large electron-lucent secretory granules. The fat body cells had no changes in comparison with the control bees. In conclusion, the cyflumetofen formulation at sublethal concentrations causes damage to the midgut and the hypopharyngeal glands of honey bee, which may compromise the functions of these organs and colony fitness. Environ Toxicol Chem 2024;43:2455-2465. © 2024 SETAC.
Collapse
Affiliation(s)
- Aline Beatriz Reis
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | | | | | - Diego Dos Santos Souza
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Davy Soares Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Laryssa Lemos da Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| |
Collapse
|
16
|
Chen Y, Wu Y, Tian X, Shao G, Lin Q, Sun A. Golgiphagy: a novel selective autophagy to the fore. Cell Biosci 2024; 14:130. [PMID: 39438975 PMCID: PMC11495120 DOI: 10.1186/s13578-024-01311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The Golgi apparatus is the central hub of the cellular endocrine pathway and plays a crucial role in processing, transporting, and sorting proteins and lipids. Simultaneously, it is a highly dynamic organelle susceptible to degradation or fragmentation under various physiological or pathological conditions, potentially contributing to the development of numerous human diseases. Autophagy serves as a vital pathway for eukaryotes to manage intracellular and extracellular stress and maintain homeostasis by targeting damaged or redundant organelles for removal. Recent research has revealed that autophagy mechanisms can specifically degrade Golgi components, known as Golgiphagy. This review summarizes recent findings on Golgiphagy while also addressing unanswered questions regarding its mechanisms and regulation, aiming to advance our understanding of the role of Golgiphagy in human disease.
Collapse
Affiliation(s)
- Yifei Chen
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yihui Wu
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
17
|
Amin W, Enam SA, Sufiyan S, Ghias K, Bajwa MH, Ilyas S, Laghari AA, Naeem S, Abidi SH, Mughal N. Autophagy-associated biomarkers ULK2, UVRAG, and miRNAs miR-21, miR-126, and miR-374: Prognostic significance in glioma patients. PLoS One 2024; 19:e0311308. [PMID: 39348350 PMCID: PMC11441661 DOI: 10.1371/journal.pone.0311308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024] Open
Abstract
As the pioneering study from Pakistan, our research distinctly focuses on validating the roles of autophagy-associated genes and MicroRNAs (miRs) in the unique context of our population for glioma prognosis. The study delves into the nuanced interplay of autophagy within a miR-modulated environment, prompting an exploration of its potential impact on glioma development and survival. Employing real-time PCR (qPCR), we meticulously assessed the expression profiles of autophagy genes and miRs in glioma tissues, complemented by immunohistochemistry on Formalin-fixed paraffin-embedded tissues from the same patients. Our comprehensive statistical analyses, including the data normality hypothesis Shapiro-Wilk test, the Mann-Whitney U-test, Spearman correlation test, and Kaplan-Meier survival analysis, were tailored to unravel the intricate associations specific to low- and high-grade glioma within our population. Clinicopathological analysis revealed a predominance of male patients (66%) with a median age of 35 years. Glioblastoma (32%) and Astrocytoma (36%) were the most prevalent histopathological subtypes. Molecular analysis showed significant correlations between prognostic markers (Ki-67, IDH-1, p53) and clinicopathological factors, including age, histological type, radiotherapy, and chemotherapy. In high-grade glioma, increased expression of AKT and miR-21, coupled with reduced ULK2 and LC3 expression was distinctly observed. While correlation analysis identified a strong positive correlation between ULK2 and UVRAG, PTEN, miR-7, and miR-100 in low-grade glioma, unveiling distinctive molecular signatures unique to our study. Furthermore, a moderate positive correlation emerged between ULK2 and mTOR, miR-7, miR-30, miR-100, miR-204, and miR-374, also between miR-21 and miR-126. Similarly, a positive correlation appeared between ULK2 and AKT, LC3, PI3K, PTEN, ULK1, VPS34, mTOR, Beclin1, UVRAG, miR-7 and miR-374. AKT positively correlated with LC3, PI3K, PTEN, ULK1, VPS34, mTOR, Beclin1, UVRAG, miR-7, miR-30, miR-204, miR-374, miR-126 and miR-21 weakly correlated with AKT and miR-30 in high-grade glioma, providing further insights into the autophagy pathway within our population. The enrichment analysis for miR-21, miR-126, and miR-374 showed MAPK pathway as a common pathway along with Ras, PI3K, and mTOR pathway. The low ULK2, UVRAG, and miR-374 expression group exhibited significantly poor overall survival in glioma, while miR-21 over-expression indicated a poor prognosis in glioma patients, validating it in our population. This study provides comprehensive insights into the molecular landscape of gliomas, highlighting the dysregulation of autophagy genes ULK2, and UVRAG and the associated miR-21, miR-126 and miR-374 as potential prognostic biomarkers and emphasizing their unique significance in shaping survival outcomes in gliomas within the specific context of the Pakistani population.
Collapse
Affiliation(s)
- Wajiha Amin
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
| | - Sufiyan Sufiyan
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Kulsoom Ghias
- Department of Biological & Biomedical Science, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Sahar Ilyas
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
| | - Altaf Ali Laghari
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Sana Naeem
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
| | - Syed Hani Abidi
- Department of Biological & Biomedical Science, Aga Khan University Hospital, Karachi, Pakistan
- Department of Biomedical Sciences, Nazarbayev School of Medicine, Nazarbayev University, Astana, Kazakhstan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Nouman Mughal
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
- Department of Biological & Biomedical Science, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
18
|
Rafiyian M, Reiter RJ, Rasooli Manesh SM, Asemi R, Sharifi M, Mohammadi S, Mansournia MA, Asemi Z. Programmed cell death and melatonin: A comprehensive review. Funct Integr Genomics 2024; 24:169. [PMID: 39313718 DOI: 10.1007/s10142-024-01454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Melatonin (MLT), a main product of pineal gland, recently has attracted the attention of scientists due to its benefits in various diseases and also regulation of cellular homeostasis. Its receptor scares widely distributed indicating that it influences numerous organs. Programmed cell death (PCD), of which there several types, is a regulated by highly conserved mechanisms and important for development and function of different organs. Enhancement or inhibition of PCDs could be a useful technique for treatment of different diseases and MLT, due to its direct effects on these pathways, is a good candidate for this strategy. Many studies investigated the role of MLT on PCDs in different diseases and in this review, we summarized some of the most significant studies in this field to provide a better insight into the mechanisms of modulation of PCD by MLT modulation.
Collapse
Affiliation(s)
- Mahdi Rafiyian
- Student Research Committee, Kashan University of Reiter Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | | | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sotoudeh Mohammadi
- Department of Obstetrics and Gynecology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
19
|
Theodorakis N, Feretzakis G, Tzelves L, Paxinou E, Hitas C, Vamvakou G, Verykios VS, Nikolaou M. Integrating Machine Learning with Multi-Omics Technologies in Geroscience: Towards Personalized Medicine. J Pers Med 2024; 14:931. [PMID: 39338186 PMCID: PMC11433587 DOI: 10.3390/jpm14090931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Aging is a fundamental biological process characterized by a progressive decline in physiological functions and an increased susceptibility to diseases. Understanding aging at the molecular level is crucial for developing interventions that could delay or reverse its effects. This review explores the integration of machine learning (ML) with multi-omics technologies-including genomics, transcriptomics, epigenomics, proteomics, and metabolomics-in studying the molecular hallmarks of aging to develop personalized medicine interventions. These hallmarks include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Using ML to analyze big and complex datasets helps uncover detailed molecular interactions and pathways that play a role in aging. The advances of ML can facilitate the discovery of biomarkers and therapeutic targets, offering insights into personalized anti-aging strategies. With these developments, the future points toward a better understanding of the aging process, aiming ultimately to promote healthy aging and extend life expectancy.
Collapse
Affiliation(s)
- Nikolaos Theodorakis
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
- School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece
| | - Lazaros Tzelves
- 2nd Department of Urology, Sismanoglio General Hospital, Sismanogliou 37, National and Kapodistrian University of Athens, 15126 Athens, Greece
| | - Evgenia Paxinou
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece
| | - Christos Hitas
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Georgia Vamvakou
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Vassilios S Verykios
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece
| | - Maria Nikolaou
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| |
Collapse
|
20
|
Tombulturk FK, Soydas T, Kanigur-Sultuybek G. Metformin as a Modulator of Autophagy and Hypoxia Responses in the Enhancement of Wound Healing in Diabetic Rats. Inflammation 2024:10.1007/s10753-024-02129-9. [PMID: 39186177 DOI: 10.1007/s10753-024-02129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/28/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
The molecular mechanisms underlying delayed wound repair in diabetes involve dysregulation of key cellular processes, including autophagy and hypoxia response pathways. Herein, we investigated the role of topical metformin, an established anti-diabetic drug with potential autophagy-inducing properties, in improving wound healing outcomes under hypoxic conditions. Full-thickness skin wounds were created in streptozotocin-induced diabetic rats, and tissue samples were collected at regular intervals for molecular and histological analysis. The expression levels of autophagy markers LC3B and Beclin-1 were evaluated via immunohistochemistry and qRT-PCR, while the amount of AMP-activated protein kinase (AMPK) and hypoxia-inducible factor-1α (HIF-1α) were determined via ELISA. Our results demonstrated that metformin administration resulted in the upregulation of LC3B and Beclin-1 in the wound bed, suggesting induction of autophagy in response to the treatment. Mechanistically, metformin treatment also led to the increased amount of AMPK, a critical regulator of cellular energy homeostasis, and a subsequent reduction in HIF-1α amount under hypoxic conditions. In conclusion, our findings demonstrate that metformin promotes wound healing in diabetes mellitus by enhancing autophagy through AMPK activation and modulating HIF-1α amount in a hypoxic microenvironment. This study offers a new therapeutic approach by shedding light on the potential benefits of metformin as adjunctive therapy in diabetic wound management.
Collapse
Affiliation(s)
- Fatma Kubra Tombulturk
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Istinye University, Istanbul, Türkiye.
| | - Tugba Soydas
- Department of Medical Biology and Genetics, Medical Faculty, Istanbul Aydin University, Istanbul, Türkiye
| | - Gönül Kanigur-Sultuybek
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| |
Collapse
|
21
|
Minoretti P, Emanuele E. From Agriculture to Clinics: Unlocking the Potential of Magnetized Water for Planetary and Human Health. Cureus 2024; 16:e64104. [PMID: 39114250 PMCID: PMC11305696 DOI: 10.7759/cureus.64104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Magnetized water (MW) is a form of liquid water that has been exposed to a magnetic field to alter its hydrogen bonding structure, resulting in the formation of water molecule clusters of various sizes and configurations connected by hydrogen bonds. This magnetization process induces several changes in the physicochemical properties of water, such as increased pH, electrical conductivity, and dissolved oxygen content, as well as decreased surface tension, density, and evaporation temperature compared to untreated water. In this narrative review, we explore the effective utilization of MW in agriculture, where it has a well-established history of applications, and its potential for direct applications in the medical field, which are currently at the forefront of research. MW is one of the most promising innovations for facilitating the transition from unsustainable to sustainable agriculture, which is expected to yield positive human health outcomes by promoting the consumption of less processed foods and reducing resource consumption. In addition to these indirect effects on human health, preclinical research utilizing animal models has demonstrated that water magnetization exerts beneficial effects on diabetes, renal function, bone health, and fertility. These health benefits appear to stem from the ability of MW to increase the activity of antioxidant enzymes while decreasing lipid peroxidation and inflammatory markers. In terms of direct human applications, MW has been primarily studied in the fields of dentistry and dermatology. MW mouthrinse has consistently shown efficacy against Streptococcus mutans, with studies reporting comparable effects to chlorhexidine. In dermatology, the topical application of MW has demonstrated improvements in skin biophysical parameters, increased hair count and hair mass index, and promoted the healing of challenging wounds. Intriguingly, these effects on human skin seem to be mediated by local activation of autophagy, potentially through mild alkaline stress. In conclusion, this review underscores the promising role of MW in promoting a holistic approach to planetary and human health. Future studies should focus on standardizing the magnetization process, exploring the molecular mechanisms underlying MW-induced autophagy, and investigating the potential of MW as a complementary strategy for treating human diseases characterized by impaired autophagy.
Collapse
|
22
|
Sheng X, Wang MM, Zhang GD, Su Y, Fang HB, Yu ZH, Su Z. Dual inhibition of oxidative phosphorylation and glycolysis to enhance cancer therapy. Bioorg Chem 2024; 147:107325. [PMID: 38583247 DOI: 10.1016/j.bioorg.2024.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Dual suppression of oxidative phosphorylation (OXPHOS) and glycolysis can disrupt metabolic adaption of cancer cells, inhibiting energy supply and leading to successful cancer therapy. Herein, we have developed an α-tocopheryl succinate (α-TOS)-functionalized iridium(III) complex Ir2, a highly lipophilic mitochondria targeting anticancer molecule, could inhibit both oxidative phosphorylation (OXPHOS) and glycolysis, resulting in the energy blockage and cancer growth suppression. Mechanistic studies reveal that complex Ir2 induces reactive oxygen species (ROS) elevation and mitochondrial depolarization, and triggers DNA oxidative damage. These damages could evoke the cancer cell death with the mitochondrial-relevant apoptosis and autophagy. 3D tumor spheroids experiment demonstrates that Ir2 owned superior antiproliferation performance, as the potent anticancer agent in vivo. This study not only provided a new path for dual inhibition of both mitochondrial OXPHOS and glycolytic metabolisms with a novel α-TOS-functionalized metallodrug, but also further demonstrated that the mitochondrial-relevant therapy could be effective in enhancing the anticancer performance.
Collapse
Affiliation(s)
- Xi Sheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Guan-Dong Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| | - Hong-Bao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zheng-Hong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
23
|
Ni H, Tang S, Lu G, Niu Y, Xu J, Zhang H, Hu J, Shen HM, Wu Y, Xia D. Linc00673-V3 positively regulates autophagy by promoting Smad3-mediated LC3B transcription in NSCLC. Life Sci Alliance 2024; 7:e202302408. [PMID: 38527804 PMCID: PMC10963591 DOI: 10.26508/lsa.202302408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Since its first discovery, long noncoding RNA Linc00673 has been linked to carcinogenesis and metastasis of various human cancers. Linc00673 had five transcriptional isoforms and their biological functions remained to be explored. Here we have reported that Linc00673-V3, one of the isoforms of Linc00673, promoted non-small cell lung cancer chemoresistance, and increased Linc00673-V3 expression level was associated with enhanced autophagy. Mechanistically, we discerned the existence of a stem-loop configuration engendered by the 1-100-nt and 2200-2275-nt fragments within Linc00673-V3. This structure inherently interacted with Smad3, thereby impeding its ubiquitination and subsequent degradation orchestrated by E3 ligase STUB1. The accumulation of Smad3 contributed to autophagy via up-regulation of LC3B transcription and ultimately conferred chemoresistance in NSCLC. Our results revealed a novel transcriptional regulation network between Linc00673-V3, Smad3, and LC3B, which provided an important insight into the interplay between autophagy regulation and non-canonical function of Smad3. Furthermore, the results from in vivo experiments suggested Linc00673-V3 targeted antisense oligonucleotide as a promising therapeutic strategy to overcome chemotherapy resistance in NSCLC.
Collapse
Affiliation(s)
- Heng Ni
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Song Tang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guang Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuequn Niu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinming Xu
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Gambari R, Finotti A. Therapeutic Relevance of Inducing Autophagy in β-Thalassemia. Cells 2024; 13:918. [PMID: 38891049 PMCID: PMC11171814 DOI: 10.3390/cells13110918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The β-thalassemias are inherited genetic disorders affecting the hematopoietic system. In β-thalassemias, more than 350 mutations of the adult β-globin gene cause the low or absent production of adult hemoglobin (HbA). A clinical parameter affecting the physiology of erythroid cells is the excess of free α-globin. Possible experimental strategies for a reduction in excess free α-globin chains in β-thalassemia are CRISPR-Cas9-based genome editing of the β-globin gene, forcing "de novo" HbA production and fetal hemoglobin (HbF) induction. In addition, a reduction in excess free α-globin chains in β-thalassemia can be achieved by induction of the autophagic process. This process is regulated by the Unc-51-like kinase 1 (Ulk1) gene. The interplay with the PI3K/Akt/TOR pathway, with the activity of the α-globin stabilizing protein (AHSP) and the involvement of microRNAs in autophagy and Ulk1 gene expression, is presented and discussed in the context of identifying novel biomarkers and potential therapeutic targets for β-thalassemia.
Collapse
Affiliation(s)
| | - Alessia Finotti
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
25
|
Young MJ, Wang SA, Chen YC, Liu CY, Hsu KC, Tang SW, Tseng YL, Wang YC, Lin SM, Hung JJ. USP24-i-101 targeting of USP24 activates autophagy to inhibit drug resistance acquired during cancer therapy. Cell Death Differ 2024; 31:574-591. [PMID: 38491202 PMCID: PMC11093971 DOI: 10.1038/s41418-024-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Drug resistance in cancer therapy is the major reason for poor prognosis. Addressing this clinically unmet issue is important and urgent. In this study, we found that targeting USP24 by the specific USP24 inhibitors, USP24-i and its analogues, dramatically activated autophagy in the interphase and mitotic periods of lung cancer cells by inhibiting E2F4 and TRAF6, respectively. USP24 functional knockout, USP24C1695A, or targeting USP24 by USP24-i-101 inhibited drug resistance and activated autophagy in gefitinib-induced drug-resistant mice with doxycycline-induced EGFRL858R lung cancer, but this effect was abolished after inhibition of autophagy, indicating that targeting USP24-mediated induction of autophagy is required for inhibition of drug resistance. Genomic instability and PD-L1 levels were increased in drug resistant lung cancer cells and were inhibited by USP24-i-101 treatment or knockdown of USP24. In addition, inhibition of autophagy by bafilomycin-A1 significantly abolished the effect of USP24-i-101 on maintaining genomic integrity, decreasing PD-L1 and inhibiting drug resistance acquired in chemotherapy or targeted therapy. In summary, an increase in the expression of USP24 in cancer cells is beneficial for the induction of drug resistance and targeting USP24 by USP24-i-101 optimized from USP24-i inhibits drug resistance acquired during cancer therapy by increasing PD-L1 protein degradation and genomic stability in an autophagy induction-dependent manner.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shao-An Wang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Ching Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yu Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sin-Wei Tang
- National Tainan First Senior High School, Tainan, Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, College of Medicine National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Institute of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Min Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
26
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
27
|
Yang Y, Liu L, Tian Y, Gu M, Wang Y, Ashrafizadeh M, Reza Aref A, Cañadas I, Klionsky DJ, Goel A, Reiter RJ, Wang Y, Tambuwala M, Zou J. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Lett 2024; 587:216659. [PMID: 38367897 DOI: 10.1016/j.canlet.2024.216659] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
Despite the challenges posed by drug resistance and side effects, chemotherapy remains a pivotal strategy in cancer treatment. A key issue in this context is macroautophagy (commonly known as autophagy), a dysregulated cell death mechanism often observed during chemotherapy. Autophagy plays a cytoprotective role by maintaining cellular homeostasis and recycling organelles, and emerging evidence points to its significant role in promoting cancer progression. Cisplatin, a DNA-intercalating agent known for inducing cell death and cell cycle arrest, often encounters resistance in chemotherapy treatments. Recent studies have shown that autophagy can contribute to cisplatin resistance or insensitivity in tumor cells through various mechanisms. This resistance can be mediated by protective autophagy, which suppresses apoptosis. Additionally, autophagy-related changes in tumor cell metastasis, particularly the induction of Epithelial-Mesenchymal Transition (EMT), can also lead to cisplatin resistance. Nevertheless, pharmacological strategies targeting the regulation of autophagy and apoptosis offer promising avenues to enhance cisplatin sensitivity in cancer therapy. Notably, numerous non-coding RNAs have been identified as regulators of autophagy in the context of cisplatin chemotherapy. Thus, therapeutic targeting of autophagy or its associated pathways holds potential for restoring cisplatin sensitivity, highlighting an important direction for future clinical research.
Collapse
Affiliation(s)
- Yang Yang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Lixia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL, USA
| | - Miaomiao Gu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Ji Yan Road, Jinan, Shandong, China
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc, 6, Tide Street, Boston, MA, 02210, USA
| | - Israel Cañadas
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | - Yuzhuo Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| | - Jianyong Zou
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, China.
| |
Collapse
|
28
|
Dabravolski SA, Pleshko EM, Sukhorukov VN, Glanz VY, Sobenin IA, Orekhov AN. Use of Olives-derived Phytochemicals for Prevention and Treatment of Atherosclerosis: An Update. Curr Top Med Chem 2024; 24:2173-2190. [PMID: 39162269 DOI: 10.2174/0115680266314560240806101445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/18/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024]
Abstract
Mediterranean diet is frequently associated with longevity and a lower incidence of adverse cardiovascular events because of the biological activities and health effects of olives - its key component. Olive oil, olive leaf extract, fruits and different by-products contain many bioactive components that exert anti-oxidant, anti-inflammatory and anti-apoptotic activities. In this review, we focus on the recent studies exploring molecular mechanisms underlying the cardioprotective properties of different olive oils, olive leave extracts, and specific micro-constituents (such as oleuropein, tyrosol, hydroxytyrosol and others) in vitro on rodent models and in clinical trials on human subjects. Particularly, hydroxytyrosol and oleuropein were identified as the major bioactive compounds responsible for the antioxidant, anti-inflammatory, anti-platelet aggregation and anti-atherogenic activities of olive oil. In total, the discussed results demonstrated a positive association between the consumption of olive oil and improvement in outcomes in atherosclerosis, diabetes, myocardial infarction, heart failure, hypertension and obesity.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Elizaveta M Pleshko
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315, Moscow, Russia
| | - Vasily N Sukhorukov
- Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, 119991, Moscow, Russia
| | - Victor Y Glanz
- Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, 119991, Moscow, Russia
| | - Igor A Sobenin
- Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, 119991, Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552, Moscow, Russia
| | - Alexander N Orekhov
- Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, 119991, Moscow, Russia
| |
Collapse
|
29
|
Mirabdali S, Ghafouri K, Farahmand Y, Gholizadeh N, Yazdani O, Esbati R, Hajiagha BS, Rahimi A. The role and function of autophagy through signaling and pathogenetic pathways and lncRNAs in ovarian cancer. Pathol Res Pract 2024; 253:154899. [PMID: 38061269 DOI: 10.1016/j.prp.2023.154899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 01/24/2024]
Abstract
Lysosomal-driven autophagy is a tightly controlled cellular catabolic process that breaks down and recycles broken or superfluous cell parts. It is involved in several illnesses, including cancer, and is essential in preserving cellular homeostasis. Autophagy prevents DNA mutation and cancer development by actively eliminating pro-oxidative mitochondria and protein aggregates from healthy cells. Oncosuppressor and oncogene gene mutations cause dysregulation of autophagy. Increased autophagy may offer cancer cells a pro-survival advantage when oxygen and nutrients are scarce and resistance to chemotherapy and radiation. This finding justifies the use of autophagy inhibitors in addition to anti-neoplastic treatments. Excessive autophagy levels can potentially kill cells. The diagnosis and treatment of ovarian cancer present many difficulties due to its complexity and heterogeneity. Understanding the role of autophagy, a cellular process involved in the breakdown and recycling of cellular components, in ovarian cancer has garnered increasing attention in recent years. Of particular note is the increasing amount of data indicating a close relationship between autophagy and ovarian cancer. Autophagy either promotes or restricts tumor growth in ovarian cancer. Dysregulation of autophagy signaling pathways in ovarian cancers can affect the development, metastasis, and response to tumor treatment. The precise mechanism underlying autophagy concerning ovarian cancer remains unclear, as does the role autophagy plays in ovarian carcinoma. In this review, we tried to encapsulate and evaluate current findings in investigating autophagy in ovarian cancer.
Collapse
Affiliation(s)
- Seyedsaber Mirabdali
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kimia Ghafouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Farahmand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Bahareh Salmanian Hajiagha
- Department of Cellular and Molecular Biology, Faculty of Basic Science, Tehran East Branch, Islamic Azad University, Tehran, Iran.
| | - Asiye Rahimi
- Faculty of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Maruf A, Milewska M, Varga M, Wandzik I. Trehalose-Bearing Carriers to Target Impaired Autophagy and Protein Aggregation Diseases. J Med Chem 2023; 66:15613-15628. [PMID: 38031413 PMCID: PMC10726369 DOI: 10.1021/acs.jmedchem.3c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
In recent years, trehalose, a natural disaccharide, has attracted growing attention because of the discovery of its potential to induce autophagy. Trehalose has also been demonstrated to preserve the protein's structural integrity and to limit the aggregation of pathologically misfolded proteins. Both of these properties have made trehalose a promising therapeutic candidate to target autophagy-related disorders and protein aggregation diseases. Unfortunately, trehalose has poor bioavailability due to its hydrophilic nature and susceptibility to enzymatic degradation. Recently, trehalose-bearing carriers, in which trehalose is incorporated either by chemical conjugation or physical entrapment, have emerged as an alternative option to free trehalose to improve its efficacy, particularly for the treatment of neurodegenerative diseases, atherosclerosis, nonalcoholic fatty liver disease (NAFLD), and cancers. In the current Perspective, we discuss all existing literature in this emerging field and try to identify key challenges for researchers intending to develop trehalose-bearing carriers to stimulate autophagy or inhibit protein aggregation.
Collapse
Affiliation(s)
- Ali Maruf
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty
of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology
Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
- Drug
Research Progam, Faculty of Pharmacy, University
of Helsinki, Viikinkaari
5E, 00014 Helsinki, Finland
| | - Małgorzata Milewska
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty
of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology
Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Máté Varga
- Department
of Genetics, ELTE Eötvös Loránd
University, Pázmány
P. stny. 1/C, Budapest H-1117, Hungary
| | - Ilona Wandzik
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty
of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology
Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
31
|
Cocchiararo I, Cattaneo O, Rajendran J, Chabry F, Cornut M, Soldati H, Bigot A, Mamchaoui K, Gibertini S, Bouche A, Ham DJ, Laumonier T, Prola A, Castets P. Identification of a muscle-specific isoform of VMA21 as a potent actor in X-linked myopathy with excessive autophagy pathogenesis. Hum Mol Genet 2023; 32:3374-3389. [PMID: 37756622 PMCID: PMC10695681 DOI: 10.1093/hmg/ddad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/23/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Defective lysosomal acidification is responsible for a large range of multi-systemic disorders associated with impaired autophagy. Diseases caused by mutations in the VMA21 gene stand as exceptions, specifically affecting skeletal muscle (X-linked Myopathy with Excessive Autophagy, XMEA) or liver (Congenital Disorder of Glycosylation). VMA21 chaperones vacuolar (v-) ATPase assembly, which is ubiquitously required for proper lysosomal acidification. The reason VMA21 deficiencies affect specific, but divergent tissues remains unknown. Here, we show that VMA21 encodes a yet-unreported long protein isoform, in addition to the previously described short isoform, which we name VMA21-120 and VMA21-101, respectively. In contrast to the ubiquitous pattern of VMA21-101, VMA21-120 was predominantly expressed in skeletal muscle, and rapidly up-regulated upon differentiation of mouse and human muscle precursors. Accordingly, VMA21-120 accumulated during development, regeneration and denervation of mouse skeletal muscle. In contrast, neither induction nor blockade of autophagy, in vitro and in vivo, strongly affected VMA21 isoform expression. Interestingly, VMA21-101 and VMA21-120 both localized to the sarcoplasmic reticulum of muscle cells, and interacted with the v-ATPase. While VMA21 deficiency impairs autophagy, VMA21-101 or VMA21-120 overexpression had limited impact on autophagic flux in muscle cells. Importantly, XMEA-associated mutations lead to both VMA21-101 deficiency and loss of VMA21-120 expression. These results provide important insights into the clinical diversity of VMA21-related diseases and uncover a muscle-specific VMA21 isoform that potently contributes to XMEA pathogenesis.
Collapse
Affiliation(s)
- Ilaria Cocchiararo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Olivia Cattaneo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Jayasimman Rajendran
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Florent Chabry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Mélanie Cornut
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Hadrien Soldati
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Anne Bigot
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, 47 Bd de l'Hôpital, 75013 Paris, France
| | - Kamel Mamchaoui
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, 47 Bd de l'Hôpital, 75013 Paris, France
| | - Sara Gibertini
- Neuromuscular Diseases and Neuroimmunology Unit, Muscle Cell Biology Lab, Fondazione IRCCS Istituto Neurologico “C. Besta”, Via Amadeo 42, 20133 Milano, Italy
| | - Axelle Bouche
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
- Department of Orthopaedic Surgery, Geneva University Hospitals and Faculty of Medicine, University Medical Center, 1 rue Michel Servet, 1211, Geneva, Switzerland
| | - Daniel J Ham
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Thomas Laumonier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
- Department of Orthopaedic Surgery, Geneva University Hospitals and Faculty of Medicine, University Medical Center, 1 rue Michel Servet, 1211, Geneva, Switzerland
| | - Alexandre Prola
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| | - Perrine Castets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva, Switzerland
| |
Collapse
|
32
|
Ye Q, Zhou W, Xu S, Que Q, Zhan Q, Zhang L, Zheng S, Ling S, Xu X. Ubiquitin-specific protease 22 promotes tumorigenesis and progression by an FKBP12/mTORC1/autophagy positive feedback loop in hepatocellular carcinoma. MedComm (Beijing) 2023; 4:e439. [PMID: 38045832 PMCID: PMC10691294 DOI: 10.1002/mco2.439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Ubiquitin-specific protease 22 (USP22) has been identified as a potential marker for cancer stem cells in hepatocellular carcinoma (HCC). It can promote HCC stemness, which is considered a driver of tumorigenesis. Here, we sought to determine the role of USP22 in tumorigenesis, elucidate its underlying mechanism, and explore its therapeutic significance in HCC. As a result, we found that tissue-specific Usp22 overexpression accelerated tumorigenesis, whereas Usp22 ablation decelerated it in a c-Myc/NRasGV12-induced HCC mouse model and that the mammalian target of rapamycin complex 1 (mTORC1) pathway was activated downstream. USP22 overexpression resulted in increased tumorigenic properties that were reversed by rapamycin in vitro and in vivo. In addition, USP22 activated mTORC1 by deubiquitinating FK506-binding protein 12 (FKBP12) and activated mTORC1, in turn, further stabilizing USP22 by inhibiting autophagic degradation. Clinically, HCC patients with high USP22 expression tend to benefit from mTOR inhibitors after liver transplantation (LT). Our results revealed that USP22 promoted tumorigenesis and progression via an FKBP12/mTORC1/autophagy positive feedback loop in HCC. Clinically, USP22 may be an effective biomarker for selecting eligible recipients with HCC for anti-mTOR-based therapy after LT.
Collapse
Affiliation(s)
- Qianwei Ye
- Department of General SurgeryHangzhou First People's HospitalHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- NHC Key Laboratory of Combined Multi‐Organ TransplantationHangzhouChina
| | - Wei Zhou
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Shengjun Xu
- Department of General SurgeryHangzhou First People's HospitalHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Qingyang Que
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Qifan Zhan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Lincheng Zhang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi‐Organ TransplantationHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Sunbin Ling
- Department of General SurgeryHangzhou First People's HospitalHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
33
|
García Martín Á, Santiago Sáez A, Gómez Serrano M, Liaño Riera M, Minoretti P. Topically Applied Magnetized Saline Water Activates Autophagy in the Scalp and Increases Hair Count and Hair Mass Index in Men With Mild-to-Moderate Androgenetic Alopecia. Cureus 2023; 15:e49565. [PMID: 38156152 PMCID: PMC10754093 DOI: 10.7759/cureus.49565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Water is essential for life and is vital for almost all functions of the human body. Recent studies have shown that treating water with magnets can alter its physicochemical properties, including intracluster bonds and water-ion interactions. Magnetized water also undergoes modifications in its physicochemical characteristics, such as pH, salinity, and dissolved oxygen. While there is a significant amount of literature on the use of magnetized water in agricultural settings, research on its potential biomedical applications is still limited. Based on previous findings indicating a potential relationship between autophagy activation and hair loss reversal, a pilot study was designed to explore the effects of topically applied magnetized saline water in patients with androgenetic alopecia. The hypothesis was that the process of water magnetization, which promotes the creation of hydroxyl ions, could potentially induce hair growth through the induction of alkali-induced autophagy in the scalp. Methods We recruited 20 Caucasian men with mild-to-moderate androgenetic alopecia (Norwood-Hamilton stages II-III). Initially, we conducted a 12-week open-label study to evaluate the potential of a topical lotion containing 95% magnetized saline water (2 mL applied once daily) to increase hair count and hair mass index (HMI). Subsequently, we investigated the effect of the lotion on two autophagy markers (Beclin-1 and LC3B) in scalp biopsies from a subgroup of 10 men. Results Hair count significantly increased after 12 weeks of topical treatment with magnetized saline water (from 20.6 ± 9.8 at baseline to 32.5 ± 12.4 at 12 weeks, P < 0.001). Similarly, the mean HMI increased from 37.8 ± 11.4 at baseline to 45.1 ± 13.6 at 12 weeks (P < 0.01). At the molecular level, the topical lotion effectively increased Beclin-1 levels in scalp biopsies by 44% at 12 weeks as compared to the baseline. Similarly, LC3B levels increased by 36% from baseline to 12 weeks, indicating that the lotion effectively activated autophagy in the scalp. Conclusions After 12 weeks of topical treatment, a lotion containing magnetized saline water activated scalp autophagy and significantly increased hair count and HMI in men with mild-to-moderate androgenetic alopecia.
Collapse
Affiliation(s)
- Ángel García Martín
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Andrés Santiago Sáez
- Legal Medicine, Psychiatry and Pathology, Hospital Clinico San Carlos, Madrid, ESP
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Manuel Gómez Serrano
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Miryam Liaño Riera
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | | |
Collapse
|
34
|
Oh SJ, Park K, Sonn SK, Oh GT, Lee MS. Pancreatic β-cell mitophagy as an adaptive response to metabolic stress and the underlying mechanism that involves lysosomal Ca 2+ release. Exp Mol Med 2023; 55:1922-1932. [PMID: 37653033 PMCID: PMC10545665 DOI: 10.1038/s12276-023-01055-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023] Open
Abstract
Mitophagy is an excellent example of selective autophagy that eliminates damaged or dysfunctional mitochondria, and it is crucial for the maintenance of mitochondrial integrity and function. The critical roles of autophagy in pancreatic β-cell structure and function have been clearly shown. Furthermore, morphological abnormalities and decreased function of mitochondria have been observed in autophagy-deficient β-cells, suggesting the importance of β-cell mitophagy. However, the role of authentic mitophagy in β-cell function has not been clearly demonstrated, as mice with pancreatic β-cell-specific disruption of Parkin, one of the most important players in mitophagy, did not exhibit apparent abnormalities in β-cell function or glucose homeostasis. Instead, the role of mitophagy in pancreatic β-cells has been investigated using β-cell-specific Tfeb-knockout mice (TfebΔβ-cell mice); Tfeb is a master regulator of lysosomal biogenesis or autophagy gene expression and participates in mitophagy. TfebΔβ-cell mice were unable to adaptively increase mitophagy or mitochondrial complex activity in response to high-fat diet (HFD)-induced metabolic stress. Consequently, TfebΔβ-cell mice exhibited impaired β-cell responses and further exacerbated metabolic deterioration after HFD feeding. TFEB was activated by mitochondrial or metabolic stress-induced lysosomal Ca2+ release, which led to calcineurin activation and mitophagy. After lysosomal Ca2+ release, depleted lysosomal Ca2+ stores were replenished by ER Ca2+ through ER→lysosomal Ca2+ refilling, which supplemented the low lysosomal Ca2+ capacity. The importance of mitophagy in β-cell function was also demonstrated in mice that developed β-cell dysfunction and glucose intolerance after treatment with a calcineurin inhibitor that hampered TFEB activation and mitophagy.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea
| | - Kihyoun Park
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea
| | - Seong Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03767, Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03767, Korea
| | - Myung-Shik Lee
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea.
| |
Collapse
|
35
|
Qiu Z, Li Y, Fu Y, Yang Y. Research progress of AMP-activated protein kinase and cardiac aging. Open Life Sci 2023; 18:20220710. [PMID: 37671091 PMCID: PMC10476487 DOI: 10.1515/biol-2022-0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/07/2023] Open
Abstract
The process of aging is marked by a gradual deterioration in the physiological functions and functional reserves of various tissues and organs, leading to an increased susceptibility to diseases and even death. Aging manifests in a tissue- and organ-specific manner, and is characterized by varying rates and direct and indirect interactions among different tissues and organs. Cardiovascular disease (CVD) is the leading cause of death globally, with older adults (aged >70 years) accounting for approximately two-thirds of CVD-related deaths. The prevalence of CVD increases exponentially with an individual's age. Aging is a critical independent risk factor for the development of CVD. AMP-activated protein kinase (AMPK) activation exerts cardioprotective effects in the heart and restores cellular metabolic functions by modulating gene expression and regulating protein levels through its interaction with multiple target proteins. Additionally, AMPK enhances mitochondrial function and cellular energy status by facilitating the utilization of energy substrates. This review focuses on the role of AMPK in the process of cardiac aging and maintaining normal metabolic levels and redox homeostasis in the heart, particularly in the presence of oxidative stress and the invasion of inflammatory factors.
Collapse
Affiliation(s)
- Zhengqi Qiu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Yufei Li
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Yancheng Fu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen518060, China
| | - Yanru Yang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
36
|
Wang E, Zhou S, Zeng D, Wang R. Molecular regulation and therapeutic implications of cell death in pulmonary hypertension. Cell Death Discov 2023; 9:239. [PMID: 37438344 DOI: 10.1038/s41420-023-01535-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Pulmonary hypertension (PH) is a clinical and pathophysiological syndrome caused by changes in pulmonary vascular structure or function that results in increased pulmonary vascular resistance and pulmonary arterial pressure, and it is characterized by pulmonary endothelial dysfunction, pulmonary artery media thickening, pulmonary vascular remodeling, and right ventricular hypertrophy, all of which are driven by an imbalance between the growth and death of pulmonary vascular cells. Programmed cell death (PCD), different from cell necrosis, is an active cellular death mechanism that is activated in response to both internal and external factors and is precisely regulated by cells. More than a dozen PCD modes have been identified, among which apoptosis, autophagy, pyroptosis, ferroptosis, necroptosis, and cuproptosis have been proven to be involved in the pathophysiology of PH to varying degrees. This article provides a summary of the regulatory patterns of different PCD modes and their potential effects on PH. Additionally, it describes the current understanding of this complex and interconnected process and analyzes the therapeutic potential of targeting specific PCD modes as molecular targets.
Collapse
Affiliation(s)
- Enze Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei, 230022, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei third clinical college of Anhui Medical University, Hefei, 230022, China
| | - Daxiong Zeng
- Department of pulmonary and critical care medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215006, China.
| | - Ran Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei, 230022, China.
| |
Collapse
|
37
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Papanikolopoulos K, Aloizos G, Damaskos C, Garmpis N, Garmpi A, Matthaios D, Karamouzis MV. An Insight into the Arising Role of MicroRNAs in Hepatocellular Carcinoma: Future Diagnostic and Therapeutic Approaches. Int J Mol Sci 2023; 24:ijms24087168. [PMID: 37108330 PMCID: PMC10138911 DOI: 10.3390/ijms24087168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes a frequent highly malignant form of primary liver cancer and is the third cause of death attributable to malignancy. Despite the improvement in the therapeutic strategies with the exploration of novel pharmacological agents, the survival rate for HCC is still low. Shedding light on the multiplex genetic and epigenetic background of HCC, such as on the emerging role of microRNAs, is considered quite promising for the diagnosis and the prediction of this malignancy, as well as for combatting drug resistance. MicroRNAs (miRNAs) constitute small noncoding RNA sequences, which play a key role in the regulation of several signaling and metabolic pathways, as well as of pivotal cellular functions such as autophagy, apoptosis, and cell proliferation. It is also demonstrated that miRNAs are significantly implicated in carcinogenesis, either acting as tumor suppressors or oncomiRs, while aberrations in their expression levels are closely associated with tumor growth and progression, as well as with local invasion and metastatic dissemination. The arising role of miRNAs in HCC is in the spotlight of the current scientific research, aiming at the development of novel therapeutic perspectives. In this review, we will shed light on the emerging role of miRNAs in HCC.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Eleni-Myrto Trifylli
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Army Hospital of Athens, 11525 Athens, Greece
| | | | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Christos Damaskos
- 'N.S. Christeas' Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Renal Transplantation Unit, 'Laiko' General Hospital, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propaedeutic Surgery, 'Laiko' General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
38
|
Coradduzza D, Congiargiu A, Chen Z, Cruciani S, Zinellu A, Carru C, Medici S. Humanin and Its Pathophysiological Roles in Aging: A Systematic Review. BIOLOGY 2023; 12:558. [PMID: 37106758 PMCID: PMC10135985 DOI: 10.3390/biology12040558] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Senescence is a cellular aging process in all multicellular organisms. It is characterized by a decline in cellular functions and proliferation, resulting in increased cellular damage and death. These conditions play an essential role in aging and significantly contribute to the development of age-related complications. Humanin is a mitochondrial-derived peptide (MDP), encoded by mitochondrial DNA, playing a cytoprotective role to preserve mitochondrial function and cell viability under stressful and senescence conditions. For these reasons, humanin can be exploited in strategies aiming to counteract several processes involved in aging, including cardiovascular disease, neurodegeneration, and cancer. Relevance of these conditions to aging and disease: Senescence appears to be involved in the decay in organ and tissue function, it has also been related to the development of age-related diseases, such as cardiovascular conditions, cancer, and diabetes. In particular, senescent cells produce inflammatory cytokines and other pro-inflammatory molecules that can participate to the development of such diseases. Humanin, on the other hand, seems to contrast the development of such conditions, and it is also known to play a role in these diseases by promoting the death of damaged or malfunctioning cells and contributing to the inflammation often associated with them. Both senescence and humanin-related mechanisms are complex processes that have not been fully clarified yet. Further research is needed to thoroughly understand the role of such processes in aging and disease and identify potential interventions to target them in order to prevent or treat age-related conditions. OBJECTIVES This systematic review aims to assess the potential mechanisms underlying the link connecting senescence, humanin, aging, and disease.
Collapse
Affiliation(s)
| | | | - Zhichao Chen
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Control Quality Unit, Azienda-Ospedaliera Universitaria (AOU), 07100 Sassari, Italy
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
39
|
Diab R, Pilotto F, Saxena S. Autophagy and neurodegeneration: Unraveling the role of C9ORF72 in the regulation of autophagy and its relationship to ALS-FTD pathology. Front Cell Neurosci 2023; 17:1086895. [PMID: 37006471 PMCID: PMC10060823 DOI: 10.3389/fncel.2023.1086895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The proper functioning of the cell clearance machinery is critical for neuronal health within the central nervous system (CNS). In normal physiological conditions, the cell clearance machinery is actively involved in the elimination of misfolded and toxic proteins throughout the lifetime of an organism. The highly conserved and regulated pathway of autophagy is one of the important processes involved in preventing and neutralizing pathogenic buildup of toxic proteins that could eventually lead to the development of neurodegenerative diseases (NDs) such as Alzheimer’s disease or Amyotrophic lateral sclerosis (ALS). The most common genetic cause of ALS and frontotemporal dementia (FTD) is a hexanucleotide expansion consisting of GGGGCC (G4C2) repeats in the chromosome 9 open reading frame 72 gene (C9ORF72). These abnormally expanded repeats have been implicated in leading to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs). In this review, we discuss the normal physiological role of C9ORF72 in the autophagy-lysosome pathway (ALP), and present recent research deciphering how dysfunction of the ALP synergizes with C9ORF72 haploinsufficiency, which together with the gain of toxic mechanisms involving hexanucleotide repeat expansions and DPRs, drive the disease process. This review delves further into the interactions of C9ORF72 with RAB proteins involved in endosomal/lysosomal trafficking, and their role in regulating various steps in autophagy and lysosomal pathways. Lastly, the review aims to provide a framework for further investigations of neuronal autophagy in C9ORF72-linked ALS-FTD as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rim Diab
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Federica Pilotto
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- *Correspondence: Smita Saxena,
| |
Collapse
|
40
|
Wu Y, Tan HWS, Lin JY, Shen HM, Wang H, Lu G. Molecular mechanisms of autophagy and implications in liver diseases. LIVER RESEARCH 2023; 7:56-70. [PMID: 39959698 PMCID: PMC11792062 DOI: 10.1016/j.livres.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/03/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Autophagy is a highly conserved process in which cytosolic contents are degraded by the lysosome, which plays an important role in energy and nutrient balance, and protein or organelle quality control. The liver is the most important organ for metabolism. Studies to date have revealed a significant role of autophagy in the maintenance of liver homeostasis under basal and stressed conditions, and the impairment of autophagy has been closely linked to various liver diseases. Therefore, a comprehensive understanding of the roles of autophagy in liver diseases may help in the development of therapeutic strategies via targeting autophagy. In this review, we will summarize the latest understanding of the molecular mechanisms of autophagy and systematically discuss its implications in various liver diseases, including alcohol-related liver disease, non-alcoholic fatty liver disease, viral hepatitis, hepatocellular carcinoma, and acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Yuankai Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hayden Weng Siong Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin-Yi Lin
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Brennan L, Costello MJ, Hejtmancik JF, Menko AS, Riazuddin SA, Shiels A, Kantorow M. Autophagy Requirements for Eye Lens Differentiation and Transparency. Cells 2023; 12:475. [PMID: 36766820 PMCID: PMC9914699 DOI: 10.3390/cells12030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Recent evidence points to autophagy as an essential cellular requirement for achieving the mature structure, homeostasis, and transparency of the lens. Collective evidence from multiple laboratories using chick, mouse, primate, and human model systems provides evidence that classic autophagy structures, ranging from double-membrane autophagosomes to single-membrane autolysosomes, are found throughout the lens in both undifferentiated lens epithelial cells and maturing lens fiber cells. Recently, key autophagy signaling pathways have been identified to initiate critical steps in the lens differentiation program, including the elimination of organelles to form the core lens organelle-free zone. Other recent studies using ex vivo lens culture demonstrate that the low oxygen environment of the lens drives HIF1a-induced autophagy via upregulation of essential mitophagy components to direct the specific elimination of the mitochondria, endoplasmic reticulum, and Golgi apparatus during lens fiber cell differentiation. Pioneering studies on the structural requirements for the elimination of nuclei during lens differentiation reveal the presence of an entirely novel structure associated with degrading lens nuclei termed the nuclear excisosome. Considerable evidence also indicates that autophagy is a requirement for lens homeostasis, differentiation, and transparency, since the mutation of key autophagy proteins results in human cataract formation.
Collapse
Affiliation(s)
- Lisa Brennan
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33460, USA
| | - M. Joseph Costello
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - A. Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marc Kantorow
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33460, USA
| |
Collapse
|
42
|
Rahman MA, Saikat ASM, Rahman MS, Islam M, Parvez MAK, Kim B. Recent Update and Drug Target in Molecular and Pharmacological Insights into Autophagy Modulation in Cancer Treatment and Future Progress. Cells 2023; 12:458. [PMID: 36766800 PMCID: PMC9914570 DOI: 10.3390/cells12030458] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/11/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Recent evidence suggests that autophagy is a governed catabolic framework enabling the recycling of nutrients from injured organelles and other cellular constituents via a lysosomal breakdown. This mechanism has been associated with the development of various pathologic conditions, including cancer and neurological disorders; however, recently updated studies have indicated that autophagy plays a dual role in cancer, acting as a cytoprotective or cytotoxic mechanism. Numerous preclinical and clinical investigations have shown that inhibiting autophagy enhances an anticancer medicine's effectiveness in various malignancies. Autophagy antagonists, including chloroquine and hydroxychloroquine, have previously been authorized in clinical trials, encouraging the development of medication-combination therapies targeting the autophagic processes for cancer. In this review, we provide an update on the recent research examining the anticancer efficacy of combining drugs that activate cytoprotective autophagy with autophagy inhibitors. Additionally, we highlight the difficulties and progress toward using cytoprotective autophagy targeting as a cancer treatment strategy. Importantly, we must enable the use of suitable autophagy inhibitors and coadministration delivery systems in conjunction with anticancer agents. Therefore, this review briefly summarizes the general molecular process behind autophagy and its bifunctional role that is important in cancer suppression and in encouraging tumor growth and resistance to chemotherapy and metastasis regulation. We then emphasize how autophagy and cancer cells interacting with one another is a promising therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Mobinul Islam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
43
|
Transcription of Autophagy Associated Gene Expression as Possible Predictors of a Colorectal Cancer Prognosis. Biomedicines 2023; 11:biomedicines11020418. [PMID: 36830954 PMCID: PMC9952998 DOI: 10.3390/biomedicines11020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Autophagy plays a dual role in oncogenesis-it contributes to the growth of the tumor and can inhibit its development. The aim of this study was to assess changes in the transcriptional activity of LAMP-2, BECN1, PINK1, and FOXO1 genes involved in the autophagy process in histopathologically confirmed adenocarcinoma sections of colorectal cancer: (2) Methods: A gene expression profile analysis was performed using HG-U133A and the RT-qPCR reaction. The transcriptional activity of genes was compared in sections of colorectal cancer in the four clinical stages (CSI-CSIV) concerning the control group; (3) Results: In CSI, the transcriptional activity of the PINK1 gene is highest; in CS II, the LAMP-2 gene is highest, while FOXO1 increases gradually from CSI reaching a maximum in CSIII. There is no BECN1 gene expression in colorectal cancer cells; (4) Conclusions: The observed differences in the mRNA concentration profile of autophagy-related genes in colon cancer specimens may indicate the role of autophagy in the pathogenesis of this cancer. Genes involved in autophagy may be diagnostic tools for colorectal cancer screening and personalized therapy in the future.
Collapse
|
44
|
Editorial: Highlights in Autophagy-From Basic Mechanisms to Human Disorder Treatments. Cells 2023; 12:cells12010188. [PMID: 36611981 PMCID: PMC9818552 DOI: 10.3390/cells12010188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process and represents a field of research that is constantly growing [...].
Collapse
|
45
|
Tang Q, Liu W, Yang X, Tian Y, Chen J, Hu Y, Fu N. ATG5-Mediated Autophagy May Inhibit Pyroptosis to Ameliorate Oleic Acid-Induced Hepatocyte Steatosis. DNA Cell Biol 2022; 41:1038-1052. [PMID: 36473201 DOI: 10.1089/dna.2022.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite activated autophagy ameliorating hepatocyte steatosis and metabolic associated fatty liver disease (MAFLD), mechanisms underlying the beneficial roles of autophagy in hepatic deregulation of lipid metabolism remain undefined. We explored whether autophagy can ameliorate oleic acid (OA)-induced hepatic steatosis by suppressing pyroptosis. Pyroptosis is involved in hepatocyte steatosis induced by OA. In addition, autophagy flux was blocked in OA-treated hepatocytes. Treatment with OA induced lipid accumulation in liver cell line L-02, which was attenuated by rapamycin (Rap), an autophagy agonist, while aggravated by autophagy inhibitor bafilomycin A1 (Baf A1). Inversely, treatment with pyroptotic agonist Nigericin aggravated OA-induced hepatic steatosis, while pyroptosis antagonist disulfiram ameliorated this effect. Mechanistically, treatment with Rap downregulated the expression of pyroptosis-related proteins, including NLRP3, Caspase-1, IL-18, GSDMD expression evoked by OA, thus improving pyroptosis in hepatic steatosis. Significantly, overexpression of ATG5 obviously downregulated cleaved caspase-1 expressions without altering the total caspase1 expressions in hepatic cell steatosis. Taken together, our studies strongly demonstrated that the activation of ATG5 inhibits pyroptosis to improve hepatic steatosis and suggest autophagy activation as a potential therapeutic strategy for pyroptosis-mediated MAFLD.
Collapse
Affiliation(s)
- Qianyu Tang
- Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Wenhui Liu
- Department of Intensive Care Unit, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Xuefeng Yang
- Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Yaying Tian
- Department of Infectious and Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Jiacheng Chen
- Department of Intensive Care Unit, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Yang Hu
- Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Nian Fu
- Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, China.,Clinical Research Institute, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| |
Collapse
|
46
|
Wang Y, Zhang Z, Li B, He B, Li L, Nice EC, Zhang W, Xu J. New Insights into the Gut Microbiota in Neurodegenerative Diseases from the Perspective of Redox Homeostasis. Antioxidants (Basel) 2022; 11:2287. [PMID: 36421473 PMCID: PMC9687622 DOI: 10.3390/antiox11112287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 08/27/2023] Open
Abstract
An imbalance between oxidants and antioxidants in the body can lead to oxidative stress, which is one of the major causes of neurodegenerative diseases. The gut microbiota contains trillions of beneficial bacteria that play an important role in maintaining redox homeostasis. In the last decade, the microbiota-gut-brain axis has emerged as a new field that has revolutionized the study of the pathology, diagnosis, and treatment of neurodegenerative diseases. Indeed, a growing number of studies have found that communication between the brain and the gut microbiota can be accomplished through the endocrine, immune, and nervous systems. Importantly, dysregulation of the gut microbiota has been strongly associated with the development of oxidative stress-mediated neurodegenerative diseases. Therefore, a deeper understanding of the relationship between the gut microbiota and redox homeostasis will help explain the pathogenesis of neurodegenerative diseases from a new perspective and provide a theoretical basis for proposing new therapeutic strategies for neurodegenerative diseases. In this review, we will describe the role of oxidative stress and the gut microbiota in neurodegenerative diseases and the underlying mechanisms by which the gut microbiota affects redox homeostasis in the brain, leading to neurodegenerative diseases. In addition, we will discuss the potential applications of maintaining redox homeostasis by modulating the gut microbiota to treat neurodegenerative diseases, which could open the door for new therapeutic approaches to combat neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Li
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Jia Xu
- School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
47
|
Lavallee CM, Bruno A, Ma C, Raman M. The Role of Intermittent Fasting in the Management of Nonalcoholic Fatty Liver Disease: A Narrative Review. Nutrients 2022; 14:4655. [PMID: 36364915 PMCID: PMC9657169 DOI: 10.3390/nu14214655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 08/30/2023] Open
Abstract
Intermittent fasting is a non-pharmacological dietary approach to management of obesity and metabolic syndrome, involving periodic intervals of complete or near-complete abstinence from food and energy-containing fluids. This dietary strategy has recently gained significant popularity in mainstream culture and has been shown to induce weight loss in humans, reduce gut and systemic inflammation, and improve gut microbial diversity and dysbiosis (largely in animal models). It has been hypothesized that intermittent fasting could be beneficial in the management of nonalcoholic fatty liver disease, given the condition's association with obesity. This review summarizes protocols, potential mechanisms of action, and evidence for intermittent fasting in nonalcoholic fatty liver disease. It also highlights practical considerations for implementing intermittent fasting in clinical practice. A search of the literature for English-language articles related to intermittent fasting or time-restricted feeding and liver disease was completed in PubMed and Google Scholar. Potential mechanisms of action for effects of intermittent fasting included modulation of circadian rhythm, adipose tissue and adipokines, gut microbiome, and autophagy. Preclinical, epidemiological, and clinical trial data suggested clinical benefits of intermittent fasting on metabolic and inflammatory markers in humans. However, there was a paucity of evidence of its effects in patients with nonalcoholic fatty liver disease. More clinical studies are needed to determine mechanisms of action and to evaluate safety and efficacy of intermittent fasting in this population.
Collapse
Affiliation(s)
| | - Andreina Bruno
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Christopher Ma
- Department of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Maitreyi Raman
- Department of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Snyder Institute of Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
48
|
Huang J, Hong W, Wan M, Zheng L. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm (Beijing) 2022; 3:e162. [PMID: 36000086 PMCID: PMC9390875 DOI: 10.1002/mco2.162] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Evidence shows that neutrophils can protect the host against pathogens in multiple ways, including the formation and release of neutrophil extracellular traps (NETs). NETs are web-like structures composed of fibers, DNA, histones, and various neutrophil granule proteins. NETs can capture and kill pathogens, including bacteria, viruses, fungi, and protozoa. The process of NET formation is called NETosis. According to whether they depend on nicotinamide adenine dinucleotide phosphate (NADPH), NETosis can be divided into two categories: "suicidal" NETosis and "vital" NETosis. However, NET components, including neutrophil elastase, myeloperoxidase, and cell-free DNA, cause a proinflammatory response and potentially severe diseases. Compelling evidence indicates a link between NETs and the pathogenesis of a number of diseases, including sepsis, systemic lupus erythematosus, rheumatoid arthritis, small-vessel vasculitis, inflammatory bowel disease, cancer, COVID-19, and others. Therefore, targeting the process and products of NETosis is critical for treating diseases linked with NETosis. Researchers have discovered that several NET inhibitors, such as toll-like receptor inhibitors and reactive oxygen species scavengers, can prevent uncontrolled NET development. This review summarizes the mechanism of NETosis, the receptors associated with NETosis, the pathology of NETosis-induced diseases, and NETosis-targeted therapy.
Collapse
Affiliation(s)
- Jiayu Huang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional GenesMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
49
|
Venditti M, Arcaniolo D, De Sio M, Minucci S. First Evidence of the Expression and Localization of Prothymosin α in Human Testis and Its Involvement in Testicular Cancers. Biomolecules 2022; 12:biom12091210. [PMID: 36139050 PMCID: PMC9496091 DOI: 10.3390/biom12091210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Prothymosin α (PTMA) is a phylogenetically conserved polypeptide in male gonads of Vertebrates. In Mammals, it is a ubiquitous protein, and, possessing a random-coil structure, it interacts with many other partners, in both cytoplasmic and nuclear compartments. PTMA has been widely studied during cell progression in different types of cancer because of its anti-apoptotic and proliferative properties. Here, we provided the first evidence of PTMA expression and localization in human testis and in two testicular cancers (TC): classic seminoma (CS) and Leydig cell tumor (LCT). Data showed that its protein level, together with that of proliferating cell nuclear antigen (PCNA), a cell cycle progression marker, increased in both CS and LCT samples, as compared to non-pathological (NP) tissue. Moreover, in the two-cancer tissue, a decreased apoptotic rate and an increased autophagic flux was also evidenced. Results confirmed the anti-apoptotic action of PTMA, also suggesting that it can act as a switcher from apoptosis to autophagy, to favor the survival of testicular cancer cells when they develop in adverse environments. Finally, the combined data, even if they need to be further validated, add new insight into the role of PTMA in human normal and pathological testicular tissue.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università degli Studi della Campania “Luigi Vanvitelli”, Via Costantinopoli, 16-80138 Napoli, Italy
- Correspondence:
| | - Davide Arcaniolo
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 02-80138 Napoli, Italy
| | - Marco De Sio
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 02-80138 Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate “F. Bottazzi”, Università degli Studi della Campania “Luigi Vanvitelli”, Via Costantinopoli, 16-80138 Napoli, Italy
| |
Collapse
|