1
|
Ren J, Xiang B, Xueling L, Han X, Yang Z, Zhang M, Zhang Y. Molecular mechanisms of mitochondrial homeostasis regulation in neurons and possible therapeutic approaches for Alzheimer's disease. Heliyon 2024; 10:e36470. [PMID: 39281517 PMCID: PMC11401100 DOI: 10.1016/j.heliyon.2024.e36470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disease with memory loss and cognitive decline, which affects a large proportion of the aging population. Regrettably, there are no drug to reverse or cure AD and drug development for the primary theory of amyloid beta deposition has mostly failed. Therefore, there is an urgent need to investigate novel strategies for preventing AD. Recent studies demonstrate that imbalance of mitochondrial homeostasis is a driver in Aβ accumulation, which can lead to the occurrence and deterioration of cognitive impairment in AD patients. This suggests that regulating neuronal mitochondrial homeostasis may be a new strategy for AD. We summarize the importance of mitochondrial homeostasis in AD neuron and its regulatory mechanisms in this review. In addition, we summarize the results of studies indicating mitochondrial dysfunction in AD subjects, including impaired mitochondrial energy production, oxidative stress, imbalance of mitochondrial protein homeostasis, imbalance of fusion and fission, imbalance of neuronal mitochondrial biogenesis and autophagy, and altered mitochondrial motility, in hope of providing possible therapeutic approaches for AD.
Collapse
Affiliation(s)
- Jiale Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beibei Xiang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Xueling
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Han
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mixia Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Yu G, Shi Y, Cong S, Wu C, Liu J, Zhang Y, Liu H, Liu X, Deng H, Tan Z, Deng Y. Synthesis and evaluation of butylphthalide-scutellarein hybrids as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2024; 265:116099. [PMID: 38160618 DOI: 10.1016/j.ejmech.2023.116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
A series of butylphthalide and scutellarein hybrids 3-(alkyl/alkenyl) hydroxyphthalide derivatives were designed, synthesized and evaluated as multifunctional agents against Alzheimer's disease. In vitro bioactivity assays indicated that most of the compounds displayed excellent antioxidant activity and moderate to good inhibition activities of self-induced Aβ1-42 aggregation. Among them, compound 7c was demonstrated as a potential and balanced multifunctional candidate displaying the best inhibitory effects on self- and Cu2+-induced Aβ1-42 aggregation (90.2 % and 35.4 %, respectively) and moderate activity for disaggregation of Aβ1-42 aggregation (42.5 %). In addition, 7c also displayed excellent antioxidant (2.42 Trolox equivalents), metal ions chelating, oxidative stress alleviation, neuroprotective and anti-neuroinflammatory activities. Furthermore, in vivo study demonstrated that 7c could ameliorate the learning and memory impairment induced by sodium nitrite and Aβ1-42 in the step-down passive avoidance test. These balanced multifunctional profiles supporting compound 7c as a novel potential candidate for the treatment of AD.
Collapse
Affiliation(s)
- Guangjun Yu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yichun Shi
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shiqin Cong
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengxun Wu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jing Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhang
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Hongyan Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiuxiu Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Haixing Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|