1
|
Büchele F, Stieglitz L, Baumann CR. Should asleep deep brain stimulation in Parkinson's disease be preferred over the awake approach? - Cons. Swiss Med Wkly 2024; 154:3855. [PMID: 39137444 DOI: 10.57187/s.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
No abstract available.
Collapse
Affiliation(s)
- Fabian Büchele
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Li W, Li N, Wang X, Chen L, Su M, Zheng Z, Li J, Wang X, Jing D, Wang X, Ge S. Microelectrode recording characterization of the nucleus accumbens and the anterior limb of internal capsule in patients with addiction. Neurosci Lett 2024; 836:137884. [PMID: 38914277 DOI: 10.1016/j.neulet.2024.137884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
The nucleus accumbens (NAc) and the anterior limb of internal capsule (ALIC) are effective targets for treating addiction using deep brain stimulation (DBS). However, there have been no reports on the electrophysiological characteristics of addiction nuclei at the single-cell level in humans. This study aimed to investigate the electrical activity characteristics of neurons in the NAc and ALIC using microelectrode recording (MER) during DBS surgery in patients with addiction, and six patients with addiction were included (five with heroin addiction and one with alcohol addiction). The microelectrode recording trajectories were reconstructed and recording sites at different depths were determined by merging the pre- and post-operative images in the FrameLink system. The results showed that among the 256 neurons, 204 (80 %) were burst neurons. NAc neurons accounted for the majority (57 %), and the mean firing rate (MFR) was the highest (1.94 Hz). ALIC neurons accounted for the least (14 %), and MFR was the lowest (0.44 Hz). MFR increased after entering the NAc and decreased after entering the ALIC. In the patients with addiction treated using DBS, the single-cell level electrophysiological characteristics of the different nuclei were found to be distinct along the surgical trajectory.
Collapse
Affiliation(s)
- Wan Li
- Xi'an Technological University, Xi'an, Shannxi 710021, China; Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shannxi 710038, China
| | - Nan Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shannxi 710038, China
| | - Xin Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shannxi 710038, China
| | - Lei Chen
- SceneRay Corporation Limited, Suzhou, Jiangsu 215163, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shannxi 710038, China
| | - Zhaohui Zheng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shannxi 710038, China
| | - Jiaming Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shannxi 710038, China
| | - Xin Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shannxi 710038, China
| | - Da Jing
- The Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Xuelian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shannxi 710038, China.
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shannxi 710038, China.
| |
Collapse
|
3
|
Ryan MV, Satzer D, Ojemann SG, Kramer DR, Thompson JA. Neurophysiologic Characteristics of the Anterior Nucleus of the Thalamus during Deep Brain Stimulation Surgery for Epilepsy. Stereotact Funct Neurosurg 2024; 102:293-307. [PMID: 39008968 DOI: 10.1159/000539398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/13/2024] [Indexed: 07/17/2024]
Abstract
INTRODUCTION Anterior nucleus of the thalamus (ANT) deep brain stimulation (DBS) is an increasingly promising treatment option for refractory epilepsy. Optimal therapeutic benefit has been associated with stimulation at the junction of ANT and the mammillothalamic tract (mtt), but electrophysiologic markers of this target are lacking. The present study examined microelectrode recordings (MER) during DBS to identify unique electrophysiologic characteristics of ANT and the ANT-mtt junction. METHODS Ten patients with medically refractory epilepsy underwent MER during ANT-DBS implantation under general anesthesia. MER locations were determined based on coregistration of preoperative MRI, postoperative CT, and a stereotactic atlas of the thalamus (Morel atlas). Several neurophysiological parameters including single unit spiking rate, bursting properties, theta and alpha power and cerebrospinal fluid (CSF)-normalized root mean square (NRMS) of multiunit activity were characterized at recording depths and compared to anatomic boundaries. RESULTS From sixteen hemispheres, 485 recordings locations were collected from a mean of 30.3 (15.64 ± 5.0 mm) recording spans. Three-hundred and ninety-four of these recording locations were utilized further for analysis of spiking and bursting rates, after excluding recordings that were more than 8 mm above the putative ventral ANT border. The ANT region exhibited discernible features including: (1) mean spiking rate (7.52 Hz ± 6.9 Hz; one-way analysis of variance test, p = 0.014 when compared to mediodorsal nucleus of the thalamus [MD], mtt, and CSF), (2) the presence of bursting activity with 40% of ANT locations (N = 59) exhibited bursting versus 24% the mtt (χ2; p < 0.001), and 32% in the MD (p = 0.38), (3) CSF-NRMS, a proxy for neuronal density, exhibited well demarcated changes near the entry and exit of ANT (linear regression, R = -0.33, p < 0.001). Finally, in the ANT, both theta (4-8 Hz) and alpha band power (9-12 Hz) were negatively correlated with distance to the ventral ANT border (linear regression, p < 0.001 for both). The proportion of recordings with spiking and bursting activity was consistently highest 0-2 mm above the ventral ANT border with the mtt. CONCLUSION We observed several electrophysiological markers demarcating the ANT superior and inferior borders including multiple single cell and local field potential features. A local maximum in neural activity just above the ANT-mtt junction was consistent with the previously described optimal target for seizure reduction. These features may be useful for successful targeting of ANT-DBS for epilepsy.
Collapse
Affiliation(s)
- Megan V Ryan
- Rocky Vista University College of Osteopathic Medicine, Greenwood Village, Colorado, USA
| | - David Satzer
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel R Kramer
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Peeters J, Van Bogaert T, Boogers A, Gransier R, Wouters J, De Vloo P, Vandenberghe W, Barbe MT, Visser-Vandewalle V, Nuttin B, Dembek TA, Mc Laughlin M. Electrophysiological sweet spot mapping in deep brain stimulation for Parkinson's disease patients. Brain Stimul 2024; 17:794-801. [PMID: 38821395 DOI: 10.1016/j.brs.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/16/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Subthalamic deep brain stimulation (STN-DBS) is a well-established therapy to treat Parkinson's disease (PD). However, the STN-DBS sub-target remains debated. Recently, a white matter tract termed the hyperdirect pathway (HDP), directly connecting the motor cortex to STN, has gained interest as HDP stimulation is hypothesized to drive DBS therapeutic effects. Previously, we have investigated EEG-based evoked potentials (EPs) to better understand the neuroanatomical origins of the DBS clinical effect. We found a 3-ms peak (P3) relating to clinical benefit, and a 10-ms peak (P10) suggesting nigral side effects. Here, we aimed to investigate the neuroanatomical origins of DBS EPs using probabilistic mapping. METHODS EPs were recorded using EEG whilst low-frequency stimulation was delivered at all DBS-contacts individually. Next, EPs were mapped onto the patients' individual space and then transformed to MNI standard space. Using voxel-wise and fiber-wise probabilistic mapping, we determined hotspots/hottracts and coldspots/coldtracts for P3 and P10. Topography analysis was also performed to determine the spatial distribution of the DBS EPs. RESULTS In all 13 patients (18 hemispheres), voxel- and fiber-wise probabilistic mapping resulted in a P3-hotspot/hottract centered on the posterodorsomedial STN border indicative of HDP stimulation, while the P10-hotspot/hottract covered large parts of the substantia nigra. CONCLUSION This study investigated EP-based probabilistic mapping in PD patients during STN-DBS, revealing a P3-hotspot/hottract in line with HDP stimulation and P10-hotspot/hottract related to nigral stimulation. Results from this study provide key evidence for an electrophysiological measure of HDP and nigral stimulation.
Collapse
Affiliation(s)
- Jana Peeters
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Belgium
| | - Tine Van Bogaert
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Belgium
| | - Alexandra Boogers
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Belgium; Department of Neurology, UZ Leuven, Belgium
| | - Robin Gransier
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Belgium
| | - Jan Wouters
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Belgium
| | - Philippe De Vloo
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Belgium; Department of Neurosurgery, UZ Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, UZ Leuven, Belgium; Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, Belgium
| | - Michael T Barbe
- University of Cologne, Faculty of Medicine, Department of Neurology, Cologne, Germany
| | - Veerle Visser-Vandewalle
- University of Cologne, Faculty of Medicine, Department of Stereotactic & Functional Neurosurgery, Cologne, Germany
| | - Bart Nuttin
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Belgium; Department of Neurosurgery, UZ Leuven, Belgium
| | - Till A Dembek
- University of Cologne, Faculty of Medicine, Department of Neurology, Cologne, Germany
| | - Myles Mc Laughlin
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Belgium.
| |
Collapse
|
5
|
Alzate Sanchez AM, Janssen MLF, Temel Y, Roberts MJ. Aging suppresses subthalamic neuronal activity in patients with Parkinson's disease. Eur J Neurosci 2024. [PMID: 38880896 DOI: 10.1111/ejn.16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Age is a primary risk factor for Parkinson's disease (PD); however, the effects of aging on the Parkinsonian brain remain poorly understood, particularly for deep brain structures. We investigated intraoperative micro-electrode recordings from the subthalamic nucleus (STN) of PD patients aged between 42 and 76 years. Age was associated with decreased oscillatory beta power and non-oscillatory high-frequency power, independent of PD-related variables. Single unit firing and burst rates were also reduced, whereas the coefficient of variation and the structure of burst activity were unchanged. Phase synchronization (debiased weighed phase lag index [dWPLI]) between sites was pronounced in the beta band between electrodes in the superficial STN but was unaffected by age. Our results show that aging is associated with reduced neuronal activity without changes to its temporal structure. We speculate that the loss of activity in the STN may mediate the relationship between PD and age.
Collapse
Affiliation(s)
- Ana M Alzate Sanchez
- Mental Health and Neuroscience Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marcus L F Janssen
- Mental Health and Neuroscience Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Mental Health and Neuroscience Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark J Roberts
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Liu X, Guang J, Glowinsky S, Abadi H, Arkadir D, Linetsky E, Abu Snineh M, León JF, Israel Z, Wang W, Bergman H. Subthalamic nucleus input-output dynamics are correlated with Parkinson's burden and treatment efficacy. NPJ Parkinsons Dis 2024; 10:117. [PMID: 38879564 PMCID: PMC11180194 DOI: 10.1038/s41531-024-00737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/31/2024] [Indexed: 06/19/2024] Open
Abstract
The subthalamic nucleus (STN) is pivotal in basal ganglia function in health and disease. Micro-electrode recordings of >25,000 recording sites from 146 Parkinson's patients undergoing deep brain stimulation (DBS) allowed differentiation between subthalamic input, represented by local field potential (LFP), and output, reflected in spike discharge rate (SPK). As with many natural systems, STN neuronal activity exhibits power-law dynamics characterized by the exponent α. We, therefore, dissected STN data into aperiodic and periodic components using the Fitting Oscillations & One Over F (FOOOF) tool. STN LFP showed significantly higher aperiodic exponents than SPK. Additionally, SPK beta oscillations demonstrated a downward frequency shift compared to LFP. Finally, the STN aperiodic and spiking parameters explained a significant fraction of the variance of the burden and treatment efficacy of Parkinson's disease. The unique STN input-output dynamics may clarify its role in Parkinson's physiology and can be utilized in closed-loop DBS therapy.
Collapse
Affiliation(s)
- Xiaowei Liu
- Department of Neurosurgery, West China Hospital, West China School of Medicine, Sichuan University, Guoxue Lane No. 37, Chengdu, 610041, Sichuan, China
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University, Jerusalem, Israel
| | - Jing Guang
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University, Jerusalem, Israel
| | - Stefanie Glowinsky
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University, Jerusalem, Israel
| | - Hodaya Abadi
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University, Jerusalem, Israel
| | - David Arkadir
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
| | - Eduard Linetsky
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
| | - Muneer Abu Snineh
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
| | - Juan F León
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, West China School of Medicine, Sichuan University, Guoxue Lane No. 37, Chengdu, 610041, Sichuan, China
| | - Hagai Bergman
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University, Jerusalem, Israel.
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel.
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
7
|
Borgheai SB, Opri E, Isbaine F, Cole E, Deligani RJ, Laxpati N, Risk BB, Willie JT, Gross RE, Yong NA, McIntyre CC, Miocinovic S. Neural pathway activation in the subthalamic region depends on stimulation polarity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306044. [PMID: 38746250 PMCID: PMC11092741 DOI: 10.1101/2024.05.01.24306044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD); however, there is limited understanding of which subthalamic pathways are recruited in response to stimulation. Here, by focusing on the polarity of the stimulus waveform (cathodic vs. anodic), our goal was to elucidate biophysical mechanisms that underlie electrical stimulation in the human brain. In clinical studies, cathodic stimulation more easily triggers behavioral responses, but anodic DBS broadens the therapeutic window. This suggests that neural pathways involved respond preferentially depending on stimulus polarity. To experimentally compare the activation of therapeutically relevant pathways during cathodic and anodic subthalamic nucleus (STN) DBS, pathway activation was quantified by measuring evoked potentials resulting from antidromic or orthodromic activation in 15 PD patients undergoing DBS implantation. Cortical evoked potentials (cEP) were recorded using subdural electrocorticography, DBS local evoked potentials (DLEP) were recorded from non-stimulating contacts and EMG activity was recorded from arm and face muscles. We measured: 1) the amplitude of short-latency cEP, previously demonstrated to reflect activation of the cortico-STN hyperdirect pathway, 2) DLEP amplitude thought to reflect activation of STN-globus pallidus (GP) pathway, and 3) amplitudes of very short-latency cEP and motor evoked potentials (mEP) for activation of cortico-spinal/bulbar tract (CSBT). We constructed recruitment and strength-duration curves for each EP/pathway to compare the excitability for different stimulation polarities. We compared experimental data with the most advanced DBS computational models. Our results provide experimental evidence that subcortical cathodic and anodic stimulation activate the same pathways in the STN region and that cathodic stimulation is in general more efficient. However, relative efficiency varies for different pathways so that anodic stimulation is the least efficient in activating CSBT, more efficient in activating the HDP and as efficient as cathodic in activating STN-GP pathway. Our experiments confirm biophysical model predictions regarding neural activations in the central nervous system and provide evidence that stimulus polarity has differential effects on passing axons, terminal synapses, and local neurons. Comparison of experimental results with clinical DBS studies provides further evidence that the hyperdirect pathway may be involved in the therapeutic mechanisms of DBS.
Collapse
|
8
|
Chao-Chia Lu D, Boulay C, Chan ADC, Sachs AJ. A Systematic Review of Neurophysiology-Based Localization Techniques Used in Deep Brain Stimulation Surgery of the Subthalamic Nucleus. Neuromodulation 2024; 27:409-421. [PMID: 37462595 DOI: 10.1016/j.neurom.2023.02.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 04/05/2024]
Abstract
OBJECTIVE This systematic review is conducted to identify, compare, and analyze neurophysiological feature selection, extraction, and classification to provide a comprehensive reference on neurophysiology-based subthalamic nucleus (STN) localization. MATERIALS AND METHODS The review was carried out using the methods and guidelines of the Kitchenham systematic review and provides an in-depth analysis on methods proposed on STN localization discussed in the literature between 2000 and 2021. Three research questions were formulated, and 115 publications were identified to answer the questions. RESULTS The three research questions formulated are answered using the literature found on the respective topics. This review discussed the technologies used in past research, and the performance of the state-of-the-art techniques is also reviewed. CONCLUSION This systematic review provides a comprehensive reference on neurophysiology-based STN localization by reviewing the research questions other new researchers may also have.
Collapse
Affiliation(s)
| | | | | | - Adam J Sachs
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
9
|
Silva NA, Barrios-Martinez J, Yeh FC, Hodaie M, Roque D, Boerwinkle VL, Krishna V. Diffusion and functional MRI in surgical neuromodulation. Neurotherapeutics 2024; 21:e00364. [PMID: 38669936 PMCID: PMC11064589 DOI: 10.1016/j.neurot.2024.e00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Surgical neuromodulation has witnessed significant progress in recent decades. Notably, deep brain stimulation (DBS), delivered precisely within therapeutic targets, has revolutionized the treatment of medication-refractory movement disorders and is now expanding for refractory psychiatric disorders, refractory epilepsy, and post-stroke motor recovery. In parallel, the advent of incisionless treatment with focused ultrasound ablation (FUSA) can offer patients life-changing symptomatic relief. Recent research has underscored the potential to further optimize DBS and FUSA outcomes by conceptualizing the therapeutic targets as critical nodes embedded within specific brain networks instead of strictly anatomical structures. This paradigm shift was facilitated by integrating two imaging modalities used regularly in brain connectomics research: diffusion MRI (dMRI) and functional MRI (fMRI). These advanced imaging techniques have helped optimize the targeting and programming techniques of surgical neuromodulation, all while holding immense promise for investigations into treating other neurological and psychiatric conditions. This review aims to provide a fundamental background of advanced imaging for clinicians and scientists, exploring the synergy between current and future approaches to neuromodulation as they relate to dMRI and fMRI capabilities. Focused research in this area is required to optimize existing, functional neurosurgical treatments while serving to build an investigative infrastructure to unlock novel targets to alleviate the burden of other neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Nicole A Silva
- Department of Neurological Surgery, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | | | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mojgan Hodaie
- Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Daniel Roque
- Department of Neurology, University of North Carolina in Chapel Hill, NC, USA
| | - Varina L Boerwinkle
- Department of Neurology, University of North Carolina in Chapel Hill, NC, USA
| | - Vibhor Krishna
- Department of Neurological Surgery, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Hamani C, Davidson B, Lipsman N, Abrahao A, Nestor SM, Rabin JS, Giacobbe P, Pagano RL, Campos ACP. Insertional effect following electrode implantation: an underreported but important phenomenon. Brain Commun 2024; 6:fcae093. [PMID: 38707711 PMCID: PMC11069120 DOI: 10.1093/braincomms/fcae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Deep brain stimulation has revolutionized the treatment of movement disorders and is gaining momentum in the treatment of several other neuropsychiatric disorders. In almost all applications of this therapy, the insertion of electrodes into the target has been shown to induce some degree of clinical improvement prior to stimulation onset. Disregarding this phenomenon, commonly referred to as 'insertional effect', can lead to biased results in clinical trials, as patients receiving sham stimulation may still experience some degree of symptom amelioration. Similar to the clinical scenario, an improvement in behavioural performance following electrode implantation has also been reported in preclinical models. From a neurohistopathologic perspective, the insertion of electrodes into the brain causes an initial trauma and inflammatory response, the activation of astrocytes, a focal release of gliotransmitters, the hyperexcitability of neurons in the vicinity of the implants, as well as neuroplastic and circuitry changes at a distance from the target. Taken together, it would appear that electrode insertion is not an inert process, but rather triggers a cascade of biological processes, and, as such, should be considered alongside the active delivery of stimulation as an active part of the deep brain stimulation therapy.
Collapse
Affiliation(s)
- Clement Hamani
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Benjamin Davidson
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Agessandro Abrahao
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Sean M Nestor
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Jennifer S Rabin
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto M5G 1V7, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP CEP 01308-060, Brazil
| | - Ana Carolina P Campos
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP CEP 01308-060, Brazil
| |
Collapse
|
11
|
Budnick HC, Schneider D, Zauber SE, Witt TC, Gupta K. Susceptibility-Weighted MRI Approximates Intraoperative Microelectrode Recording During Deep Brain Stimulation of the Subthalamic Nucleus for Parkinson's Disease. World Neurosurg 2024; 181:e346-e355. [PMID: 37839566 DOI: 10.1016/j.wneu.2023.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Deep brain stimulation of the subthalamic nucleus (STN-DBS) for Parkinson's disease can be performed with intraoperative neurophysiological and radiographic guidance. Conventional T2-weighted magnetic resonance imaging sequences, however, often fail to provide definitive borders of the STN. Novel magnetic resonance imaging sequences, such as susceptibility-weighted imaging (SWI), might better localize the STN borders and facilitate radiographic targeting. We compared the radiographic location of the dorsal and ventral borders of the STN using SWI with intraoperative microelectrode recording (MER) during awake STN-DBS for Parkinson's disease. METHODS Thirteen consecutive patients who underwent placement of 24 STN-DBS leads for Parkinson's disease were analyzed retrospectively. Preoperative targeting was performed with SWI, and MER data were obtained from intraoperative electrophysiology records. The boundaries of the STN on SWI were identified by a blinded investigator. RESULTS The final electrode position differed significantly from the planned coordinates in depth but not in length or width, indicating that MER guided the final electrode depth. When we compared the boundaries of the STN by MER and SWI, SWI accurately predicted the entry into the STN but underestimated the length and ventral boundary of the STN by 1.2 mm. This extent of error approximates the span of a DBS contact and could affect the placement of directional contacts within the STN. CONCLUSIONS MER might continue to have a role in STN-DBS. This could potentially be mitigated by further refinement of imaging protocols to better image the ventral boundary of the STN.
Collapse
Affiliation(s)
- Hailey C Budnick
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Dylan Schneider
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - S Elizabeth Zauber
- Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Neurology, Indiana University, Indianapolis, Indiana, USA
| | - Thomas C Witt
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA; Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kunal Gupta
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA; Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana, USA; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
12
|
Hvingelby VS, Pavese N. Surgical Advances in Parkinson's Disease. Curr Neuropharmacol 2024; 22:1033-1046. [PMID: 36411569 PMCID: PMC10964101 DOI: 10.2174/1570159x21666221121094343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022] Open
Abstract
While symptomatic pharmacological therapy remains the main therapeutic strategy for Parkinson's disease (PD), over the last two decades, surgical approaches have become more commonly used to control levodopa-induced motor complications and dopamine-resistant and non-motor symptoms of PD. In this paper, we discuss old and new surgical treatments for PD and the many technological innovations in this field. We have initially reviewed the relevant surgical anatomy as well as the pathological signaling considered to be the underlying cause of specific symptoms of PD. Subsequently, early attempts at surgical symptom control will be briefly reviewed. As the most well-known surgical intervention for PD is deep brain stimulation, this subject is discussed at length. As deciding on whether a patient stands to benefit from DBS can be quite difficult, the different proposed paradigms for precisely this are covered. Following this, the evidence regarding different targets, especially the subthalamic nucleus and internal globus pallidus, is reviewed as well as the evidence for newer proposed targets for specific symptoms. Due to the rapidly expanding nature of knowledge and technological capabilities, some of these new and potential future capabilities are given consideration in terms of their current and future use. Following this, we have reviewed newer treatment modalities, especially magnetic resonance-guided focused ultrasound and other potential surgical therapies, such as spinal cord stimulation for gait symptoms and others. As mentioned, the field of surgical alleviation of symptoms of PD is undergoing a rapid expansion, and this review provides a general overview of the current status and future directions in the field.
Collapse
Affiliation(s)
- Victor S. Hvingelby
- Department of Clinical Medicine, Nuclear Medicine and PET Center, Aarhus University, Aarhus, Denmark
| | - Nicola Pavese
- Department of Clinical Medicine, Nuclear Medicine and PET Center, Aarhus University, Aarhus, Denmark
- Clinical Ageing Research Unit, Newcastle Upon Tyne, Newcastle University, United Kingdom
| |
Collapse
|
13
|
Liu B, Xu J, Yang H, Yu X, Mao Z. PAllidal versus SubThalamic deep brain Stimulation for Cervical Dystonia (PASTS-CD): study protocol for a multicentre randomised controlled trial. BMJ Open 2023; 13:e073425. [PMID: 37832982 PMCID: PMC10582967 DOI: 10.1136/bmjopen-2023-073425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) has been validated as a safe and effective treatment for refractory cervical dystonia (CD). Globus pallidus internus (GPi) and subthalamic nucleus (STN) are the two main stimulating targets. However, there has been no prospective study to clarify which target is the better DBS candidate for CD. The objective of this trial is to compare directly the efficacy and safety of GPi-DBS and STN-DBS, thereby instructing the selection of DBS target in clinical practice. METHODS AND ANALYSIS This multicentre, prospective, randomised, controlled study plans to enrol 98 refractory CD patients. Eligible CD patients will be randomly allocated to GPi-DBS group or STN-DBS group, with the DBS electrodes implanted into the posteroventral portion of GPi or the dorsolateral portion of STN, respectively. The primary outcome will be the improvement of symptomatic severity, measured by the changes in the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) severity subscale and the Tsui scale at 3 months, 6 months and 12 months after surgery. The secondary outcomes include the improvement of the TWSTRS-disability subscale, TWSTRS-pain subscale, quality of life, mental and cognitive condition, as well as the differences in stimulation parameters and adverse effects. In addition, this study intends to identify certain predictors of DBS efficacy for CD. ETHICS AND DISSEMINATION The trial has been approved by the Medical Ethics Committee of Chinese PLA General Hospital (S2022-613-01). The results of this study will be published in international peer-reviewed journals and shared in professional medical conferences. TRIAL REGISTRATION NUMBER NCT05715138.
Collapse
Affiliation(s)
- Bin Liu
- Medical School, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junpeng Xu
- Medical School, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haonan Yang
- Medical School, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Peeters J, Van Bogaert T, Boogers A, Dembek TA, Gransier R, Wouters J, Vandenberghe W, De Vloo P, Nuttin B, Mc Laughlin M. EEG-based biomarkers for optimizing deep brain stimulation contact configuration in Parkinson's disease. Front Neurosci 2023; 17:1275728. [PMID: 37869517 PMCID: PMC10585033 DOI: 10.3389/fnins.2023.1275728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Objective Subthalamic deep brain stimulation (STN-DBS) is a neurosurgical therapy to treat Parkinson's disease (PD). Optimal therapeutic outcomes are not achieved in all patients due to increased DBS technological complexity; programming time constraints; and delayed clinical response of some symptoms. To streamline the programming process, biomarkers could be used to accurately predict the most effective stimulation configuration. Therefore, we investigated if DBS-evoked potentials (EPs) combined with imaging to perform prediction analyses could predict the best contact configuration. Methods In 10 patients, EPs were recorded in response to stimulation at 10 Hz for 50 s on each DBS-contact. In two patients, we recorded from both hemispheres, resulting in recordings from a total of 12 hemispheres. A monopolar review was performed by stimulating on each contact and measuring the therapeutic window. CT and MRI data were collected. Prediction models were created to assess how well the EPs and imaging could predict the best contact configuration. Results EPs at 3 ms and at 10 ms were recorded. The prediction models showed that EPs can be combined with imaging data to predict the best contact configuration and hence, significantly outperformed random contact selection during a monopolar review. Conclusion EPs can predict the best contact configuration. Ultimately, these prediction tools could be implemented into daily practice to ease the DBS programming of PD patients.
Collapse
Affiliation(s)
- Jana Peeters
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Tine Van Bogaert
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Alexandra Boogers
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Till Anselm Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Robin Gransier
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Philippe De Vloo
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart Nuttin
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Glowinsky S, Bergman H, Zarchi O, Fireman S, Reiner J, Tamir I. Electrophysiology-aided DBS targeting the ventral intermediate nucleus in an essential tremor patient with MRI-incompatible lead: A case report. Physiol Rep 2023; 11:e15730. [PMID: 37786936 PMCID: PMC10546088 DOI: 10.14814/phy2.15730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 10/04/2023] Open
Abstract
Essential tremor (ET) is a common disease in the elderly population. Severe, medication-refractory ET may require surgical intervention via ablation or deep brain stimulation (DBS). Thalamic Vim (Ventral intermediate nucleus), targeted indirectly using atlas-based coordinates, is the classical target in these procedures. We present a case of an ET patient with a non-MR-compatible cardiac orphaned leads who was a candidate for DBS surgery. Due to the lead constraints of MR use, we used a head computed tomography (CT) with contrast media as the reference exam to define the AC, PC, and midline, and to register and indirectly target the Vim. For target validation, we used intraoperative electrophysiological recordings and intraoperative CT. We implanted bilateral directional leads at the target location. We used the-essential-tremor-rating-assessment-scale (TETRAS) pre and postoperatively to clinically evaluate tremor. Intraoperative micro-electrode recordings (MERs) showed individual tremor cells and a robust increase in normalized root mean square (NRMS) indicating entry to the Vim. Postoperative visualization using lead-DBS along with dramatic clinical improvements show that we were able to accurately target the Vim. Our results show that CT-only registration and planning for thalamic Vim DBS is feasible, and that MERs and intraoperative CT are useful adjuncts for Vim target validation.
Collapse
Affiliation(s)
- Stefanie Glowinsky
- The Edmond and Lily Safra Center for Brain SciencesHebrew UniversityJerusalemIsrael
| | - Hagai Bergman
- The Edmond and Lily Safra Center for Brain SciencesHebrew UniversityJerusalemIsrael
- Department of Medical NeurobiologyHebrew UniversityJerusalemIsrael
- Department of NeurosurgeryHadassah Medical Center, Hebrew UniversityJerusalemIsrael
| | - Omer Zarchi
- Intraoperative Neurophysiology UnitRabin Medical Center, Beilinson HospitalPetach TikvahIsrael
| | - Shlomo Fireman
- Department of AnesthesiologyRabin Medical Center, Beilinson HospitalPetach TikvahIsrael
| | - Johnathan Reiner
- Department of NeurologyRabin Medical Center, Beilinson HospitalPetach TikvahIsrael
| | - Idit Tamir
- Department of NeurosurgeryRabin Medical Center, Beilinson HospitalPetach TikvahIsrael
| |
Collapse
|
16
|
Boerger TF, Pahapill P, Butts AM, Arocho-Quinones E, Raghavan M, Krucoff MO. Large-scale brain networks and intra-axial tumor surgery: a narrative review of functional mapping techniques, critical needs, and scientific opportunities. Front Hum Neurosci 2023; 17:1170419. [PMID: 37520929 PMCID: PMC10372448 DOI: 10.3389/fnhum.2023.1170419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 08/01/2023] Open
Abstract
In recent years, a paradigm shift in neuroscience has been occurring from "localizationism," or the idea that the brain is organized into separately functioning modules, toward "connectomics," or the idea that interconnected nodes form networks as the underlying substrates of behavior and thought. Accordingly, our understanding of mechanisms of neurological function, dysfunction, and recovery has evolved to include connections, disconnections, and reconnections. Brain tumors provide a unique opportunity to probe large-scale neural networks with focal and sometimes reversible lesions, allowing neuroscientists the unique opportunity to directly test newly formed hypotheses about underlying brain structural-functional relationships and network properties. Moreover, if a more complete model of neurological dysfunction is to be defined as a "disconnectome," potential avenues for recovery might be mapped through a "reconnectome." Such insight may open the door to novel therapeutic approaches where previous attempts have failed. In this review, we briefly delve into the most clinically relevant neural networks and brain mapping techniques, and we examine how they are being applied to modern neurosurgical brain tumor practices. We then explore how brain tumors might teach us more about mechanisms of global brain dysfunction and recovery through pre- and postoperative longitudinal connectomic and behavioral analyses.
Collapse
Affiliation(s)
- Timothy F. Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Peter Pahapill
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alissa M. Butts
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
- Mayo Clinic, Rochester, MN, United States
| | - Elsa Arocho-Quinones
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Manoj Raghavan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
17
|
Lauro PM, Lee S, Amaya DE, Liu DD, Akbar U, Asaad WF. Concurrent decoding of distinct neurophysiological fingerprints of tremor and bradykinesia in Parkinson's disease. eLife 2023; 12:e84135. [PMID: 37249217 PMCID: PMC10264071 DOI: 10.7554/elife.84135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
Parkinson's disease (PD) is characterized by distinct motor phenomena that are expressed asynchronously. Understanding the neurophysiological correlates of these motor states could facilitate monitoring of disease progression and allow improved assessments of therapeutic efficacy, as well as enable optimal closed-loop neuromodulation. We examined neural activity in the basal ganglia and cortex of 31 subjects with PD during a quantitative motor task to decode tremor and bradykinesia - two cardinal motor signs of PD - and relatively asymptomatic periods of behavior. Support vector regression analysis of microelectrode and electrocorticography recordings revealed that tremor and bradykinesia had nearly opposite neural signatures, while effective motor control displayed unique, differentiating features. The neurophysiological signatures of these motor states depended on the signal type and location. Cortical decoding generally outperformed subcortical decoding. Within the subthalamic nucleus (STN), tremor and bradykinesia were better decoded from distinct subregions. These results demonstrate how to leverage neurophysiology to more precisely treat PD.
Collapse
Affiliation(s)
- Peter M Lauro
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
| | - Shane Lee
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurosurgery, Rhode Island HospitalProvidenceUnited States
| | - Daniel E Amaya
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - David D Liu
- Department of Neurosurgery, Brigham and Women’s HospitalBostonUnited States
| | - Umer Akbar
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurology, Rhode Island HospitalProvidenceUnited States
| | - Wael F Asaad
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurosurgery, Rhode Island HospitalProvidenceUnited States
| |
Collapse
|
18
|
Wang D, Ashkan K. "Grass Is Always Greener on the Other Side" or Is It?! Comparison of Trend of Awake Craniotomy in Neuro-Oncology and Asleep Deep Brain Stimulation. Stereotact Funct Neurosurg 2023; 101:217-220. [PMID: 37231910 PMCID: PMC11251657 DOI: 10.1159/000530527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Affiliation(s)
- Difei Wang
- Department of Neurosurgery, King's College Hospital, London, UK
| | | |
Collapse
|
19
|
Neumann WJ, Horn A, Kühn AA. Insights and opportunities for deep brain stimulation as a brain circuit intervention. Trends Neurosci 2023; 46:472-487. [PMID: 37105806 DOI: 10.1016/j.tins.2023.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023]
Abstract
Deep brain stimulation (DBS) is an effective treatment and has provided unique insights into the dynamic circuit architecture of brain disorders. This Review illustrates our current understanding of the pathophysiology of movement disorders and their underlying brain circuits that are modulated with DBS. It proposes principles of pathological network synchronization patterns like beta activity (13-35 Hz) in Parkinson's disease. We describe alterations from microscale including local synaptic activity via modulation of mesoscale hypersynchronization to changes in whole-brain macroscale connectivity. Finally, an outlook on advances for clinical innovations in next-generation neurotechnology is provided: from preoperative connectomic targeting to feedback controlled closed-loop adaptive DBS as individualized network-specific brain circuit interventions.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery at MGH Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany; NeuroCure Clinical Research Centre, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; DZNE, German Center for Degenerative Diseases, Berlin, Germany.
| |
Collapse
|
20
|
UMEMURA ATSUSHI. Deep Brain Stimulation for Parkinson's Disease. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:21-29. [PMID: 38854848 PMCID: PMC11153071 DOI: 10.14789/jmj.jmj22-0041-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 06/11/2024]
Abstract
There is a long history of surgical treatment for Parkinson's disease (PD). Currently, deep brain stimulation (DBS) has been performed as promising treatment option for medically refractory PD. DBS is an adjustable and reversible treatment using implanted medical devices to deliver electrical stimulation to precisely targeted areas of the brain. DBS modulates neurological function of the target region. The most common target for PD is the subthalamic nucleus (STN). DBS is particularly indicated for patients suffering from motor complications of dopaminergic medication such as fluctuations and dyskinesia. Although there is currently no curative treatment for PD, a combination of medical treatment and DBS provide long-term relief of motor symptoms. In this review, I introduce history, mechanism, indication, clinical outcome, complication, long term outcome, timing of surgery, surgical procedure, and current new technology concerning DBS for PD.
Collapse
Affiliation(s)
- ATSUSHI UMEMURA
- Corresponding author: Atsushi Umemura, Department of Research and Therapeutics for Movement Disorders, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, TEL: +81-3-3813-3111 FAX: +81-3-5689-8343 E-mail: , 357th Triannual Meeting of the Juntendo Medical Society “Current Surgical Diagnosis and Treatment” 〔Held on Sep. 15, 2022〕
| |
Collapse
|
21
|
Mathiopoulou V, Rijks N, Caan MWA, Liebrand LC, Ferreira F, de Bie RMA, van den Munckhof P, Schuurman PR, Bot M. Utilizing 7-Tesla Subthalamic Nucleus Connectivity in Deep Brain Stimulation for Parkinson Disease. Neuromodulation 2023; 26:333-339. [PMID: 35216874 DOI: 10.1016/j.neurom.2022.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a highly effective surgical treatment for patients with advanced Parkinson disease (PD). Combining 7.0-Tesla (7T) T2- and diffusion-weighted imaging (DWI) sequences allows for selective segmenting of the motor part of the STN and, thus, for possible optimization of DBS. MATERIALS AND METHODS 7T T2 and DWI sequences were obtained, and probabilistic segmentation of motor, associative, and limbic STN segments was performed. Left- and right-sided motor outcome (Movement Disorders Society Unified Parkinson's Disease Rating Scale) scores were used for evaluating the correspondence between the active electrode contacts in selectively segmented STN and the clinical DBS effect. The Bejjani line was reviewed for crossing of segments. RESULTS A total of 50 STNs were segmented in 25 patients and proved highly feasible. Although the highest density of motor connections was situated in the dorsolateral STN for all patients, the exact partitioning of segments differed considerably. For all the active electrode contacts situated within the predominantly motor-connected segment of the STN, the average hemi-body Unified Parkinson's Disease Rating Scale motor improvement was 80%; outside this segment, it was 52% (p < 0.01). The Bejjani line was situated in the motor segment for 32 STNs. CONCLUSION The implementation of 7T T2 and DWI segmentation of the STN in DBS for PD is feasible and offers insight into the location of the motor segment. Segmentation-guided electrode placement is likely to further improve motor response in DBS for PD. However, commercially available DBS software for postprocessing imaging would greatly facilitate widespread implementation.
Collapse
Affiliation(s)
| | - Niels Rijks
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands
| | - Matthan W A Caan
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Luka C Liebrand
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Francisca Ferreira
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, UK
| | - Rob M A de Bie
- Department of Neurology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | - Maarten Bot
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Johari K, Kelley RM, Tjaden K, Patterson CG, Rohl AH, Berger JI, Corcos DM, Greenlee JDW. Human subthalamic nucleus neurons differentially encode speech and limb movement. Front Hum Neurosci 2023; 17:962909. [PMID: 36875233 PMCID: PMC9983637 DOI: 10.3389/fnhum.2023.962909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN), which consistently improves limb motor functions, shows mixed effects on speech functions in Parkinson's disease (PD). One possible explanation for this discrepancy is that STN neurons may differentially encode speech and limb movement. However, this hypothesis has not yet been tested. We examined how STN is modulated by limb movement and speech by recording 69 single- and multi-unit neuronal clusters in 12 intraoperative PD patients. Our findings indicated: (1) diverse patterns of modulation in neuronal firing rates in STN for speech and limb movement; (2) a higher number of STN neurons were modulated by speech vs. limb movement; (3) an overall increase in neuronal firing rates for speech vs. limb movement; and (4) participants with longer disease duration had higher firing rates. These data provide new insights into the role of STN neurons in speech and limb movement.
Collapse
Affiliation(s)
- Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Department of Communication Science and Disorders, Louisiana State University, Baton Rouge, LA, United States.,Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States
| | - Ryan M Kelley
- Medical Scientist Training Program, The University of Iowa, Iowa City, IA, United States.,Program in Neuroscience, The University of Iowa, Iowa City, IA, United States
| | - Kris Tjaden
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Charity G Patterson
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrea H Rohl
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States
| | - Joel I Berger
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States
| | - Daniel M Corcos
- Department of Physical Therapy & Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Jeremy D W Greenlee
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States.,Program in Neuroscience, The University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, Iowa City, IA, United States
| |
Collapse
|
23
|
Qian K, Wang J, Rao J, Zhang P, Sun Y, Hu W, Hao J, Jiang X, Fu P. Intraoperative microelectrode recording under general anesthesia guided subthalamic nucleus deep brain stimulation for Parkinson's disease: One institution's experience. Front Neurol 2023; 14:1117681. [PMID: 36908617 PMCID: PMC9997081 DOI: 10.3389/fneur.2023.1117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Microelectrode recording (MER) guided subthalamic nucleus deep brain stimulation (STN-DBS) under local anesthesia (LA) is widely applied in the management of advanced Parkinson's disease (PD). Whereas, awake DBS under LA is painful and burdensome for PD patients. We analyzed the influence of general anesthesia (GA) on intraoperative MER, to assess the feasibility and effectiveness of GA in MER guided STN-DBS. Methods Retrospective analysis was performed on the PD patients, who underwent bilateral MER guided STN-DBS in Wuhan Union Hospital from July 2019 to December 2021. The patients were assigned to LA or GA group according to the anesthetic methods implemented. Multidimensional parameters, including MER signals, electrode implantation accuracy, clinical outcome and adverse events, were analyzed. Results A total of 40 PD patients were enrolled in this study, including 18 in LA group and 22 in GA group. There were no statistically significant differences in patient demographics and baseline characteristics between two groups. Although, the parameters of MER signal, including frequency, inter-spike interval (ISI) and amplitude, were obviously interfered under GA, the waveforms of MER signals were recognizable and shared similar characteristics with LA group. Both LA and GA could achieve effective electrode implantation accuracy and clinical outcome. They also shared similar adverse events postoperatively. Conclusion GA is viable and comparable to LA in MER guided STN-DBS for PD, regarding electrode implantation accuracy, clinical outcome and adverse events. Notably, GA is more friendly and acceptable to the patients who are incapable of enduring intraoperative MER under LA.
Collapse
Affiliation(s)
- Kang Qian
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajing Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Rao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqiang Sun
- Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Guangdong Institute of Artificial Intelligence and Advanced Computing, Guangzhou, China
| | - Wenqing Hu
- Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Guangdong Institute of Artificial Intelligence and Advanced Computing, Guangzhou, China
| | - Jie Hao
- Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Guangdong Institute of Artificial Intelligence and Advanced Computing, Guangzhou, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Rusheen AE, Goyal A, Owen RL, Berning EM, Bothun DT, Giblon RE, Blaha CD, Welker KM, Huston J, Bennet KE, Oh Y, Fagan AJ, Lee KH. The development of ultra-high field MRI guidance technology for neuronavigation. J Neurosurg 2022; 137:1265-1277. [PMID: 35334465 PMCID: PMC10193481 DOI: 10.3171/2021.11.jns211078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Magnetic resonance imaging at 7T offers improved image spatial and contrast resolution for visualization of small brain nuclei targeted in neuromodulation. However, greater image geometric distortion and a lack of compatible instrumentation preclude implementation. In this report, the authors detail the development of a stereotactic image localizer and accompanying imaging sequences designed to mitigate geometric distortion, enabling accurate image registration and surgical planning of basal ganglia nuclei. METHODS Magnetization-prepared rapid acquisition with gradient echo (MPRAGE), fast gray matter acquisition T1 inversion recovery (FGATIR), T2-weighted, and T2*-weighted sequences were optimized for 7T in 9 human subjects to visualize basal ganglia nuclei, minimize image distortion, and maximize target contrast-to-noise and signal-to-noise ratios. Extracranial spatial distortions were mapped to develop a skull-contoured image localizer embedded with spherical silicone fiducials for improved MR image registration and target guidance. Surgical plan accuracy testing was initially performed in a custom-developed MRI phantom (n = 5 phantom studies) and finally in a human trial. RESULTS MPRAGE and T2*-weighted sequences had the best measures among global measures of image quality (3.8/4, p < 0.0001; and 3.7/4, p = 0.0002, respectively). Among basal ganglia nuclei, FGATIR outperformed MPRAGE for globus pallidus externus (GPe) visualization (2.67/4 vs 1.78/4, p = 0.008), and FGATIR, T2-weighted imaging, and T2*-weighted imaging outperformed MPRAGE for substantia nigra visualization (1.44/4 vs 2.56/4, p = 0.04; vs 2.56/4, p = 0.04; vs 2.67/4, p = 0.003). Extracranial distortion was lower in the head's midregion compared with the base and apex ( 1.17-1.33 mm; MPRAGE and FGATIR, p < 0.0001; T2-weighted imaging, p > 0.05; and T2*-weighted imaging, p = 0.013). Fiducial placement on the localizer in low distortion areas improved image registration (fiducial registration error, 0.79-1.19 mm; p < 0.0001) and targeting accuracy (target registration error, 0.60-1.09 mm; p = 0.04). Custom surgical software and the refined image localizer enabled successful surgical planning in a human trial (fiducial registration error = 1.0 mm). CONCLUSIONS A skull-contoured image localizer that accounts for image distortion is necessary to enable high-accuracy 7T imaging-guided targeting for surgical neuromodulation. These results may enable improved clinical efficacy for the treatment of neurological disease.
Collapse
Affiliation(s)
- Aaron E. Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester
- Medical Scientist Training Program, Mayo Clinic, Rochester
| | - Abhinav Goyal
- Department of Neurologic Surgery, Mayo Clinic, Rochester
- Medical Scientist Training Program, Mayo Clinic, Rochester
| | - Robert L. Owen
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester
| | | | - Dane T. Bothun
- Department of Neurologic Surgery, Mayo Clinic, Rochester
| | - Rachel E. Giblon
- Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester
| | | | | | - John Huston
- Department of Radiology, Mayo Clinic, Rochester; and
| | | | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester
| | - Andrew J. Fagan
- Department of Radiology, Mayo Clinic, Rochester; and
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
25
|
Tasserie J, Lozano AM. Editorial. 7T MRI for neuronavigation: toward better visualization during functional surgery. J Neurosurg 2022; 137:1262-1263. [PMID: 35334461 DOI: 10.3171/2021.12.jns212655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Tekriwal A, Baker S, Christensen E, Petersen-Jones H, Tien RN, Ojemann SG, Kern DS, Kramer DR, Felsen G, Thompson JA. Quantifying neuro-motor correlations during awake deep brain stimulation surgery using markerless tracking. Sci Rep 2022; 12:18120. [PMID: 36302865 PMCID: PMC9613670 DOI: 10.1038/s41598-022-21860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/04/2022] [Indexed: 12/30/2022] Open
Abstract
The expanding application of deep brain stimulation (DBS) therapy both drives and is informed by our growing understanding of disease pathophysiology and innovations in neurosurgical care. Neurophysiological targeting, a mainstay for identifying optimal, motor responsive targets, has remained largely unchanged for decades. Utilizing deep learning-based computer vision and related computational methods, we developed an effective and simple intraoperative approach to objectively correlate neural signals with movements, automating and standardizing the otherwise manual and subjective process of identifying ideal DBS electrode placements. Kinematics are extracted from video recordings of intraoperative motor testing using a trained deep neural network and compared to multi-unit activity recorded from the subthalamic nucleus. Neuro-motor correlations were quantified using dynamic time warping with the strength of a given comparison measured by comparing against a null distribution composed of related neuro-motor correlations. This objective measure was then compared to clinical determinations as recorded in surgical case notes. In seven DBS cases for treatment of Parkinson's disease, 100 distinct motor testing epochs were extracted for which clear clinical determinations were made. Neuro-motor correlations derived by our automated system compared favorably with expert clinical decision making in post-hoc comparisons, although follow-up studies are necessary to determine if improved correlation detection leads to improved outcomes. By improving the classification of neuro-motor relationships, the automated system we have developed will enable clinicians to maximize the therapeutic impact of DBS while also providing avenues for improving continued care of treated patients.
Collapse
Affiliation(s)
- Anand Tekriwal
- Department of Neurosurgery, University of Colorado School of Medicine, 12800 E. 19th Ave., Mail Stop 8307, Aurora, CO, 80045, USA.
- Department of Physiology and Biophysics, University of Colorado School of Medicine, 12800 E. 19th Ave., Mail Stop 8307, Aurora, CO, 80045, USA.
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| | - Sunderland Baker
- Department of Neurosurgery, University of Colorado School of Medicine, 12800 E. 19th Ave., Mail Stop 8307, Aurora, CO, 80045, USA
| | - Elijah Christensen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, 12800 E. 19th Ave., Mail Stop 8307, Aurora, CO, 80045, USA
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Humphrey Petersen-Jones
- Department of Neurosurgery, University of Colorado School of Medicine, 12800 E. 19th Ave., Mail Stop 8307, Aurora, CO, 80045, USA
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Rex N Tien
- Department of Neurosurgery, University of Colorado School of Medicine, 12800 E. 19th Ave., Mail Stop 8307, Aurora, CO, 80045, USA
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado School of Medicine, 12800 E. 19th Ave., Mail Stop 8307, Aurora, CO, 80045, USA
| | - Drew S Kern
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Daniel R Kramer
- Department of Neurosurgery, University of Colorado School of Medicine, 12800 E. 19th Ave., Mail Stop 8307, Aurora, CO, 80045, USA
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, 12800 E. 19th Ave., Mail Stop 8307, Aurora, CO, 80045, USA
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, 12800 E. 19th Ave., Mail Stop 8307, Aurora, CO, 80045, USA
- Department of Physiology and Biophysics, University of Colorado School of Medicine, 12800 E. 19th Ave., Mail Stop 8307, Aurora, CO, 80045, USA
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
27
|
Sammartino F, Marsh R, Yeh FC, Sondergaard A, Changizi BK, Krishna V. Radiological identification of the globus pallidus motor subregion in Parkinson's disease. J Neurosurg 2022; 137:175-183. [PMID: 34740190 DOI: 10.3171/2021.7.jns21858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Globus pallidus (GP) lesioning improves motor symptoms of Parkinson's disease (PD) and is occasionally associated with nonmotor side effects. Although these variable clinical effects were shown to be site-specific within the GP, the motor and nonmotor subregions have not been distinguished radiologically in patients with PD. The GP was recently found to have a distinct radiological signature on diffusion MRI (dMRI), potentially related to its unique cellular content and organization (or tissue architecture). In this study, the authors hypothesize that the magnitude of water diffusivity, a surrogate for tissue architecture, will radiologically distinguish motor from nonmotor GP subregions in patients with PD. They also hypothesize that the therapeutic focused ultrasound pallidotomy lesions will preferentially overlap the motor subregion. METHODS Diffusion MRI from healthy subjects (n = 45, test-retest S1200 cohort) and PD patients (n = 33) was parcellated based on the magnitude of water diffusivity in the GP, as measured orientation distribution function (ODF). A clustering algorithm was used to identify GP parcels with distinct ODF magnitude. The individual parcels were used as seeds for tractography to distinguish motor from nonmotor subregions. The locations of focused ultrasound lesions relative to the GP parcels were also analyzed in 11 patients with PD. RESULTS Radiologically, three distinct parcels were identified within the GP in healthy controls and PD patients: posterior, central, and anterior. The posterior and central parcels comprised the motor subregion and the anterior parcel was classified as a nonmotor subregion based on their tractography connections. The focused ultrasound lesions preferentially overlapped with the motor subregion (posterior more than central). The hotspots for motor improvement were localized in the posterior GP parcel. CONCLUSIONS Using a data-driven approach of ODF-based parcellation, the authors radiologically distinguished GP motor subregions in patients with PD. This method can aid stereotactic targeting in patients with PD undergoing surgical treatments, especially focused ultrasound ablation.
Collapse
Affiliation(s)
| | | | - Fang-Cheng Yeh
- 2Department of Neurological Surgery, University of Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
28
|
Fan H, Bai Y, Yin Z, An Q, Xu Y, Gao Y, Meng F, Zhang J. Which one is the superior target? A comparison and pooled analysis between posterior subthalamic area and ventral intermediate nucleus deep brain stimulation for essential tremor. CNS Neurosci Ther 2022; 28:1380-1392. [PMID: 35687507 PMCID: PMC9344089 DOI: 10.1111/cns.13878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 01/14/2023] Open
Abstract
Background/Aims The efficacy and safety of posterior subthalamic area (PSA) and ventral intermediate nucleus (VIM) deep brain stimulation (DBS) in the treatment of essential tremor (ET) have not been compared in large‐scale studies. We conducted a secondary analysis to identify the superior target of ET‐DBS treatment. Methods PubMed, Embase, Cochrane Library, and Google Scholar were searched for relevant studies before September 2021. The tremor‐suppression efficacy and rate of stimulation‐related complications (SRCR) after PSA‐DBS and VIM‐DBS treating ET were quantitatively compared. Secondary outcomes, including tremor subitem scores and quality of life results, were also analyzed. Subgroup analyses were further conducted to stratify by follow‐up (FU) periods and stimulation lateralities. This study was registered in Open Science Framework (DOI: 10.17605/OSF.IO/7VJQ8). Results A total of 23 studies including 122 PSA‐DBS patients and 326 VIM‐DBS patients were analyzed. The average follow‐up time was 12.81 and 14.66 months, respectively. For the percentage improvement of total tremor rating scale (TRS) scores, PSA‐DBS was significantly higher, when compared to VIM‐DBS in the sensitivity analysis (p = 0.030) and main analysis (p = 0.043). The SRCR after VIM‐DBS was higher than that of PSA‐DBS (p = 0.022), and bilateral PSA‐DBS was significantly superior to both bilateral and unilateral VIM‐DBS (p = 0.001). Conclusions This study provided level IIIa evidence that PSA‐DBS was more effective and safer for ET than VIM‐DBS in 12–24 months, although both PSA‐DBS and VIM‐DBS were effective in suppressing tremor in ET patients. Further prospective large‐scale randomized clinical trials are warranted in the future.
Collapse
Affiliation(s)
- Houyou Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Gao
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
29
|
Peeters J, Boogers A, Van Bogaert T, Gransier R, Wouters J, Nuttin B, Mc Laughlin M. Current Steering Using Multiple Independent Current Control Deep Brain Stimulation Technology Results in Distinct Neurophysiological Responses in Parkinson’s Disease Patients. Front Hum Neurosci 2022; 16:896435. [PMID: 35721356 PMCID: PMC9203070 DOI: 10.3389/fnhum.2022.896435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Background Deep brain stimulation (DBS) is an effective neuromodulation therapy to treat people with medication-refractory Parkinson’s disease (PD). However, the neural networks affected by DBS are not yet fully understood. Recent studies show that stimulating on different DBS-contacts using a single current source results in distinct EEG-based evoked potentials (EPs), with a peak at 3 ms (P3) associated with dorsolateral subthalamic nucleus stimulation and a peak at 10 ms associated with substantia nigra stimulation. Multiple independent current control (MICC) technology allows the center of the electric field to be moved in between two adjacent DBS-contacts, offering a potential advantage in spatial precision. Objective Determine if MICC precision targeting results in distinct neurophysiological responses recorded via EEG. Materials and Methods We recorded cortical EPs in five hemispheres (four PD patients) using EEG whilst employing MICC to move the electric field from the most dorsal DBS-contact to the most ventral in 15 incremental steps. Results The center of the electric field location had a significant effect on both the P3 and P10 amplitude in all hemispheres where a peak was detected (P3, detected in 4 of 5 hemispheres, p < 0.0001; P10, detected in 5 of 5 hemispheres, p < 0.0001). Post hoc analysis indicated furthermore that MICC technology can significantly refine the resolution of steering. Conclusion Using MICC to incrementally move the center of the electric field to locations between adjacent DBS-contacts resulted in significantly different neurophysiological responses that may allow further precision of the programming of individual patients.
Collapse
Affiliation(s)
- Jana Peeters
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- *Correspondence: Jana Peeters,
| | - Alexandra Boogers
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, UZ Leuven, Leuven, Belgium
| | - Tine Van Bogaert
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Robin Gransier
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart Nuttin
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Al Awadhi A, Tyrand R, Horn A, Kibleur A, Vincentini J, Zacharia A, Burkhard PR, Momjian S, Boëx C. Electrophysiological confrontation of Lead-DBS-based electrode localizations in patients with Parkinson's disease undergoing deep brain stimulation. Neuroimage Clin 2022; 34:102971. [PMID: 35231852 PMCID: PMC8885791 DOI: 10.1016/j.nicl.2022.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 11/06/2022]
Abstract
Lead-DBS agreed with microelectrode recordings with millimetric precision. Lead-DBS identified misplaced electrodes that microelectrodes could only help suspect. Lead-DBS location of the limbic STN was in agreement with electrophysiological markers. Phase duration and firing rates could help identify dopamine neurons in humans.
Microelectrode recordings (MERs) are often used during deep brain stimulation (DBS) surgeries to confirm the position of electrodes in patients with advanced Parkinson’s disease. The present study focused on 32 patients who had undergone DBS surgery for advanced Parkinson’s disease. The first objective was to confront the anatomical locations of intraoperative individual MERs as determined electrophysiologically with those determined postoperatively by image reconstructions. The second aim was to search for differences in cell characteristics among the three subthalamic nucleus (STN) subdivisions and between the STN and other identified subcortical structures. Using the DISTAL atlas implemented in the Lead-DBS image reconstruction toolbox, each MER location was determined postoperatively and attributed to specific anatomical structures (sensorimotor, associative or limbic STN; substantia nigra [SN], thalamus, nucleus reticularis polaris, zona incerta [ZI]). The STN dorsal borders determined intraoperatively from electrophysiology were then compared with the STN dorsal borders determined by the reconstructed images. Parameters of spike clusters (firing rates, amplitudes – with minimum amplitude of 60 μV -, spike durations, amplitude spectral density of β-oscillations) were compared between structures (ANOVAs on ranks). Two hundred and thirty one MERs were analyzed (144 in 34 STNs, 7 in 4 thalami, 5 in 4 ZIs, 34 in 10 SNs, 41 others). The average difference in depth of the electrophysiological dorsal STN entry in comparison with the STN entry obtained with Lead-DBS was found to be of 0.1 mm (standard deviation: 0.8 mm). All 12 analyzed MERs recorded above the electrophysiologically-determined STN entry were confirmed to be in the thalamus or zona incerta. All MERs electrophysiologically attributed to the SN were confirmed to belong to this nucleus. However, 6/34 MERs that were electrophysiologically attributed to the ventral STN were postoperatively reattributed to the SN. Furthermore, 44 MERs of 3 trajectories, which were intraoperatively attributed to the STN, were postoperatively reattributed to the pallidum or thalamus. MER parameters seemed to differ across the STN, with higher spike amplitudes (H = 10.64, p < 0.01) and less prevalent β-oscillations (H = 9.81, p < 0.01) in the limbic STN than in the sensorimotor and associative subdivisions. Some cells, especially in the SN, showed longer spikes with lower firing rates, in agreement with described characteristics of dopamine cells. However, these probabilistic electrophysiological signatures might become clinically less relevant with the development of image reconstruction tools, which deserve to be applied intraoperatively.
Collapse
Affiliation(s)
- Abdullah Al Awadhi
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Rémi Tyrand
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Andreas Horn
- Movement Disorders and Neuromodulation Section, Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Astrid Kibleur
- Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Julia Vincentini
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - André Zacharia
- Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre R Burkhard
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Shahan Momjian
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Colette Boëx
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
31
|
Neumann WJ, Köhler RM, Kühn AA. A practical guide to invasive neurophysiology in patients with deep brain stimulation. Clin Neurophysiol 2022; 140:171-180. [PMID: 35659821 DOI: 10.1016/j.clinph.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
Abstract
Deep brain stimulation (DBS) offers the unique opportunity to record human neural population activity as multiunit activity and local field potentials (LFP) directly from the target area in the depth of the brain. This has led to important discoveries through characterization of pathological activity patterns and identification of motor and cognitive correlates of basal ganglia function in patients with movement disorders. These findings have been covered extensively in a large body of literature, but the technical aspects of microelectrode and LFP recordings in DBS patients are rarely reported. This review summarizes the experience from invasive neurophysiology experiments in over 500 DBS cases in the last 20 years in a single centre. It introduces the basics of intraoperative microelectrode recordings, discusses the neurophysiological and technical aspects of LFP signals and gives and outlook on current and next-generation developments - from sensing enabled implantable devices to combined electrocorticography and LFP recordings during adaptive DBS.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Richard M Köhler
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
32
|
Zheng Z, Zhu Z, Ying Y, Jiang H, Wu H, Tian J, Luo W, Zhu J. The Accuracy of Imaging Guided Targeting with Microelectrode Recoding in Subthalamic Nucleus for Parkinson's Disease: A Single-Center Experience. JOURNAL OF PARKINSON'S DISEASE 2022; 12:897-903. [PMID: 35124576 PMCID: PMC9108556 DOI: 10.3233/jpd-213095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: Accurate electrode targeting was essential for the efficacy of deep brain stimulation (DBS). There is ongoing debate about the necessary of microelectrode recording (MER) in subthalamic nucleus (STN)-DBS surgery for accurate targeting. Objective: This study aimed to analyze the accuracy of imaging-guided awake DBS with MER in STN for Parkinson’s disease in a single center. Methods: The authors performed a retrospective analysis of 161 Parkinson’s disease patients undergoing STN-DBS at our center from March 2013 to June 2021. The implantation was performed by preoperative magnetic resonance imaging (MRI)-based direct targeting with intraoperative MER and macrostimulation testing. 285 electrode tracks with preoperative and postoperative coordinates were included to calculate the placement error in STN targeting. Results: 85.9% of electrodes guided by preoperative MRI were implanted without intraoperative adjustment. 31 (10.2%) and 12 (3.9%) electrodes underwent intraoperative adjustment due to MER and intraoperative testing, respectively. We found 86.2% (245/285) of electrodes with trajectory error ≤2 mm. The MER physiological signals length < 4 mm and ≥4 mm group showed trajectory error > 2 mm in 38.0% and 8.8% of electrodes, respectively. Compared to non-adjustment electrodes, the final positioning of MER-adjusted electrodes deviated from the center of STN. Conclusion: The preoperative MRI guided STN targeting results in approximately 14% cases that require electrode repositioning. MER physiological signals length < 4 mm at first penetration implied deviation off planned target. MER combined with intraoperative awake testing served to rescue such deviation based on MRI alone.
Collapse
Affiliation(s)
- Zhe Zheng
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
| | - Zhoule Zhu
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
| | - Yuqi Ying
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
| | - Hongjie Jiang
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
| | - Hemmings Wu
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
| | - Jun Tian
- Department of Neurology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
| | - Wei Luo
- Department of Neurology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
| | - Junming Zhu
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
33
|
Nikparast F, Ganji Z, Danesh Doust M, Faraji R, Zare H. Brain pathological changes during neurodegenerative diseases and their identification methods: How does QSM perform in detecting this process? Insights Imaging 2022; 13:74. [PMID: 35416533 PMCID: PMC9008086 DOI: 10.1186/s13244-022-01207-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/13/2022] [Indexed: 12/14/2022] Open
Abstract
The presence of iron is essential for many biological processes in the body. But sometimes, for various reasons, the amount of iron deposition in different areas of the brain increases, which leads to problems related to the nervous system. Quantitative susceptibility mapping (QSM) is one of the newest magnetic resonance imaging (MRI)-based methods for assessing iron accumulation in target areas. This Narrative Review article aims to evaluate the performance of QSM compared to other methods of assessing iron deposition in the clinical field. Based on the results, we introduced related basic definitions, some neurodegenerative diseases, methods of examining iron deposition in these diseases, and their advantages and disadvantages. This article states that the QSM method can be introduced as a new, reliable, and non-invasive technique for clinical evaluations.
Collapse
Affiliation(s)
- Farzaneh Nikparast
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Ganji
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Danesh Doust
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhane Faraji
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Zare
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Wang S, Gong S, Tao Y, Liang G, Sha R, Xie A, Li Z, Yuan L. A Modified Power-on Programming Method after Deep Brain Stimulation for Parkinson Disease. World Neurosurg 2022; 160:e152-e158. [PMID: 34979288 DOI: 10.1016/j.wneu.2021.12.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To explore the feasibility of using a modified power-on programming method in deep brain stimulation (DBS) for Parkinson disease (PD). METHODS We conducted a retrospective cohort study including 151 PD patients with bilateral robot-assisted DBS surgery from July 2017 to June 2020. Ninety-seven patients were adopted to the modified power-on programming method (Group I) and 54 patients were adopted to the traditional power-on programming method (Group II). In one-year follow-up, power-on programming duration, stimulation parameters, scores of Unified PD Rating Scale (UPDRS) and UPDRS-III of the 2 groups were recorded and compared. RESULTS There were no significant differences in the postoperative UPDRS, UPDRS-III improvement rate, and stimulation parameters between the 2 groups. The duration of power-on programming of Group I (1.7 ± 1.1 hours) was significantly less than that of Group II (3.5 ± 1.8 hours, P < 0.0001). CONCLUSIONS The modified power-on programming method can achieve a similar clinical effect to the traditional method, with the advantage of more efficiency.
Collapse
Affiliation(s)
- Shimiao Wang
- Department of Neurosurgery, The General Hospital of Northern Theater Command, Shenyang, China
| | - Shun Gong
- Department of Neurosurgery, The General Hospital of Northern Theater Command, Shenyang, China
| | - Yingqun Tao
- Department of Neurosurgery, The General Hospital of Northern Theater Command, Shenyang, China.
| | - Guobiao Liang
- Department of Neurosurgery, The General Hospital of Northern Theater Command, Shenyang, China
| | - Rong Sha
- Department of Neurosurgery, The General Hospital of Northern Theater Command, Shenyang, China
| | - Aotan Xie
- Department of Neurosurgery, The General Hospital of Northern Theater Command, Shenyang, China
| | - Zirui Li
- Department of Clinical Medicine (105K-Class 83), China Medical University, Shenyang, China
| | - Lijia Yuan
- Department of Neurosurgery, The General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
35
|
Pozzi NG, Isaias IU. Adaptive deep brain stimulation: Retuning Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:273-284. [PMID: 35034741 DOI: 10.1016/b978-0-12-819410-2.00015-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A brain-machine interface represents a promising therapeutic avenue for the treatment of many neurologic conditions. Deep brain stimulation (DBS) is an invasive, neuro-modulatory tool that can improve different neurologic disorders by delivering electric stimulation to selected brain areas. DBS is particularly successful in advanced Parkinson's disease (PD), where it allows sustained improvement of motor symptoms. However, this approach is still poorly standardized, with variable clinical outcomes. To achieve an optimal therapeutic effect, novel adaptive DBS (aDBS) systems are being developed. These devices operate by adapting stimulation parameters in response to an input signal that can represent symptoms, motor activity, or other behavioral features. Emerging evidence suggests greater efficacy with fewer adverse effects during aDBS compared with conventional DBS. We address this topic by discussing the basics principles of aDBS, reviewing current evidence, and tackling the many challenges posed by aDBS for PD.
Collapse
Affiliation(s)
- Nicoló G Pozzi
- Department of Neurology, University Hospital Würzburg and Julius Maximilian University Würzburg, Würzburg, Germany
| | - Ioannis U Isaias
- Department of Neurology, University Hospital Würzburg and Julius Maximilian University Würzburg, Würzburg, Germany.
| |
Collapse
|
36
|
Diesburg DA, Greenlee JD, Wessel JR. Cortico-subcortical β burst dynamics underlying movement cancellation in humans. eLife 2021; 10:70270. [PMID: 34874267 PMCID: PMC8691838 DOI: 10.7554/elife.70270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Dominant neuroanatomical models hold that humans regulate their movements via loop-like cortico-subcortical networks, which include the subthalamic nucleus (STN), motor thalamus, and sensorimotor cortex (SMC). Inhibitory commands across these networks are purportedly sent via transient, burst-like signals in the β frequency (15-29 Hz). However, since human depth-recording studies are typically limited to one recording site, direct evidence for this proposition is hitherto lacking. Here, we present simultaneous multi-site recordings from SMC and either STN or motor thalamus in humans performing the stop-signal task. In line with their purported function as inhibitory signals, subcortical β-bursts were increased on successful stop-trials. STN bursts in particular were followed within 50 ms by increased β-bursting over SMC. Moreover, between-site comparisons (including in a patient with simultaneous recordings from SMC, thalamus, and STN) confirmed that β-bursts in STN temporally precede thalamic β-bursts. This highly unique set of recordings provides empirical evidence for the role of β-bursts in conveying inhibitory commands along long-proposed cortico-subcortical networks underlying movement regulation in humans.
Collapse
Affiliation(s)
- Darcy A Diesburg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States
| | - Jeremy Dw Greenlee
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, United States
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, United States.,Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, United States
| |
Collapse
|
37
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
38
|
Kim MJ, Park SH, Chang KW, Kim Y, Gao J, Kovalevsky M, Rachmilevitch I, Zadicario E, Chang WS, Jung HH, Chang JW. Technical and operative factors affecting magnetic resonance imaging-guided focused ultrasound thalamotomy for essential tremor: experience from 250 treatments. J Neurosurg 2021; 135:1780-1788. [PMID: 34020416 DOI: 10.3171/2020.11.jns202580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/09/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Magnetic resonance imaging-guided focused ultrasound (MRgFUS) provides real-time monitoring of patients to assess tremor control and document any adverse effects. MRgFUS of the ventral intermediate nucleus (VIM) of the thalamus has become an effective treatment option for medically intractable essential tremor (ET). The aim of this study was to analyze the correlations of clinical and technical parameters with 12-month outcomes after unilateral MRgFUS thalamotomy for ET to help guide future clinical treatments. METHODS From October 2013 to January 2019, data on unilateral MRgFUS thalamotomy from the original pivotal study and continued-access studies from three different geographic regions were collected. Authors of the present study retrospectively reviewed those data and evaluated the efficacy of the procedure on the basis of improvement in the Clinical Rating Scale for Tremor (CRST) subscore at 1 year posttreatment. Safety was based on the rates of moderate and severe thalamotomy-related adverse events. Treatment outcomes in relation to various patient- and sonication-related parameters were analyzed in a large cohort of patients with ET. RESULTS In total, 250 patients were included in the present analysis. Improvement was sustained throughout the 12-month follow-up period, and 184 (73.6%) of 250 patients had minimal or no disability due to tremor (CRST subscore < 10) at the 12-month follow-up. Younger age and higher focal temperature (Tmax) correlated with tremor improvement in the multivariate analysis (OR 0.948, p = 0.013; OR 1.188, p = 0.025; respectively). However, no single statistically significant factor correlated with Tmax in the multivariate analysis. The cutoff value of Tmax in predicting a CRST subscore < 10 was 55.8°C. Skull density ratio (SDR) was positively correlated with heating efficiency (β = 0.005, p < 0.001), but no significant relationship with tremor improvement was observed. In the low-temperature group, 1-3 repetitions to the right target with 52°C ≤ Tmax ≤ 54°C was sufficient to generate sustained tremor suppression within the investigated follow-up period. The high-temperature group had a higher rate of balance disturbances than the low-temperature group (p = 0.04). CONCLUSIONS The authors analyzed the data of 250 patients with the aim of improving practices for patient screening and determining treatment endpoints. These results may improve the safety, efficacy, and efficiency of MRgFUS thalamotomy for ET.
Collapse
Affiliation(s)
- Myung Ji Kim
- 1Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - So Hee Park
- 1Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Kyung Won Chang
- 1Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Yuhee Kim
- 2InSightec Ltd., Tirat Carmel, Israel
| | - Jing Gao
- 2InSightec Ltd., Tirat Carmel, Israel
| | | | | | | | - Won Seok Chang
- 1Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Hyun Ho Jung
- 1Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Jin Woo Chang
- 1Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| |
Collapse
|
39
|
Subthalamic-Cortical Network Reorganization during Parkinson's Tremor. J Neurosci 2021; 41:9844-9858. [PMID: 34702744 DOI: 10.1523/jneurosci.0854-21.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 10/10/2021] [Indexed: 01/08/2023] Open
Abstract
Tremor, a common and often primary symptom of Parkinson's disease, has been modeled with distinct onset and maintenance dynamics. To identify the neurophysiologic correlates of each state, we acquired intraoperative cortical and subthalamic nucleus recordings from 10 patients (9 male, 1 female) performing a naturalistic visual-motor task. From this task, we isolated short epochs of tremor onset and sustained tremor. Comparing these epochs, we found that the subthalamic nucleus was central to tremor onset, as it drove both motor cortical activity and tremor output. Once tremor became sustained, control of tremor shifted to cortex. At the same time, changes in directed functional connectivity across sensorimotor cortex further distinguished the sustained tremor state.SIGNIFICANCE STATEMENT Tremor is a common symptom of Parkinson's disease (PD). While tremor pathophysiology is thought to involve both basal ganglia and cerebello-thalamic-cortical circuits, it is unknown how these structures functionally interact to produce tremor. In this article, we analyzed intracranial recordings from the subthalamic nucleus and sensorimotor cortex in patients with PD undergoing deep brain stimulation surgery. Using an intraoperative task, we examined tremor in two separate dynamic contexts: when tremor first emerged, and when tremor was sustained. We believe that these findings reconcile several models of Parkinson's tremor, while describing the short-timescale dynamics of subcortical-cortical interactions during tremor for the first time. These findings may describe a framework for developing proactive and responsive neurostimulation models for specifically treating tremor.
Collapse
|
40
|
Machnoor M, Shao X, Paknahad J, Humayun M, Lazzi G. On the Design of an Efficient Inductive Wireless Power Transfer for Passive Neurostimulation Systems. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7497-7501. [PMID: 34892827 DOI: 10.1109/embc46164.2021.9630262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this paper, a minimally invasive wireless powered electronic lens (e-lens) with passive electrodes is presented for an ocular electrical stimulation. Previous research has focused on the differentiation property of the induction phenomenon and half wave rectifiers. However, these approaches are generally application specific, non efficient, suitable for low current, and deliver monophasic current stimulation. Existing rectifier-based techniques can lead to safety concerns as the offset voltage could change unpredictably. A new wireless power transfer circuit is presented for the design of an efficient system to wirelessly deliver charge-balanced biphasic waveforms through passive electrodes for transcorneal electrical stimulation. The absence of active components allows the development of a flexible e-lens system for therapeutic electrical stimulation of the eye.
Collapse
|
41
|
Coenen VA, Reisert M. DTI for brain targeting: Diffusion weighted imaging fiber tractography-Assisted deep brain stimulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:47-67. [PMID: 34446250 DOI: 10.1016/bs.irn.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fiber tractography assisted Deep Brain Stimulation (DBS) has been performed by different groups for more than 10 years to now. Groups around the world have adapted initial approaches to currently embrace the fiber tractography technology mainly for treating tremor (DBS and lesions), psychiatric indications (OCD and major depression) and pain (DBS). Despite the advantages of directly visualizing the target structure, the technology is demanding and is vulnerable to inaccuracies especially since it is performed on individual level. In this contribution, we will focus on tremor and psychiatric indications, and will show future applications of sophisticated tractography applications for subthalamic nucleus (STN) DBS surgery and stimulation steering as an example.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Department of Radiology-Medical Physics, Freiburg University, Freiburg, Germany
| |
Collapse
|
42
|
Sirica D, Hewitt AL, Tarolli CG, Weber MT, Zimmerman C, Santiago A, Wensel A, Mink JW, Lizárraga KJ. Neurophysiological biomarkers to optimize deep brain stimulation in movement disorders. Neurodegener Dis Manag 2021; 11:315-328. [PMID: 34261338 PMCID: PMC8977945 DOI: 10.2217/nmt-2021-0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intraoperative neurophysiological information could increase accuracy of surgical deep brain stimulation (DBS) lead placement. Subsequently, DBS therapy could be optimized by specifically targeting pathological activity. In Parkinson’s disease, local field potentials (LFPs) excessively synchronized in the beta band (13–35 Hz) correlate with akinetic-rigid symptoms and their response to DBS therapy, particularly low beta band suppression (13–20 Hz) and high frequency gamma facilitation (35–250 Hz). In dystonia, LFPs abnormally synchronize in the theta/alpha (4–13 Hz), beta and gamma (60–90 Hz) bands. Phasic dystonic symptoms and their response to DBS correlate with changes in theta/alpha synchronization. In essential tremor, LFPs excessively synchronize in the theta/alpha and beta bands. Adaptive DBS systems will individualize pathological characteristics of neurophysiological signals to automatically deliver therapeutic DBS pulses of specific spatial and temporal parameters.
Collapse
Affiliation(s)
- Daniel Sirica
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Angela L Hewitt
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Division of Child Neurology, Department of Neurology, University of Rochester, Rochester, NY 14623, USA
| | - Christopher G Tarolli
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Center for Health & Technology (CHeT), University of Rochester, Rochester, NY 14642, USA
| | - Miriam T Weber
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Carol Zimmerman
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Aida Santiago
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Andrew Wensel
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Department of Neurosurgery, University of Rochester, Rochester, NY 14618, USA
| | - Jonathan W Mink
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Division of Child Neurology, Department of Neurology, University of Rochester, Rochester, NY 14623, USA
| | - Karlo J Lizárraga
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Center for Health & Technology (CHeT), University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
43
|
Cleary RT, Bucholz R. Neuromodulation Approaches in Parkinson's Disease Using Deep Brain Stimulation and Transcranial Magnetic Stimulation. J Geriatr Psychiatry Neurol 2021; 34:301-309. [PMID: 34219521 DOI: 10.1177/08919887211018269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease, characterized by progressive motor (such as resting tremor, hypokinesia, postural instability) and non-motor symptoms (such as neuropsychiatric decline and autonomic dysfunction). Since its introduction in the late 1980s, deep brain stimulation (DBS) has revolutionized the treatment of PD. Initially used in patients' with advanced PD with either medically refractory motor symptoms or medication intolerance, DBS typically provides excellent improvement in motor symptoms. Indications for DBS have continued to expand, with demonstrated efficacy in early PD and essential tremor, and promising preliminary results in the treatment of epilepsy, psychiatric disease, and depression. Advancements in DBS hardware, programming, neuroimaging, and surgical techniques have led to progressive improvement in efficacy and safety profiles. Thanks to ongoing research into remote programming, adaptive DBS, new targets, and alternative interventions, such as transcranial magnetic stimulation, the opportunities for further improvements in DBS and neuromodulation are bright.
Collapse
Affiliation(s)
- Ryan T Cleary
- Department of Neurosurgery, 25213Saint Louis University Hospital, Saint Louis, MO, USA
| | - Richard Bucholz
- Department of Neurosurgery, 25213Saint Louis University Hospital, Saint Louis, MO, USA
| |
Collapse
|
44
|
Roh H, Kim JH, Koh SB, Kim JH. Correlating Beta Oscillations from Intraoperative Microelectrode and Postoperative Implanted Electrode in Patients Undergoing Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease; A Feasibility Study. World Neurosurg 2021; 152:e532-e539. [PMID: 34144163 DOI: 10.1016/j.wneu.2021.05.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We sought to investigate the feasibility of intraoperative local field potential (LFP) recording from the microelectrode during deep brain stimulation surgery for patients with Parkinson disease. METHODS Sixteen subthalamic nucleus recordings from 10 Parkinson disease patients who underwent deep brain stimulation surgery were included in this study. Signals from microelectrodes were amplified and differently filtered to display real-time single-unit neuronal activity and LFP simultaneously during surgery. LFP recordings were also recorded postoperatively from the implanted macroelectrodes and, power spectral density and peak frequency of beta oscillation of LFP (beta LFP) between 2 conditions were compared. RESULTS Stable intraoperative beta LFP were observed in 68.75% (11 of 16) cases. There was no significant difference of peak frequency between intraoperative and postoperative beta-LFP but significant difference of mean percentage of beta LFP was noted between 2 conditions. CONCLUSIONS Despite low signal-to-noise ratio and susceptibility to noises from external sources, this study shows that intraoperative recording of beta LFP using microelectrode is feasible. And, given that no significant difference in peak frequency of beta LFP between intraoperative and postoperative LFP was found, we suggest that not only intraoperative beta LFP can be used as a reliable surrogate for postoperative beta LFP, but it can also provide us an information for estimating the location with maximal power of beta oscillation within the subthalamic nucleus.
Collapse
Affiliation(s)
- Haewon Roh
- Department of Neurosurgery, Guro Hospital, Korea University Medical Center, Seoul, Republic of Korea; Trauma Center, Armed Forces Capital Hospital, Gyeonggi-do, Republic of Korea
| | - Jang Hun Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Seong-Beom Koh
- Department of Neurology, Guro Hospital, Korea University Medical Center, Seoul, Republic of Korea
| | - Jong Hyun Kim
- Department of Neurosurgery, Guro Hospital, Korea University Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Sharma A, Vidaurre D, Vesper J, Schnitzler A, Florin E. Differential dopaminergic modulation of spontaneous cortico-subthalamic activity in Parkinson's disease. eLife 2021; 10:66057. [PMID: 34085932 PMCID: PMC8177893 DOI: 10.7554/elife.66057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
Abstract
Pathological oscillations including elevated beta activity in the subthalamic nucleus (STN) and between STN and cortical areas are a hallmark of neural activity in Parkinson’s disease (PD). Oscillations also play an important role in normal physiological processes and serve distinct functional roles at different points in time. We characterised the effect of dopaminergic medication on oscillatory whole-brain networks in PD in a time-resolved manner by employing a hidden Markov model on combined STN local field potentials and magnetoencephalography (MEG) recordings from 17 PD patients. Dopaminergic medication led to coherence within the medial and orbitofrontal cortex in the delta/theta frequency range. This is in line with known side effects of dopamine treatment such as deteriorated executive functions in PD. In addition, dopamine caused the beta band activity to switch from an STN-mediated motor network to a frontoparietal-mediated one. In contrast, dopamine did not modify local STN–STN coherence in PD. STN–STN synchrony emerged both on and off medication. By providing electrophysiological evidence for the differential effects of dopaminergic medication on the discovered networks, our findings open further avenues for electrical and pharmacological interventions in PD.
Collapse
Affiliation(s)
- Abhinav Sharma
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Diego Vidaurre
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,Department of Clinical Health, Aarhus University, Aarhus, Denmark
| | - Jan Vesper
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
46
|
Direct visualization of deep brain stimulation targets in patients with Parkinson's disease via 3-T quantitative susceptibility mapping. Acta Neurochir (Wien) 2021; 163:1335-1345. [PMID: 33576911 DOI: 10.1007/s00701-021-04715-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND The direct visualization of brain nuclei on magnetic resonance (MR) images is important for target localization during deep brain stimulation (DBS) in patients with Parkinson's disease (PD). We demonstrated the superiority of 3-T high-resolution submillimeter voxel size quantitative susceptibility mapping (QSM) for delineating the subthalamic nucleus (STN) and the globus pallidus internus (GPi). METHODS Preoperative 3-T QSM and T2 weighted (T2w) images were obtained from ten patients with PD. Qualitative visualization scores were analyzed by two neurosurgeons on both images using a 4-point and 5-point scale, respectively. Images were also compared with regard to contrast-to-noise ratios (CNRs) and edge detection power for the STN and GPi. The Wilcoxon rank-sum test and the signed-rank test were used to compare measurements between the two images. RESULTS Visualization scores for the STN and GPi, the mean CNR of the STN relative to the zona incerta (ZI) and the substantia nigra, and the mean CNR of the GPi relative to the internal capsule (IC) and the globus pallidum externum, were significantly higher on QSM images than on T2w images (P < 0.01). The edge detection powers of the STN-ZI and GPi-IC on QSM were significantly larger (by 2.6- and 3.8-fold, respectively) than those on T2w images (P < 0.01). QSM detected asymmetry of the STN in two patients. CONCLUSIONS QSM images provided improved delineation ability for the STN and GPi when compared to T2w images. Our findings are important for patients with PD who undergo DBS surgery, particularly those with asymmetric bilateral nuclei.
Collapse
|
47
|
Xiao L, Li C, Wang Y, Si W, Zhang D, Lin H, Cai X, Heng PA. Automatic identification of sweet spots from MERs for electrodes implantation in STN-DBS. Int J Comput Assist Radiol Surg 2021; 16:809-818. [PMID: 33907990 DOI: 10.1007/s11548-021-02377-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Microelectrode recordings (MERs) are a significant clinical indicator for sweet spots identification of implanted electrodes during deep brain stimulation of the subthalamic nucleus (STN) surgery. As 1D MERs signals have the unboundedness, large-range, large-amount and time-dependent characteristics, the purpose of this study is to propose an automatic and precise identification method of sweet spots from MERs, reducing the time-consuming and labor-intensive human annotations. METHODS We propose an automatic identification method of sweet spots from MERs for electrodes implantation in STN-DBS. To better imitate the surgeons' observation and obtain more intuitive contextual information, we first employ the 2D Gramian angular summation field (GASF) images generated from MERs data to perform the sweet spots determination for electrodes implantation. Then, we introduce the convolutional block attention module into convolutional neural network (CNN) to identify the 2D GASF images of sweet spots for electrodes implantation. RESULTS Experimental results illustrate that the identification result of our method is consistent with the result of doctor's decision, while our method can achieve the accuracy and precision of 96.72% and 98.97%, respectively, which outperforms state-of-the-art for intraoperative sweet spots determination. CONCLUSIONS The proposed method is the first time to automatically and accurately identify sweet spots from MERs for electrodes implantation by the combination an advanced time series-to-image encoding way with CBAM-enhanced networks model. Our method can assist neurosurgeons in automatically detecting the most likely locations of sweet spots for electrodes implantation, which can provide an important indicator for target selection while it reduces the localization error of the target during STN-DBS surgery.
Collapse
Affiliation(s)
- Linxia Xiao
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Caizi Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanjiang Wang
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Weixin Si
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Doudou Zhang
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518037, China.,Shenzhen University School of Medicine, Shenzhen, 518061, China
| | - Hai Lin
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518037, China.,Shenzhen University School of Medicine, Shenzhen, 518061, China
| | - Xiaodong Cai
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518037, China.,Shenzhen University School of Medicine, Shenzhen, 518061, China
| | - Pheng-Ann Heng
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
48
|
Zavala B, Mirzadeh Z, Chen T, Lambert M, Chapple KM, Dhall R, Ponce FA. Electrophysiologic Mapping for Target Acquisition in Deep Brain Stimulation May Become Unnecessary in the Era of Intraoperative Imaging. World Neurosurg 2021; 152:e51-e61. [PMID: 33905908 DOI: 10.1016/j.wneu.2021.04.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Electrophysiologic mapping (EM) has been instrumental in advancing neuroscience and ensuring accurate lead placement for deep brain stimulation. However, EM is associated with increased operative time, expense, and potential risk. Intraoperative imaging to verify lead placement provides an opportunity to reassess the clinical role of EM. We investigated whether EM 1) provides new information that corrects suboptimal preoperative target selection by the physician or 2) simply corrects intraoperative stereotactic error, which can instead be quickly corrected with intraoperative imaging. METHODS Deep brain stimulation lead location errors were evaluated by measuring whether repositioning leads based on EM directed the final lead placement 1) away from or 2) toward the original target. We retrospectively identified 50 patients with 61 leads that required repositioning directed by EM. The stereotactic coordinates of each lead were determined with intraoperative computed tomography. RESULTS In 45 of 61 leads (74%), the electrophysiologically directed repositioning moved the lead toward the initial target. The mean radial errors between the preoperative plan and targeted contact coordinates before and after repositioning were 2.2 and 1.5 mm, respectively (P < 0.001). Microelectrode recording was more likely than test stimulation to direct leads toward the initial target (88% vs. 63%; P = 0.03). The nucleus targeted was associated with the likelihood of moving toward the initial target. CONCLUSIONS Electrophysiologic mapping corrected primarily for errors in lead placement rather than providing new information regarding errors in target selection. Thus, intraoperative imaging and improvements in stereotactic techniques may reduce or even eliminate dependence on EM.
Collapse
Affiliation(s)
- Baltazar Zavala
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Zaman Mirzadeh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Tsinsue Chen
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Margaret Lambert
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kristina M Chapple
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Rohit Dhall
- Department of Neurology, University of Arkansas, Little Rock, Arkansas, USA
| | - Francisco A Ponce
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
49
|
Martinez-Simon A, Valencia M, Cacho-Asenjo E, Honorato-Cia C, Nuñez-Cordoba JM, Manzanilla O, Aldaz A, Panadero A, Guridi J, Alegre M. Effects of dexmedetomidine on subthalamic local field potentials in Parkinson's disease. Br J Anaesth 2021; 127:245-253. [PMID: 33896591 PMCID: PMC8362272 DOI: 10.1016/j.bja.2021.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/17/2020] [Accepted: 01/23/2021] [Indexed: 01/06/2023] Open
Abstract
Background Dexmedetomidine is frequently used for sedation during deep brain stimulator implantation in patients with Parkinson's disease, but its effect on subthalamic nucleus activity is not well known. The aim of this study was to quantify the effect of increasing doses of dexmedetomidine in this population. Methods Controlled clinical trial assessing changes in subthalamic activity with increasing doses of dexmedetomidine (from 0.2 to 0.6 μg kg−1 h−1) in a non-operating theatre setting. We recorded local field potentials in 12 patients with Parkinson's disease with bilateral deep brain stimulators (24 nuclei) and compared basal activity in the nuclei of each patient and activity recorded with different doses. Plasma levels of dexmedetomidine were obtained and correlated with the dose administered. Results With dexmedetomidine infusion, patients became clinically sedated, and at higher doses (0.5–0.6 μg kg−1 h−1) a significant decrease in the characteristic Parkinsonian subthalamic activity was observed (P<0.05 in beta activity). All subjects awoke to external stimulus over a median of 1 (range: 0–9) min, showing full restoration of subthalamic activity. Dexmedetomidine dose administered and plasma levels showed a positive correlation (repeated measures correlation coefficient=0.504; P<0.001). Conclusions Patients needing some degree of sedation throughout subthalamic deep brain stimulator implantation for Parkinson's disease can probably receive dexmedetomidine up to 0.6 μg kg−1 h−1 without significant alteration of their characteristic subthalamic activity. If patients achieve a ‘sedated’ state, subthalamic activity decreases, but they can be easily awakened with a non-pharmacological external stimulus and recover baseline subthalamic activity patterns in less than 10 min. Clinical trial registration EudraCT 2016-002680-34; NCT-02982512.
Collapse
Affiliation(s)
- Antonio Martinez-Simon
- Department of Anaesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| | - Miguel Valencia
- University of Navarra, CIMA, Program of Neuroscience, Systems Neuroscience Lab, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Elena Cacho-Asenjo
- Department of Anaesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Cristina Honorato-Cia
- Department of Anaesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Jorge M Nuñez-Cordoba
- Research Support Service, Central Clinical Trials Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Oscar Manzanilla
- Clinical Neurophysiology Section, Clínica Universidad de Navarra, Pamplona, Spain
| | - Azucena Aldaz
- Department of Pharmacy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Alfredo Panadero
- Department of Anaesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jorge Guridi
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Department of Neurosurgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Manuel Alegre
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Clinical Neurophysiology Section, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
50
|
Ozturk M, Viswanathan A, Sheth SA, Ince NF. Electroceutically induced subthalamic high-frequency oscillations and evoked compound activity may explain the mechanism of therapeutic stimulation in Parkinson's disease. Commun Biol 2021; 4:393. [PMID: 33758361 PMCID: PMC7988171 DOI: 10.1038/s42003-021-01915-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Despite having remarkable utility in treating movement disorders, the lack of understanding of the underlying mechanisms of high-frequency deep brain stimulation (DBS) is a main challenge in choosing personalized stimulation parameters. Here we investigate the modulations in local field potentials induced by electrical stimulation of the subthalamic nucleus (STN) at therapeutic and non-therapeutic frequencies in Parkinson's disease patients undergoing DBS surgery. We find that therapeutic high-frequency stimulation (130-180 Hz) induces high-frequency oscillations (~300 Hz, HFO) similar to those observed with pharmacological treatment. Along with HFOs, we also observed evoked compound activity (ECA) after each stimulation pulse. While ECA was observed in both therapeutic and non-therapeutic (20 Hz) stimulation, the HFOs were induced only with therapeutic frequencies, and the associated ECA were significantly more resonant. The relative degree of enhancement in the HFO power was related to the interaction of stimulation pulse with the phase of ECA. We propose that high-frequency STN-DBS tunes the neural oscillations to their healthy/treated state, similar to pharmacological treatment, and the stimulation frequency to maximize these oscillations can be inferred from the phase of ECA waveforms of individual subjects. The induced HFOs can, therefore, be utilized as a marker of successful re-calibration of the dysfunctional circuit generating PD symptoms.
Collapse
Affiliation(s)
- Musa Ozturk
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Nuri F Ince
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|