1
|
Lowe SA, Wilson AD, Aughey GN, Banerjee A, Goble T, Simon-Batsford N, Sanderson A, Kratschmer P, Balogun M, Gao H, Aw SS, Jepson JEC. Modulation of a critical period for motor development in Drosophila by BK potassium channels. Curr Biol 2024; 34:3488-3505.e3. [PMID: 39053467 DOI: 10.1016/j.cub.2024.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Critical periods are windows of heightened plasticity occurring during neurodevelopment. Alterations in neural activity during these periods can cause long-lasting changes in the structure, connectivity, and intrinsic excitability of neurons, which may contribute to the pathology of neurodevelopmental disorders. However, endogenous regulators of critical periods remain poorly defined. Here, we study this issue using a fruit fly (Drosophila) model of an early-onset movement disorder caused by BK potassium channel gain of function (BK GOF). Deploying a genetic method to place robust expression of GOF BK channels under spatiotemporal control, we show that adult-stage neuronal expression of GOF BK channels minimally disrupts fly movement. In contrast, limiting neuronal expression of GOF BK channels to a short window during late neurodevelopment profoundly impairs locomotion and limb kinematics in resulting adult flies. During this critical period, BK GOF perturbs synaptic localization of the active zone protein Bruchpilot and reduces excitatory neurotransmission. Conversely, enhancing neural activity specifically during development rescues motor defects in BK GOF flies. Collectively, our results reveal a critical developmental period for limb control in Drosophila that is influenced by BK channels and suggest that BK GOF causes movement disorders by disrupting activity-dependent aspects of synaptic development.
Collapse
Affiliation(s)
- Simon A Lowe
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| | - Abigail D Wilson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Gabriel N Aughey
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Animesh Banerjee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Talya Goble
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Department of Cell and Developmental Biology, University College London, London, UK
| | - Nell Simon-Batsford
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Angelina Sanderson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Champalimaud Research, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Patrick Kratschmer
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Maryam Balogun
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Hao Gao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Sherry S Aw
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
2
|
Hakami W, Thabet F, Alhashem A, Alghamdi A, Alshahwan S, Alkuraya FS, Tabarki B. Bi-allelic variants in HCRT cause autosomal recessive narcolepsy. Neurogenetics 2024; 25:79-83. [PMID: 38240911 DOI: 10.1007/s10048-024-00744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 05/08/2024]
Abstract
Narcolepsy with cataplexy is a complex disease with both genetic and environmental risk factors. To gain further insight into the homozygous HCRT-related narcolepsy, we present a case series of five patients from two consanguineous families, each harboring a novel homozygous variant of HCRT c.17_18del. All affected individuals exhibited severe cataplexy accompanied by narcolepsy symptoms during infancy. Additionally, cataplexy symptoms improved or disappeared in the majority of patients over time. Pathogenic variants in HCRT cause autosomal recessive narcolepsy with cataplexy. Genetic testing of the HCRT gene should be conducted in specific subgroups of narcolepsy, particularly those with early onset, familial cases, and a predominantly cataplexy phenotype.
Collapse
Affiliation(s)
- Wejdan Hakami
- Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, 11159, Riyadh, Saudi Arabia
| | - Farah Thabet
- Department of Pediatrics, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Amal Alhashem
- Division of Pediatric Genetics, Department of Pediatrics, Prince Sultan Military Medical City, 12233, Riyadh, Saudi Arabia
| | - Abdulaziz Alghamdi
- Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, 11159, Riyadh, Saudi Arabia
| | - Saad Alshahwan
- Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, 11159, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, 11159, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Çapan ÖY, Yapıcı Z, Özbil M, Çağlayan HS. Exome data of developmental and epileptic encephalopathy patients reveals de novo and inherited pathologic variants in epilepsy-associated genes. Seizure 2024; 116:51-64. [PMID: 37353388 DOI: 10.1016/j.seizure.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023] Open
Abstract
PURPOSE In Developmental and Epileptic Encephalopathies (DEEs), identifying the precise genetic factors guides the clinicians to apply the most appropriate treatment for the patient. Due to high locus heterogeneity, WES analysis is a promising approach for the genetic diagnosis of DEE. Therefore, the aim of the present study is to evaluate the utility of WES in the diagnosis and treatment of DEE patients. METHODS The exome data of 29 DEE patients were filtrated for destructive and missense mutations in 1896 epilepsy-related genes to detect the causative variants and examine the genotype-phenotype correlations. We performed Sanger sequencing with the available DNA samples to follow the co-segregation of the variants with the disease phenotype in the families. Also, the structural effects of p.Asn1053Ser, p.Pro120Ser and p.Glu1868Gly mutations on KCNMA1, NPC2, and SCN2A proteins, respectively, were evaluated by molecular dynamics (MD) and molecular docking simulations. RESULTS Out of 29, nine patients (31%) harbor pathological (P) or likely pathological (LP) mutations in SCN2A, KCNQ2, ATP1A2, KCNMA1, and MECP2 genes, and three patients have VUS variants (10%) in SCN1A and SCN2A genes. Sanger sequencing results indicated that three of the patients have de novo mutations while eight of them carry paternally and/or maternally inherited causative variants. MD and molecular docking simulations supported the destructive effects of the mutations on KCNMA1, NPC2, and SCN2A protein structures. CONCLUSION Herein we demonstrated the effectiveness of WES for DEE with high locus heterogeneity. Identification of the genetic etiology guided the clinicians to adjust the proper treatment for the patients.
Collapse
Affiliation(s)
- Özlem Yalçın Çapan
- Department of Medical Biology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey; Department of Molecular Biology and Genetics, İstanbul Arel University, İstanbul, Turkey.
| | - Zuhal Yapıcı
- Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Özbil
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkiye
| | - Hande S Çağlayan
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey (formerly)
| |
Collapse
|
4
|
Meredith AL. BK Channelopathies and KCNMA1-Linked Disease Models. Annu Rev Physiol 2024; 86:277-300. [PMID: 37906945 DOI: 10.1146/annurev-physiol-030323-042845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Novel KCNMA1 variants, encoding the BK K+ channel, are associated with a debilitating dyskinesia and epilepsy syndrome. Neurodevelopmental delay, cognitive disability, and brain and structural malformations are also diagnosed at lower incidence. More than half of affected individuals present with a rare negative episodic motor disorder, paroxysmal nonkinesigenic dyskinesia (PNKD3). The mechanistic relationship of PNKD3 to epilepsy and the broader spectrum of KCNMA1-associated symptomology is unknown. This review summarizes patient-associated KCNMA1 variants within the BK channel structure, functional classifications, genotype-phenotype associations, disease models, and treatment. Patient and transgenic animal data suggest delineation of gain-of-function (GOF) and loss-of-function KCNMA1 neurogenetic disease, validating two heterozygous alleles encoding GOF BK channels (D434G and N999S) as causing seizure and PNKD3. This discovery led to a variant-defined therapeutic approach for PNKD3, providing initial insight into the neurological basis. A comprehensive clinical definition of monogenic KCNMA1-linked disease and the neuronal mechanisms currently remain priorities for continued investigation.
Collapse
Affiliation(s)
- Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
5
|
Park SM, Roache CE, Iffland PH, Moldenhauer HJ, Matychak KK, Plante AE, Lieberman AG, Crino PB, Meredith A. BK channel properties correlate with neurobehavioral severity in three KCNMA1-linked channelopathy mouse models. eLife 2022; 11:e77953. [PMID: 35819138 PMCID: PMC9275823 DOI: 10.7554/elife.77953] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
KCNMA1 forms the pore of BK K+ channels, which regulate neuronal and muscle excitability. Recently, genetic screening identified heterozygous KCNMA1 variants in a subset of patients with debilitating paroxysmal non-kinesigenic dyskinesia, presenting with or without epilepsy (PNKD3). However, the relevance of KCNMA1 mutations and the basis for clinical heterogeneity in PNKD3 has not been established. Here, we evaluate the relative severity of three KCNMA1 patient variants in BK channels, neurons, and mice. In heterologous cells, BKN999S and BKD434G channels displayed gain-of-function (GOF) properties, whereas BKH444Q channels showed loss-of-function (LOF) properties. The relative degree of channel activity was BKN999S > BKD434G>WT > BKH444Q. BK currents and action potential firing were increased, and seizure thresholds decreased, in Kcnma1N999S/WT and Kcnma1D434G/WT transgenic mice but not Kcnma1H444Q/WT mice. In a novel behavioral test for paroxysmal dyskinesia, the more severely affected Kcnma1N999S/WT mice became immobile after stress. This was abrogated by acute dextroamphetamine treatment, consistent with PNKD3-affected individuals. Homozygous Kcnma1D434G/D434G mice showed similar immobility, but in contrast, homozygous Kcnma1H444Q/H444Q mice displayed hyperkinetic behavior. These data establish the relative pathogenic potential of patient alleles as N999S>D434G>H444Q and validate Kcnma1N999S/WT mice as a model for PNKD3 with increased seizure propensity.
Collapse
Affiliation(s)
- Su Mi Park
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Cooper E Roache
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Philip H Iffland
- Department of Neurology, University of Maryland School of MedicineBaltimoreUnited States
| | - Hans J Moldenhauer
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Katia K Matychak
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Amber E Plante
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Abby G Lieberman
- Department of Pharmacology, University of Maryland School of MedicineBaltimoreUnited States
| | - Peter B Crino
- Department of Neurology, University of Maryland School of MedicineBaltimoreUnited States
| | - Andrea Meredith
- Department of Physiology, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
6
|
Dong P, Zhang Y, Hunanyan AS, Mikati MA, Cui J, Yang H. Neuronal mechanism of a BK channelopathy in absence epilepsy and dyskinesia. Proc Natl Acad Sci U S A 2022; 119:e2200140119. [PMID: 35286197 PMCID: PMC8944272 DOI: 10.1073/pnas.2200140119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
A growing number of gain-of-function (GOF) BK channelopathies have been identified in patients with epilepsy and movement disorders. Nevertheless, the underlying pathophysiology and corresponding therapeutics remain obscure. Here, we utilized a knock-in mouse model carrying human BK-D434G channelopathy to investigate the neuronal mechanism of BK GOF in the pathogenesis of epilepsy and dyskinesia. The BK-D434G mice manifest the clinical features of absence epilepsy and exhibit severe motor deficits and dyskinesia-like behaviors. The cortical pyramidal neurons and cerebellar Purkinje cells from the BK-D434G mice show hyperexcitability, which likely contributes to the pathogenesis of absence seizures and paroxysmal dyskinesia. A BK channel blocker, paxilline, potently suppresses BK-D434G–induced hyperexcitability and effectively mitigates absence seizures and locomotor deficits in mice. Our study thus uncovered a neuronal mechanism of BK GOF in absence epilepsy and dyskinesia. Our findings also suggest that BK inhibition is a promising therapeutic strategy for mitigating BK GOF-induced neurological disorders.
Collapse
Affiliation(s)
- Ping Dong
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Yang Zhang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Arsen S. Hunanyan
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Mohamad A. Mikati
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
7
|
Keros S, Heim J, Hakami W, Zohar‐Dayan E, Ben‐Zeev B, Grinspan Z, Kruer MC, Meredith AL. Lisdexamfetamine Therapy in Paroxysmal Non-kinesigenic Dyskinesia Associated with the KCNMA1-N999S Variant. Mov Disord Clin Pract 2022; 9:229-235. [PMID: 35141357 PMCID: PMC8810426 DOI: 10.1002/mdc3.13394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND KCNMA1-linked channelopathy is a rare movement disorder first reported in 2005. Paroxysmal non-kinesigenic dyskinesia (PNKD) in KCNMA1-linked channelopathy is the most common symptom in patients harboring the KCNMA1-N999S mutation. PNKD episodes occur up to hundreds of times daily with significant morbidity and limited treatment options, often in the context of epilepsy. CASES We report 6 cases with the KCNMA1-N999S variant treated with lisdexamfetamine (0.7-1.25 mg/kg/day), a pro-drug of dextroamphetamine. Data were collected retrospectively from interviews and chart review. Parent-reported daily PNKD episode counts were reduced under treatment, ranging from a 10-fold decrease to complete resolution. CONCLUSION Our findings suggest that lisdexamfetamine is an effective therapy for PNKD3 (KCNMA1-associated PNKD). Treatment produced dramatic reductions in debilitating dyskinesia episodes, without provocation or exacerbation of other KCNMA1-associated symptoms such as seizures.
Collapse
Affiliation(s)
- Sotirios Keros
- Division of Neurology, Department of PediatricsWeill Cornell Medical CollegeNew YorkNew YorkUSA
- KCNMA1 Channelopathy International Advocacy Foundation (KCIAF)New YorkNew YorkUSA
| | - Jennifer Heim
- Pediatric Movement Disorders ProgramBarrow Neurological Institute, Phoenix Children's HospitalPhoenixArizonaUSA
| | - Wejdan Hakami
- Pediatric Movement Disorders ProgramBarrow Neurological Institute, Phoenix Children's HospitalPhoenixArizonaUSA
| | - Efrat Zohar‐Dayan
- Pediatric Neurology Unit, Edmond & Lily Safra Children's HospitalChaim Sheba Medical CenterTel HashomerIsrael
| | - Bruria Ben‐Zeev
- Pediatric Neurology Unit, Edmond & Lily Safra Children's HospitalChaim Sheba Medical CenterTel HashomerIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Zach Grinspan
- Division of Neurology, Department of PediatricsWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Michael C. Kruer
- KCNMA1 Channelopathy International Advocacy Foundation (KCIAF)New YorkNew YorkUSA
- Pediatric Movement Disorders ProgramBarrow Neurological Institute, Phoenix Children's HospitalPhoenixArizonaUSA
- Department of Child Health, Neurology, and Cellular Molecular Medicine and Program in GeneticsUniversity of Arizona College of MedicinePhoenixArizonaUSA
| | - Andrea L. Meredith
- KCNMA1 Channelopathy International Advocacy Foundation (KCIAF)New YorkNew YorkUSA
- Department of PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
8
|
Moldenhauer HJ, Dinsdale RL, Alvarez S, Fernández-Jaén A, Meredith AL. Effect of an autism-associated KCNMB2 variant, G124R, on BK channel properties. Curr Res Physiol 2022; 5:404-413. [PMID: 36203817 PMCID: PMC9531041 DOI: 10.1016/j.crphys.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
BK K+ channels are critical regulators of neuron and muscle excitability, comprised of a tetramer of pore-forming αsubunits from the KCNMA1 gene and cell- and tissue-selective β subunits (KCNMB1-4). Mutations in KCNMA1 are associated with neurological disorders, including autism. However, little is known about the role of neuronal BK channel β subunits in human neuropathology. The β2 subunit is expressed in central neurons and imparts inactivation to BK channels, as well as altering activation and deactivation gating. In this study, we report the functional effect of G124R, a novel KCNMB2 mutation obtained from whole-exome sequencing of a patient diagnosed with autism spectrum disorder. Residue G124, located in the extracellular loop between TM1 and TM2, is conserved across species, and the G124R missense mutation is predicted deleterious with computational tools. To investigate the pathogenicity potential, BK channels were co-expressed with β2WT and β2G124R subunits in HEK293T cells. BK/β2 currents were assessed from inside-out patches under physiological K+ conditions (140/6 mM K+ and 10 μM Ca2+) during activation and inactivation (voltage-dependence and kinetics). Using β2 subunits lacking inactivation (β2IR) revealed that currents from BK/β2IRG124R channels activated 2-fold faster and deactivated 2-fold slower compared with currents from BK/β2IRWT channels, with no change in the voltage-dependence of activation (V1/2). Despite the changes in the BK channel opening and closing, BK/β2G124R inactivation rates (τinact and τrecovery), and the V1/2 of inactivation, were unaltered compared with BK/β2WT channels under standard steady-state voltage protocols. Action potential-evoked current was also unchanged. Thus, the mutant phenotype suggests the β2G124R TM1-TM2 extracellular loop could regulate BK channel activation and deactivation kinetics. However, additional evidence is needed to validate pathogenicity for this patient-associated variant in KCNMB2. KCNMA1 channelopathy is a neurobehavioral disorder associated with seizures, dyskinesia, and intellectual disability. KCNMB2 encodes an accessory β subunit that confers inactivation to the KCNMA1 pore-forming α subunit BK channel. The KCNMB2-G124R variant, identified in an autistic individual, affects BK/β2 channel activation but not inactivation.
Collapse
Affiliation(s)
- Hans J. Moldenhauer
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ria L. Dinsdale
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Alberto Fernández-Jaén
- Dept. of Pediatric Neurology, Hospital Universitario Quirónsalud, School of Medicine, Universidad Europea de, Madrid, Spain
| | - Andrea L. Meredith
- Dept. of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Corresponding author. Dept. of Physiology University of Maryland School of Medicine, 655 W. Baltimore St. Baltimore, MD, 21201, USA.
| |
Collapse
|
9
|
Miller JP, Moldenhauer HJ, Keros S, Meredith AL. An emerging spectrum of variants and clinical features in KCNMA1-linked channelopathy. Channels (Austin) 2021; 15:447-464. [PMID: 34224328 PMCID: PMC8259716 DOI: 10.1080/19336950.2021.1938852] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
KCNMA1-linked channelopathy is an emerging neurological disorder characterized by heterogeneous and overlapping combinations of movement disorder, seizure, developmental delay, and intellectual disability. KCNMA1 encodes the BK K+ channel, which contributes to both excitatory and inhibitory neuronal and muscle activity. Understanding the basis of the disorder is an important area of active investigation; however, the rare prevalence has hampered the development of large patient cohorts necessary to establish genotype-phenotype correlations. In this review, we summarize 37 KCNMA1 alleles from 69 patients currently defining the channelopathy and assess key diagnostic and clinical hallmarks. At present, 3 variants are classified as gain-of-function with respect to BK channel activity, 14 loss-of-function, 15 variants of uncertain significance, and putative benign/VUS. Symptoms associated with these variants were curated from patient-provided information and prior publications to define the spectrum of clinical phenotypes. In this newly expanded cohort, seizures showed no differential distribution between patients harboring GOF and LOF variants, while movement disorders segregated by mutation type. Paroxysmal non-kinesigenic dyskinesia was predominantly observed among patients with GOF alleles of the BK channel, although not exclusively so, while additional movement disorders were observed in patients with LOF variants. Neurodevelopmental and structural brain abnormalities were prevalent in patients with LOF mutations. In contrast to mutations, disease-associated KCNMA1 single nucleotide polymorphisms were not predominantly related to neurological phenotypes but covered a wider set of peripheral physiological functions. Together, this review provides additional evidence exploring the genetic and biochemical basis for KCNMA1-linked channelopathy and summarizes the clinical repository of patient symptoms across multiple types of KCNMA1 gene variants.
Collapse
Affiliation(s)
- Jacob P. Miller
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hans J. Moldenhauer
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sotirios Keros
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Cui J. BK Channel Gating Mechanisms: Progresses Toward a Better Understanding of Variants Linked Neurological Diseases. Front Physiol 2021; 12:762175. [PMID: 34744799 PMCID: PMC8567085 DOI: 10.3389/fphys.2021.762175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022] Open
Abstract
The large conductance Ca2+-activated potassium (BK) channel is activated by both membrane potential depolarization and intracellular Ca2+ with distinct mechanisms. Neural physiology is sensitive to the function of BK channels, which is shown by the discoveries of neurological disorders that are associated with BK channel mutations. This article reviews the molecular mechanisms of BK channel activation in response to voltage and Ca2+ binding, including the recent progress since the publication of the atomistic structure of the whole BK channel protein, and the neurological disorders associated with BK channel mutations. These results demonstrate the unique mechanisms of BK channel activation and that these mechanisms are important factors in linking BK channel mutations to neurological disorders.
Collapse
Affiliation(s)
- Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, United States
| |
Collapse
|