1
|
Rostami Z, Salari M, Mahdavi S, Etemadifar M. Abnormal multisensory temporal discrimination in Parkinson's disease. Brain Res 2024; 1834:148901. [PMID: 38561085 DOI: 10.1016/j.brainres.2024.148901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Cognitive deficits are prevalent in Parkinson's disease (PD), ranging from mild deficits in perception and executive function to severe dementia. Multisensory integration (MSI), the ability to pool information from different sensory modalities to form a combined, coherent perception of the environment, is known to be impaired in PD. This study investigated the disruption of audiovisual MSI in PD patients by evaluating temporal discrimination ability between auditory and visual stimuli with different stimulus onset asynchronies (SOAs). The experiment was conducted with Fifteen PD patients and fifteen age-matched healthy controls where participants were requested to report whether the audiovisual stimuli pairs were temporal simultaneous. The temporal binding window (TBW), the time during which sensory modalities are perceived as synchronous, was adapted as the comparison index between PD patients and healthy individuals. Our results showed that PD patients had a significantly wider TBW than healthy controls, indicating abnormal audiovisual temporal discrimination. Furthermore, PD patients had more difficulty in discriminating temporal asynchrony in visual-first, but not in auditory-first stimuli, compared to healthy controls. In contrast, no significant difference was observed for auditory-first stimuli. PD patients also had shorter reaction times than healthy controls regardless of stimulus priority. Together, our findings point to abnormal audiovisual temporal discrimination, a major component of MSI irregularity, in PD patients. These results have important implications for future models of MSI experiments and models that aim to uncover the underlying mechanism of MSI in patients afflicted with PD.
Collapse
Affiliation(s)
- Zahra Rostami
- Clinical Research Development Unit, Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehri Salari
- Clinical Research Development Unit, Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sara Mahdavi
- School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoud Etemadifar
- Faculty of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
2
|
Pourzinal D, Yang J, McMahon KL, Copland DA, Mitchell L, O'Sullivan JD, Byrne GJ, Dissanayaka NN. Hippocampal resting-state connectivity is associated with posterior-cortical cognitive impairment in Parkinson's disease. Brain Behav 2024; 14:e3454. [PMID: 38468574 DOI: 10.1002/brb3.3454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/13/2024] Open
Abstract
AIM Frontal and posterior-cortical cognitive subtypes in Parkinson's disease (PD) present with executive/attention and memory/visuospatial deficits, respectively. As the posterior-cortical subtype is predicted to progress rapidly toward dementia, the present study aimed to explore biological markers of this group using resting-state functional magnetic resonance imaging (rs-fMRI). METHODS K-means cluster analysis delineated subtypes (cognitively intact, frontal, posterior-cortical, and globally impaired) among 85 people with PD. A subset of PD participants (N = 42) and 20 healthy controls (HCs) underwent rs-fMRI. Connectivity of bilateral hippocampi with regions of interest was compared between posterior-cortical, cognitively intact, and HC participants using seed-based analysis, controlling for age. Exploratory correlations were performed between areas of interest from the group analysis and a series of cognitive tests. RESULTS The posterior-cortical subtype (N = 19) showed weaker connectivity between the left hippocampus and right anterior temporal fusiform cortex compared to the cognitively intact (N = 11) group, p-false discovery rate (FDR) = .01, and weaker connectivity between bilateral hippocampi and most fusiform regions compared to HCs (N = 20). No differences were found between HCs and cognitively intact PD. Exploratory analyses revealed strongest associations between connectivity of the right anterior temporal fusiform cortex and left hippocampus with category fluency (p-FDR = .01). CONCLUSION Results suggest that weakened connectivity between the hippocampus and fusiform region is a unique characteristic of posterior-cortical cognitive deficits in PD. Further exploration of hippocampal and fusiform functional integrity as a marker of cognitive decline in PD is warranted.
Collapse
Affiliation(s)
- Dana Pourzinal
- Faculty of Medicine, The University of Queensland Centre for Clinical Research, Herston, Australia
| | - Jihyun Yang
- Faculty of Medicine, The University of Queensland Centre for Clinical Research, Herston, Australia
| | - Katie L McMahon
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - David A Copland
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
- Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
| | - Leander Mitchell
- School of Psychology, The University of Queensland, St Lucia, Australia
| | - John D O'Sullivan
- Faculty of Medicine, The University of Queensland Centre for Clinical Research, Herston, Australia
- Department of Neurology, Royal Brisbane & Women's Hospital, Herston, Australia
| | - Gerard J Byrne
- Faculty of Medicine, The University of Queensland Centre for Clinical Research, Herston, Australia
- Mental Health Service, Royal Brisbane & Women's Hospital, Herston, Australia
| | - Nadeeka N Dissanayaka
- Faculty of Medicine, The University of Queensland Centre for Clinical Research, Herston, Australia
- School of Psychology, The University of Queensland, St Lucia, Australia
- Department of Neurology, Royal Brisbane & Women's Hospital, Herston, Australia
| |
Collapse
|
3
|
Wei Y, Zhang C, Peng Y, Chen C, Han S, Wang W, Zhang Y, Lu H, Cheng J. MRI Assessment of Intrinsic Neural Timescale and Gray Matter Volume in Parkinson's Disease. J Magn Reson Imaging 2024; 59:987-995. [PMID: 37318377 DOI: 10.1002/jmri.28864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Numerous studies have indicated altered temporal features of the brain function in Parkinson's disease (PD), and the autocorrelation magnitude of intrinsic neural signals, called intrinsic neural timescales, were often applied to estimate how long neural information stored in local brain areas. However, it is unclear whether PD patients at different disease stages exhibit abnormal timescales accompanied with abnormal gray matter volume (GMV). PURPOSE To assess the intrinsic timescale and GMV in PD. STUDY TYPE Prospective. POPULATION 74 idiopathic PD patients (44 early stage (PD-ES) and 30 late stage (PD-LS), as determined by the Hoehn and Yahr (HY) severity classification scale), and 73 healthy controls (HC). FIELD STRENGTH/SEQUENCE 3.0 T MRI scanner; magnetization prepared rapid acquisition gradient echo and echo planar imaging sequences. ASSESSMENT The timescales were estimated by using the autocorrelation magnitude of neural signals. Voxel-based morphometry was performed to calculate GMV in the whole brain. Severity of motor symptoms and cognitive impairments were assessed using the unified PD rating scale, the HY scale, the Montreal cognitive assessment, and the mini-mental state examination. STATISTICAL TEST Analysis of variance; two-sample t-test; Spearman rank correlation analysis; Mann-Whitney U test; Kruskal-Wallis' H test. A P value <0.05 was considered statistically significant. RESULTS The PD group had significantly abnormal intrinsic timescales in the sensorimotor, visual, and cognitive-related areas, which correlated with the symptom severity (ρ = -0.265, P = 0.022) and GMV (ρ = 0.254, P = 0.029). Compared to the HC group, the PD-ES group had significantly longer timescales in anterior cortical regions, whereas the PD-LS group had significantly shorter timescales in posterior cortical regions. CONCLUSION This study suggested that PD patients have abnormal timescales in multisystem and distinct patterns of timescales and GMV in cerebral cortex at different disease stages. This may provide new insights for the neural substrate of PD. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chunyan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuanyuan Peng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
4
|
Shen Q, Liao H, Cai S, Liu Q, Wang M, Song C, Zhou F, Liu Y, Yuan J, Tang Y, Li X, Liu J, Tan C. Cortical gyrification pattern of depression in Parkinson's disease: a neuroimaging marker for disease severity? Front Aging Neurosci 2023; 15:1241516. [PMID: 38035271 PMCID: PMC10682087 DOI: 10.3389/fnagi.2023.1241516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Although the study of the neuroanatomical correlates of depression in Parkinson's Disease (PD) is gaining increasing interest, up to now the cortical gyrification pattern of PD-related depression has not been reported. This study was conducted to investigate the local gyrification index (LGI) in PD patients with depression, and its associations with the severity of depression. Methods LGI values, as measured using FreeSurfer software, were compared between 59 depressed PD (dPD), 27 non-depressed PD (ndPD) patients and 43 healthy controls. The values were also compared between ndPD and mild-depressed PD (mi-dPD), moderate-depressed PD (mo-dPD) and severe-depressed PD (se-dPD) patients as sub-group analyses. Furthermore, we evaluated the correlation between LGI values and depressive symptom scores within dPD group. Results Compared to ndPD, the dPD patients exhibited decreased LGI in the left parietal, the right superior-frontal, posterior cingulate and paracentral regions, and the LGI values within these areas negatively correlated with the severity of depression. Specially, reduced gyrification was observed in mo-dPD and involving a larger region in se-dPD, but not in mi-dPD group. Conclusion The present study demonstrated that cortical gyrification is decreased within specific brain regions among PD patients with versus without depression, and those changes were associated with the severity of depression. Our findings suggested that cortical gyrification might be a potential neuroimaging marker for the severity of depression in patients with PD.
Collapse
|
5
|
Permezel F, Alty J, Harding IH, Thyagarajan D. Brain Networks Involved in Sensory Perception in Parkinson's Disease: A Scoping Review. Brain Sci 2023; 13:1552. [PMID: 38002513 PMCID: PMC10669548 DOI: 10.3390/brainsci13111552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's Disease (PD) has historically been considered a disorder of motor dysfunction. However, a growing number of studies have demonstrated sensory abnormalities in PD across the modalities of proprioceptive, tactile, visual, auditory and temporal perception. A better understanding of these may inform future drug and neuromodulation therapy. We analysed these studies using a scoping review. In total, 101 studies comprising 2853 human participants (88 studies) and 125 animals (13 studies), published between 1982 and 2022, were included. These highlighted the importance of the basal ganglia in sensory perception across all modalities, with an additional role for the integration of multiple simultaneous sensation types. Numerous studies concluded that sensory abnormalities in PD result from increased noise in the basal ganglia and increased neuronal receptive field size. There is evidence that sensory changes in PD and impaired sensorimotor integration may contribute to motor abnormalities.
Collapse
Affiliation(s)
- Fiona Permezel
- Department of Neuroscience, Monash University, Melbourne 3004, Australia; (F.P.); (I.H.H.)
- Department of Neurology, Mayo Clinic, Rochester, MN 55901, USA
| | - Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart 7001, Australia;
| | - Ian H. Harding
- Department of Neuroscience, Monash University, Melbourne 3004, Australia; (F.P.); (I.H.H.)
| | - Dominic Thyagarajan
- Department of Neuroscience, Monash University, Melbourne 3004, Australia; (F.P.); (I.H.H.)
| |
Collapse
|
6
|
Li T, Liu T, Zhang J, Ma Y, Wang G, Suo D, Yang B, Wang X, Funahashi S, Zhang K, Fang B, Yan T. Neurovascular coupling dysfunction of visual network organization in Parkinson's disease. Neurobiol Dis 2023; 188:106323. [PMID: 37838006 DOI: 10.1016/j.nbd.2023.106323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Parkinson's disease (PD) has been showed perfusion and neural activity alterations in specific regions, such as the motor and visual networks; however, the clinical significance of coupling changes is still unknown. To identify how neurovascular coupling changes during the pathophysiology of PD, patients and healthy controls underwent multiparametric magnetic resonance imaging to measure neural activity organization of segregation and integration using amplitude of low-frequency fluctuation (ALFF) and functional connectivity strength (FCS), and measure vascular responses using cerebral blood flow (CBF). Neurovascular coupling was calculated as the global CBF-ALFF and CBF-FCS coupling and the regional CBF/ALFF and CBF/FCS ratio. Correlations and dynamic causal modeling was then used to evaluate relationships with disease-alterations to clinical variables and information flow. Neurovascular coupling was impaired in PD with decreased global CBF-ALFF and CBF-FCS coupling, as well as decreased CBF/ALFF in the parieto-occipital cortex (dorsal visual stream) and CBF/FCS in the temporo-occipital cortex (ventral visual stream); these decouplings were associated with motor and non-motor impairments. The distinctive patterns of neurovascular coupling alterations within the dorsal and ventral visual streams of the visual system could potentially provide additional understanding into the pathophysiological mechanisms of PD.
Collapse
Affiliation(s)
- Ting Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Jian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yunxiao Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Gongshu Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Bowen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
7
|
Shang S, Zhu S, Wu J, Xu Y, Chen L, Dou W, Yin X, Chen Y, Shen D, Ye J. Topological disruption of high-order functional networks in cognitively preserved Parkinson's disease. CNS Neurosci Ther 2022; 29:566-576. [PMID: 36468414 PMCID: PMC9873517 DOI: 10.1111/cns.14037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 12/07/2022] Open
Abstract
AIMS This study aimed to characterize the topological alterations and classification performance of high-order functional connectivity (HOFC) networks in cognitively preserved patients with Parkinson's disease (PD), relative to low-order FC (LOFC) networks. METHODS The topological metrics of the constructed networks (LOFC and HOFC) obtained from fifty-one cognitively normal patients with PD and 60 matched healthy control subjects were analyzed. The discriminative abilities were evaluated using machine learning approach. RESULTS The HOFC networks in the PD group showed decreased segregation and integration. The normalized clustering coefficient and small-worldness in the HOFC networks were correlated to motor performance. The altered nodal centralities (distributed in the precuneus, putamen, lingual gyrus, supramarginal gyrus, motor area, postcentral gyrus and inferior occipital gyrus) and intermodular FC (frontoparietal and visual networks, sensorimotor and subcortical networks) were specific to HOFC networks. Several highly connected nodes (thalamus, paracentral lobule, calcarine fissure and precuneus) and improved classification performance were found based on HOFC profiles. CONCLUSION This study identified disrupted topology of functional interactions at a high level with extensive alterations in topological properties and improved differentiation ability in patients with PD prior to clinical symptoms of cognitive impairment, providing complementary insights into complex neurodegeneration in PD.
Collapse
Affiliation(s)
- Song'an Shang
- Department of Medical imaging centerClinical Medical College, Yangzhou UniversityYangzhouChina
| | - Siying Zhu
- Department of Medical imaging centerClinical Medical College, Yangzhou UniversityYangzhouChina
| | - Jingtao Wu
- Department of Medical imaging centerClinical Medical College, Yangzhou UniversityYangzhouChina
| | - Yao Xu
- Department of NeurologyClinical Medical College, Yangzhou UniversityYangzhouChina
| | - Lanlan Chen
- Department of NeurologyClinical Medical College, Yangzhou UniversityYangzhouChina
| | | | - Xindao Yin
- Department of RadiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Yu‐Chen Chen
- Department of RadiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Dejuan Shen
- Department of Medical imaging centerClinical Medical College, Yangzhou UniversityYangzhouChina
| | - Jing Ye
- Department of Medical imaging centerClinical Medical College, Yangzhou UniversityYangzhouChina
| |
Collapse
|
8
|
Impaired Brain Information Transmission Efficiency and Flexibility in Parkinson’s Disease and Rapid Eye Movement Sleep Behavior Disorder: Evidence from Functional Connectivity and Functional Dynamics. PARKINSON'S DISEASE 2022; 2022:7495371. [PMID: 36160829 PMCID: PMC9499819 DOI: 10.1155/2022/7495371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder. Rapid eye movement sleep behavior disorder (RBD) is one of the prodromal symptoms of PD. Studies have shown that brain information transmission is affected in PD patients. Consequently, we hypothesized that brain information transmission is impaired in RBD and PD. To prove our hypothesis, we performed functional connectivity (FC) and functional dynamics analysis of three aspects—based on the whole brain, within the resting-state network (RSN), and the interaction between RSNs—using normal control (NC) (n = 21), RBD (n = 24), and PD (n = 45) resting-state functional magnetic resonance imaging (rs-fMRI) data sets. Furthermore, we tested the explanatory power of FC and functional dynamics for the clinical features. Our results found that the global functional dynamics and FC of RBD and PD were impaired. Within RSN, the impairment concentrated in the visual network (VIS) and sensorimotor network (SMN), and the impaired degree of SMN in RBD was higher than that in PD. On the interaction between RSNs, RBD showed a widespread decrease, and PD showed a focal decrease which concentrated in SMN and VIS. Finally, we proved FC and functional dynamics were related to clinical features. These differences confirmed that brain information transmission efficiency and flexibility are impaired in RBD and PD, and these impairments are associated with the clinical features of patients.
Collapse
|
9
|
Action and emotion perception in Parkinson's disease: A neuroimaging meta-analysis. Neuroimage Clin 2022; 35:103031. [PMID: 35569229 PMCID: PMC9112018 DOI: 10.1016/j.nicl.2022.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/01/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022]
Abstract
The neural substrates for action and emotion perception deficits in PD are still unclear. We addressed this issue via coordinate-based meta-analyses of previous fMRI data. PD patients exhibit decreased response in the basal ganglia. PD patients exhibit a trend toward decreased response in the parietal areas. PD patients exhibit a trend toward increased activation in the posterior cerebellum.
Patients with Parkinson disease (PD) may show impairments in the social perception. Whether these deficits have been consistently reported, it remains to be clarified which brain alterations subtend them. To this aim, we conducted a neuroimaging meta-analysis to compare the brain activity during social perception in patients with PD versus healthy controls. Our results show that PD patients exhibit a significantly decreased response in the basal ganglia (putamen and pallidum) and a trend toward decreased activity in the mirror system, particularly in the left parietal cortex (inferior parietal lobule and intraparietal sulcus). This reduced activation may be tied to a disruption of cognitive resonance mechanisms and may thus constitute the basis of impaired others’ representations underlying action and emotion perception. We also found increased activation in the posterior cerebellum in PD, although only in a within-group analysis and not in comparison with healthy controls. This cerebellar activation may reflect compensatory mechanisms, an aspect that deserves further investigation. We discuss the clinical implications of our findings for the development of novel social skill training programs for PD patients.
Collapse
|
10
|
Alfano V, Federico G, Mele G, Garramone F, Esposito M, Aiello M, Salvatore M, Cavaliere C. Brain Networks Involved in Depression in Patients with Frontotemporal Dementia and Parkinson’s Disease: An Exploratory Resting-State Functional Connectivity MRI Study. Diagnostics (Basel) 2022; 12:diagnostics12040959. [PMID: 35454007 PMCID: PMC9029925 DOI: 10.3390/diagnostics12040959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/10/2022] [Indexed: 11/25/2022] Open
Abstract
Depression is characterized by feelings of sadness, loss, or anger that may interfere with everyday activities. Such a neuropsychiatric condition is commonly reported in multiple neurodegenerative disorders, which are quite different from each other. This study aimed at investigating the brain networks involved in depression in patients with frontotemporal dementia (FTD) and Parkinson’s disease (PD) as compared to healthy controls (HC). Fifty participants were included in the study: 17 depressed FTD/PD patients; 17 non-depressed FTD/PD patients; and 16 non-depressed HCs matched for age and gender. We used the Beck depression inventory (BDI-II) to measure depression in all groups. On the same day, 3T brain magnetic resonance with structural and resting-state functional sequences were acquired. Differences in resting-state functional connectivity (FC) between depressed and non-depressed patients in all the experimental groups were assessed by using seed-to-seed and network-to-network approaches. We found a significant seed-to-seed hyperconnectivity patterns between the left thalamus and the left posterior temporal fusiform cortex, which differentiated FTD/PD depressed patients from the HCs. Network-to-network analysis revealed a significant hyperconnectivity among the default-mode network (left lateral-parietal region), the medial prefrontal cortex and the left lateral prefrontal cortex (i.e., part of the central executive network). We investigated whether such FC patterns could be related to the underlying neurodegenerative disorder by replicating the analyses with two independent samples (i.e., non-depressed PD and non-depressed FTD patients) and adding clinical parameters as covariates. We found no FC differences in these groups, thus suggesting how the FC pattern we found may signal a common depression-related neural pathway implicated in both the neurocognitive disorders.
Collapse
Affiliation(s)
- Vincenzo Alfano
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Synlab SDN, Via Emanuele Gianturco, 113, 80143 Naples, Italy; (V.A.); (G.M.); (F.G.); (M.A.); (M.S.); (C.C.)
| | - Giovanni Federico
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Synlab SDN, Via Emanuele Gianturco, 113, 80143 Naples, Italy; (V.A.); (G.M.); (F.G.); (M.A.); (M.S.); (C.C.)
- Correspondence:
| | - Giulia Mele
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Synlab SDN, Via Emanuele Gianturco, 113, 80143 Naples, Italy; (V.A.); (G.M.); (F.G.); (M.A.); (M.S.); (C.C.)
| | - Federica Garramone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Synlab SDN, Via Emanuele Gianturco, 113, 80143 Naples, Italy; (V.A.); (G.M.); (F.G.); (M.A.); (M.S.); (C.C.)
| | - Marcello Esposito
- Azienda Ospedaliera di Rilievo Nazionale (AORN) Antonio Cardarelli, 80131 Naples, Italy;
| | - Marco Aiello
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Synlab SDN, Via Emanuele Gianturco, 113, 80143 Naples, Italy; (V.A.); (G.M.); (F.G.); (M.A.); (M.S.); (C.C.)
| | - Marco Salvatore
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Synlab SDN, Via Emanuele Gianturco, 113, 80143 Naples, Italy; (V.A.); (G.M.); (F.G.); (M.A.); (M.S.); (C.C.)
| | - Carlo Cavaliere
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Synlab SDN, Via Emanuele Gianturco, 113, 80143 Naples, Italy; (V.A.); (G.M.); (F.G.); (M.A.); (M.S.); (C.C.)
| |
Collapse
|
11
|
Tajitsu H, Fukumoto Y, Asai T, Monjo H, Kubo H, Oshima K, Koyama S. Association between knee extensor force steadiness and postural stability against mechanical perturbation in patients with Parkinson’s disease. J Electromyogr Kinesiol 2022; 64:102660. [DOI: 10.1016/j.jelekin.2022.102660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
|
12
|
Mijalkov M, Volpe G, Pereira JB. Directed Brain Connectivity Identifies Widespread Functional Network Abnormalities in Parkinson's Disease. Cereb Cortex 2022; 32:593-607. [PMID: 34331060 PMCID: PMC8805861 DOI: 10.1093/cercor/bhab237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 11/14/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by topological abnormalities in large-scale functional brain networks, which are commonly analyzed using undirected correlations in the activation signals between brain regions. This approach assumes simultaneous activation of brain regions, despite previous evidence showing that brain activation entails causality, with signals being typically generated in one region and then propagated to other ones. To address this limitation, here, we developed a new method to assess whole-brain directed functional connectivity in participants with PD and healthy controls using antisymmetric delayed correlations, which capture better this underlying causality. Our results show that whole-brain directed connectivity, computed on functional magnetic resonance imaging data, identifies widespread differences in the functional networks of PD participants compared with controls, in contrast to undirected methods. These differences are characterized by increased global efficiency, clustering, and transitivity combined with lower modularity. Moreover, directed connectivity patterns in the precuneus, thalamus, and cerebellum were associated with motor, executive, and memory deficits in PD participants. Altogether, these findings suggest that directional brain connectivity is more sensitive to functional network differences occurring in PD compared with standard methods, opening new opportunities for brain connectivity analysis and development of new markers to track PD progression.
Collapse
Affiliation(s)
- Mite Mijalkov
- Address correspondence to Mite Mijalkov and Joana B. Pereira, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Neo 7th floor, Blickagången 16, 141 83 Huddinge, Sweden. (M.M.); (J.B.P.)
| | | | - Joana B Pereira
- Address correspondence to Mite Mijalkov and Joana B. Pereira, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Neo 7th floor, Blickagången 16, 141 83 Huddinge, Sweden. (M.M.); (J.B.P.)
| |
Collapse
|
13
|
Vanegas-Arroyave N, Chen DF, Lauro PM, Norato G, Lungu C, Hallett M. Where Do Parkinson's Disease Patients Look while Walking? Mov Disord 2022; 37:864-869. [PMID: 34997620 DOI: 10.1002/mds.28917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is associated with gait and visuomotor abnormalities, but it is not clear where PD patients look during ambulation. OBJECTIVE We sought to characterize the visual areas of interest explored by PD patients, with and without freezing of gait (FOG), compared to healthy volunteers (HVs). METHODS Using an eye-tracking device, we compared visual fixation patterns in 17 HVs and 18 PD patients, with and without FOG, during an ambulatory and a nonambulatory, computer-based task. RESULTS During ambulation, PD patients with FOG fixated more on proximal areas of the ground and less on the target destination. PD patients without FOG displayed a fixation pattern more similar to that of HVs. Similar patterns were observed during the nonambulatory, computer-based task. CONCLUSIONS Our findings suggest increased dependence on visual feedback from nearby areas in the environment in PD patients with FOG, even in the absence of motor demands. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Denise F Chen
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Peter M Lauro
- The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Gina Norato
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Bellot E, Kauffmann L, Coizet V, Meoni S, Moro E, Dojat M. Effective connectivity in subcortical visual structures in de novo Patients with Parkinson's Disease. Neuroimage Clin 2021; 33:102906. [PMID: 34891045 PMCID: PMC8670854 DOI: 10.1016/j.nicl.2021.102906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Parkinson's disease (PD) manifests with the appearance of non-motor symptoms before motor symptoms onset. Among these, dysfunctioning visual structures have recently been reported to occur at early disease stages. OBJECTIVE This study addresses effective connectivity in the visual network of PD patients. METHODS Using functional MRI and dynamic causal modeling analysis, we evaluated the connectivity between the superior colliculus, the lateral geniculate nucleus and the primary visual area V1 in de novo untreated PD patients (n = 22). A subset of the PD patients (n = 8) was longitudinally assessed two times at two months and at six months after starting dopaminergic treatment. Results were compared to those of age-matched healthy controls (n = 22). RESULTS Our results indicate that the superior colliculus drives cerebral activity for luminance contrast processing both in healthy controls and untreated PD patients. The same effective connectivity was observed with neuromodulatory differences in terms of neuronal dynamic interactions. Our main findings were that the modulation induced by luminance contrast changes of the superior colliculus connectivity (self-connectivity and connectivity to the lateral geniculate nucleus) was inhibited in PD patients (effect of contrast: p = 0.79 and p = 0.77 respectively). The introduction of dopaminergic medication in a subset (n = 8) of the PD patients failed to restore the effective connectivity modulation observed in the healthy controls. INTERPRETATION The deficits in luminance contrast processing in PD was associated with a deficiency in connectivity adjustment from the superior colliculus to the lateral geniculate nucleus and to V1. No differences in cerebral blood flow were observed between controls and PD patients suggesting that the deficiency was at the neuronal level. Administration of a dopaminergic treatment over six months was not able to normalize the observed alterations in inter-regional coupling. These findings highlight the presence of early dysfunctions in primary visual areas, which might be used as early markers of the disease.
Collapse
Affiliation(s)
- Emmanuelle Bellot
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France
| | - Louise Kauffmann
- Laboratory of Psychology and Neurocognition, CNRS UMR 5105, Grenoble, France
| | - Véronique Coizet
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France
| | - Sara Meoni
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France; Laboratory of Psychology and Neurocognition, CNRS UMR 5105, Grenoble, France; Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
| | - Elena Moro
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France; Laboratory of Psychology and Neurocognition, CNRS UMR 5105, Grenoble, France
| | - Michel Dojat
- University Grenoble Alpes, Inserm U1216, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neurosciences, Grenoble, France.
| |
Collapse
|
15
|
Rascunà C, Cicero CE, Chisari CG, Russo A, Giuliano L, Castellino N, Terravecchia C, Grillo M, Longo A, Avitabile T, Zappia M, Reibaldi M, Nicoletti A. Retinal thickness and microvascular pathway in Idiopathic Rapid eye movement sleep behaviour disorder and Parkinson's disease. Parkinsonism Relat Disord 2021; 88:40-45. [PMID: 34118642 DOI: 10.1016/j.parkreldis.2021.05.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Retinal impairment has previously been described in Parkinson's Disease (PD), also in early stage of disease. Idiopathic Rapid-eye-movement sleep Behavior Disorder (iRBD) is considered the strongest marker in the diagnosis of "Prodromal PD". Thus, we evaluated the thickness of retinal layers and the microvascular retinal pattern in a group of iRBD patients compared to PD and healthy subjects (HCs). METHODS retinal layer's thickness and microvascular pattern among PD, iRBD and HCs were assessed using Spectral-Density Optical Coherence Tomography (SD-OCT) and OCT-Angiography (OCT-A), respectively. RESULTS Forty-one eyes from 21 PD, 37 eyes from 19 iRBD and 33 eyes from 17 HCs were analysed. Peripapillary Retinal Nerve Fiber Layer (RNFL) was thinner in PD and RBD compared to HCs. All macular retinal layers, except for retinal pigment epithelium, resulted to be significantly thinner in iRBD and in PD compared to HCs, also adjusting by age, sex and hypertension. Macular RNFL and ganglionic cell layer were thinner in PD compared to iRBD. Moreover, in iRBD, a peculiar microvascular pattern was found, characterized by a higher vascularization of the deep capillary plexus with respect both PD patients and HCs. CONCLUSION in PD and iRBD patients retina was thinner than HCs, and values of iRBD were between PD and HCs. Moreover, in iRBD, a peculiar microvascular pattern has been found, characterized by a higher vascularization of the deep capillary plexus. Our findings suggest that retina might be considered a biomarker of neurodegeneration in iRBD, easily estimable using non-invasive tool such as OCT and OCT-A.
Collapse
Affiliation(s)
- Cristina Rascunà
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, Section of Neurosciences, University of Catania, Catania, CT, Italy.
| | - Calogero Edoardo Cicero
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, Section of Neurosciences, University of Catania, Catania, CT, Italy.
| | - Clara Grazia Chisari
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, Section of Neurosciences, University of Catania, Catania, CT, Italy.
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, Catania, CT, Italy.
| | - Loretta Giuliano
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, Section of Neurosciences, University of Catania, Catania, CT, Italy.
| | | | - Claudio Terravecchia
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, Section of Neurosciences, University of Catania, Catania, CT, Italy.
| | - Marco Grillo
- Department of Ophthalmology, University of Catania, Catania, CT, Italy.
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, Catania, CT, Italy.
| | - Teresio Avitabile
- Department of Ophthalmology, University of Catania, Catania, CT, Italy.
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, Section of Neurosciences, University of Catania, Catania, CT, Italy.
| | - Michele Reibaldi
- Department of Ophthalmology, University of Catania, Catania, CT, Italy.
| | - Alessandra Nicoletti
- Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, Section of Neurosciences, University of Catania, Catania, CT, Italy.
| |
Collapse
|
16
|
Within- and across-network alterations of the sensorimotor network in Parkinson's disease. Neuroradiology 2021; 63:2073-2085. [PMID: 34019112 PMCID: PMC8589810 DOI: 10.1007/s00234-021-02731-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/02/2021] [Indexed: 12/03/2022]
Abstract
Purpose Parkinson’s disease (PD) is primarily defined by motor symptoms and is associated with alterations of sensorimotor areas. Evidence for network changes of the sensorimotor network (SMN) in PD is inconsistent and a systematic evaluation of SMN in PD yet missing. We investigate functional connectivity changes of the SMN in PD, both, within the network, and to other large-scale connectivity networks. Methods Resting-state fMRI was assessed in 38 PD patients under long-term dopaminergic treatment and 43 matched healthy controls (HC). Independent component analysis (ICA) into 20 components was conducted and the SMN was identified within the resulting networks. Functional connectivity within the SMN was analyzed using a dual regression approach. Connectivity between the SMN and the other networks from group ICA was investigated with FSLNets. We investigated for functional connectivity changes between patients and controls as well as between medication states (OFF vs. ON) in PD and for correlations with clinical parameters. Results There was decreased functional connectivity within the SMN in left inferior parietal and primary somatosensory cortex in PD OFF. Across networks, connectivity between SMN and two motor networks as well as two visual networks was diminished in PD OFF. All connectivity decreases partially normalized in PD ON. Conclusion PD is accompanied by functional connectivity losses of the SMN, both, within the network and in interaction to other networks. The connectivity changes in short- and long-range connections are probably related to impaired sensory integration for motor function in PD. SMN decoupling can be partially compensated by dopaminergic therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-021-02731-w.
Collapse
|
17
|
Functional Correlates of Action Observation of Gait in Patients with Parkinson's Disease. Neural Plast 2021; 2020:8869201. [PMID: 33456457 PMCID: PMC7787806 DOI: 10.1155/2020/8869201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 11/28/2022] Open
Abstract
Background Action observation (AO) relies on the mirror neuron system (MNS) and has been proposed as a rehabilitation tool in Parkinson's disease (PD), in particular for gait disorder such as freezing of gait (FOG). In this study, we aimed to explore the brain functional correlates of the observation of human gait in PD patients with (FOG+) and without (FOG-) FOG and to investigate a possible relationship between AO-induced brain activation and gait performance. Methods Fifty-four participants were enrolled in the study (15 PD FOG+; 18 PD FOG-; 21 healthy subjects (HS)) which consisted of two tasks in two separate days: (i) gait assessment and (ii) task-fMRI during AO of gait. Differences between patients with PD (FOG+ and FOG-) and HS were assessed at the level of behavioral and functional analysis. Results Gait parameters, including gait velocity, stride length, and their coefficients of variability (CV), were different in PD patients compared to HS, whereas gait performance was similar between FOG+ and FOG-. The PD group, compared to HS, presented reduced functional activation in the frontal, cingulum, and parietooccipital regions. Reduced activity was more pronounced in the FOG+ group, compared to both HS and FOG- groups. Gait variability positively correlated with precuneus neural activity in the FOG+ group. Discussion. Patients with PD present a reduced functional activity during AO of gait, especially if FOG+. A baseline knowledge of the neural correlates of AO of gait in the clinical routine “on” status would help for the design of future AO rehabilitative interventions.
Collapse
|
18
|
Indrieri A, Pizzarelli R, Franco B, De Leonibus E. Dopamine, Alpha-Synuclein, and Mitochondrial Dysfunctions in Parkinsonian Eyes. Front Neurosci 2020; 14:567129. [PMID: 33192254 PMCID: PMC7604532 DOI: 10.3389/fnins.2020.567129] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by motor dysfunctions including bradykinesia, tremor at rest and motor instability. These symptoms are associated with the progressive degeneration of dopaminergic neurons originating in the substantia nigra pars compacta and projecting to the corpus striatum, and by accumulation of cytoplasmic inclusions mainly consisting of aggregated alpha-synuclein, called Lewy bodies. PD is a complex, multifactorial disorder and its pathogenesis involves multiple pathways and mechanisms such as α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport, and neuroinflammation. Motor symptoms manifest when there is already an extensive dopamine denervation. There is therefore an urgent need for early biomarkers to apply disease-modifying therapeutic strategies. Visual defects and retinal abnormalities, including decreased visual acuity, abnormal spatial contrast sensitivity, color vision defects, or deficits in more complex visual tasks are present in the majority of PD patients. They are being considered for early diagnosis together with retinal imaging techniques are being considered as non-invasive biomarkers for PD. Dopaminergic cells can be found in the retina in a subpopulation of amacrine cells; however, the molecular mechanisms leading to visual deficits observed in PD patients are still largely unknown. This review provides a comprehensive analysis of the retinal abnormalities observed in PD patients and animal models and of the molecular mechanisms underlying neurodegeneration in parkinsonian eyes. We will review the role of α-synuclein aggregates in the retina pathology and/or in the onset of visual symptoms in PD suggesting that α-synuclein aggregates are harmful for the retina as well as for the brain. Moreover, we will summarize experimental evidence suggesting that the optic nerve pathology observed in PD resembles that seen in mitochondrial optic neuropathies highlighting the possible involvement of mitochondrial abnormalities in the development of PD visual defects. We finally propose that the eye may be considered as a complementary experimental model to identify possible novel disease’ pathways or to test novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Institute for Genetic and Biomedical Research, National Research Council, Milan, Italy
| | - Rocco Pizzarelli
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Institute of Biochemistry and Cellular Biology, National Research Council, Rome, Italy
| |
Collapse
|
19
|
Rascunà C, Russo A, Terravecchia C, Castellino N, Avitabile T, Bonfiglio V, Fallico M, Chisari CG, Cicero CE, Grillo M, Longo A, Luca A, Mostile G, Zappia M, Reibaldi M, Nicoletti A. Retinal Thickness and Microvascular Pattern in Early Parkinson's Disease. Front Neurol 2020; 11:533375. [PMID: 33117254 PMCID: PMC7575742 DOI: 10.3389/fneur.2020.533375] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023] Open
Abstract
A thinning of intraretinal layers has been previously described in Parkinson's disease (PD) patients compared to healthy controls (HCs). Few studies evaluated the possible correlation between retinal thickness and retinal microvascularization. Thus, here we assessed the thickness of retinal layers and microvascular pattern in early PD patients and HCs, using, respectively, spectral-domain optical coherence tomography (SD-OCT) and SD-OCT-angiography (SD-OCT-A), and more interestingly, we evaluated a possible correlation between retinal thickness and microvascular pattern. Patients fulfilling criteria for clinically established/clinically probable PD and HCs were enrolled. Exclusion criteria were any ocular, retinal, and systemic disease impairing the visual system. Retinal vascularization was analyzed using SD-OCT-A, and retinal layer thickness was assessed using SD-OCT. Forty-one eyes from 21 PD patients and 33 eyes from 17 HCs were evaluated. Peripapillary retinal nerve fiber layer (RNFL) and macular RNFL, ganglionic cell layer (GCL), inner plexiform layer (IPL), and inner nuclear layer (INL), resulted to be thinner in PD compared to HCs. Among PD patients, a positive correlation between RNFL, GCL, and IPL thickness and microvascular density was found in the foveal region, also adjusting by age, sex, and, especially, hypertension. Such findings were already present in the early stage of disease and were irrespective of dopaminergic treatment. Thus, the retina might be considered a biomarker of PD and could be a useful instrument for onset and disease progression.
Collapse
Affiliation(s)
- Cristina Rascunà
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Claudio Terravecchia
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | | | | | | | - Matteo Fallico
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Clara Grazia Chisari
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Calogero Edoardo Cicero
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Marco Grillo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Antonina Luca
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Giovanni Mostile
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Mario Zappia
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| | - Michele Reibaldi
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Alessandra Nicoletti
- Section of Neurosciences, Department of Medical, Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy
| |
Collapse
|
20
|
Yue Y, Jiang Y, Shen T, Pu J, Lai HY, Zhang B. ALFF and ReHo Mapping Reveals Different Functional Patterns in Early- and Late-Onset Parkinson's Disease. Front Neurosci 2020; 14:141. [PMID: 32158380 PMCID: PMC7052327 DOI: 10.3389/fnins.2020.00141] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
Heterogeneity between late-onset Parkinson's disease (LOPD) and early-onset Parkinson's disease (EOPD) is mainly reflected in the following aspects including genetics, disease progression, drug response, clinical manifestation, and neuropathological change. Although many studies have investigated these differences in relation to clinical significance, the functional processing circuits and underlying neural mechanisms have not been entirely understood. In this study, regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF) maps were used to explore different spontaneous brain activity patterns in EOPD and LOPD patients. Abnormal synchronizations were found in the motor and emotional circuits of the EOPD group, as well as in the motor, emotional, and visual circuits of the LOPD group. EOPD patients showed functional activity change in the visual, emotional and motor circuits, and LOPD patients only showed increased functional activity in the emotional circuits. In summary, the desynchronization process in the LOPD group was relatively strengthened, and the brain areas with changed functional activity in the EOPD group were relatively widespread. The results might point out different impairments in the synchronization and functional activity for EOPD and LOPD patients.
Collapse
Affiliation(s)
- Yumei Yue
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yasi Jiang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Ting Shen
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jiali Pu
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hsin-Yi Lai
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Dan R, Růžička F, Bezdicek O, Roth J, Růžička E, Vymazal J, Goelman G, Jech R. Impact of dopamine and cognitive impairment on neural reactivity to facial emotion in Parkinson's disease. Eur Neuropsychopharmacol 2019; 29:1258-1272. [PMID: 31607424 DOI: 10.1016/j.euroneuro.2019.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022]
Abstract
Emotional and cognitive impairments in Parkinson's disease (PD) are prevalent, hamper interpersonal relations and reduce quality of life. It is however unclear to what extent these domains interplay in PD-related deficits and how they are influenced by dopaminergic availability. This study examined the effect of cognitive impairment and dopaminergic medication on neural and behavioral mechanisms of facial emotion recognition in PD patients. PD patients on and off dopaminergic medication and matched healthy controls underwent an emotional face matching task during functional MRI. In addition, a comprehensive neuropsychological evaluation of cognitive function was conducted. Increased BOLD response to emotional faces was found in the visual cortex of PD patients relative to controls irrespective of cognitive function and medication status. Administration of dopaminergic medication in PD patients resulted in restored behavioral accuracy for emotional faces relative to controls and decreased retrosplenial cortex BOLD response to emotion relative to off-medication state. Furthermore, cognitive impairment in PD patients was associated with reduced behavioral accuracy for non-emotional stimuli and predicted BOLD response to emotion in the anterior and posterior cingulate cortices, depending on medication status. Findings of aberrant visual and retrosplenial BOLD response to emotion are suggested to stem from altered attentional and/or emotion-driven modulation from subcortical and higher cortical regions. Our results indicate neural disruptions and behavioral deficits in emotion processing in PD patients that are dependent on dopaminergic availability and independent of cognitive function. Our findings highlight the importance of dopaminergic treatment not only for the motor symptoms but also the emotional disturbances in PD.
Collapse
Affiliation(s)
- Rotem Dan
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Filip Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia; Department of Radiology, Na Homolce Hospital, Prague, Czechia
| | - Ondrej Bezdicek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia
| | - Jan Roth
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia
| | - Evžen Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia
| | - Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Prague, Czechia
| | - Gadi Goelman
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia; Department of Radiology, Na Homolce Hospital, Prague, Czechia
| |
Collapse
|
22
|
Regional homogeneity analysis of major Parkinson’s disease subtypes based on functional magnetic resonance imaging. Neurosci Lett 2019; 706:81-87. [DOI: 10.1016/j.neulet.2019.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/09/2019] [Indexed: 01/21/2023]
|
23
|
Li M, Liu Y, Chen H, Hu G, Yu S, Ruan X, Luo Z, Wei X, Xie Y. Altered Global Synchronizations in Patients With Parkinson's Disease: A Resting-State fMRI Study. Front Aging Neurosci 2019; 11:139. [PMID: 31293411 PMCID: PMC6603131 DOI: 10.3389/fnagi.2019.00139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/23/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Abnormalities of cognitive and movement functions are widely reported in Parkinson’s disease (PD). The mechanisms therein are complicated and assumed to a coordination of various brain regions. This study explored the alterations of global synchronizations of brain activities and investigated the neural correlations of cognitive and movement function in PD patients. Methods: Thirty-five age-matched patients with PD and 35 normal controls (NC) were enrolled in resting-state functional magnetic resonance imaging (rs-fMRI) scanning. Degree centrality (DC) was calculated to measure the global synchronizations of brain activity for two groups. Neural correlations between DC and cognitive function Frontal Assessment Battery (FAB), as well as movement function Unified Parkinson’s Disease Rating Scale (UPDRS-III), were examined across the whole brain within Anatomical Automatic Labeling (AAL) templates. Results: In the PD group, increased DC was observed in left fusiform gyrus extending to inferior temporal gyrus, left middle temporal gyrus (MTG) and angular gyrus, while it was decreased in right inferior opercular-frontal gyrus extending to superior temporal gyrus (STG). The DC in a significant region of the fusiform gyrus was positively correlated with UPDRS-III scores in PD (r = 0.41, p = 0.0145). Higher FAB scores were shown in NC than PD (p < 0.0001). Correlative analysis of PD between DC and FAB showed negative results (p < 0.05) in frontal cortex, whereas positive in insula and cerebellum. As for the correlations between DC and UPDRS-III, negative correlation (p < 0.05) was observed in bilateral inferior parietal lobule (IPL) and right cerebellum, whereas positive correlation (p < 0.05) in bilateral hippocampus and para-hippocampus gyrus (p < 0.01). Conclusion: The altered global synchronizations revealed altered cognitive and movement functions in PD. The findings suggested that the global functional connectivity in fusiform gyrus, cerebellum and hippocampus gyrus are critical regions in the identification of cognitive and movement functions in PD. This study provides new insights on the interactions among global coordination of brain activity, cognitive and movement functions in PD.
Collapse
Affiliation(s)
- Mengyan Li
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yanjun Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haobo Chen
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guihe Hu
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shaode Yu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Radiation Oncology, Southwestern Medical Center, University of Texas, Dallas, TX, United States
| | - Xiuhang Ruan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | | | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yaoqin Xie
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
24
|
Guo L, Normando EM, Shah PA, De Groef L, Cordeiro MF. Oculo-visual abnormalities in Parkinson's disease: Possible value as biomarkers. Mov Disord 2018; 33:1390-1406. [DOI: 10.1002/mds.27454] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Li Guo
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
| | - Eduardo M. Normando
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Western Eye Hospital, Imperial College Healthcare National Health Service Trust; London UK
- Imperial College Ophthalmology Research Group, Department of Surgery and Cancer, Imperial College London; London UK
| | - Parth Arvind Shah
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
| | - Lies De Groef
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Neural Circuit Development and Regeneration Research Group, Department of Biology; University of Leuven; Leuven Belgium
| | - M. Francesca Cordeiro
- Glaucoma and Retinal Degenerative Disease Research Group, Institute of Ophthalmology; University College London; London UK
- Western Eye Hospital, Imperial College Healthcare National Health Service Trust; London UK
- Imperial College Ophthalmology Research Group, Department of Surgery and Cancer, Imperial College London; London UK
| |
Collapse
|
25
|
Visuospatial exploration and art therapy intervention in patients with Parkinson's disease: an exploratory therapeutic protocol. Complement Ther Med 2018; 40:70-76. [PMID: 30219472 DOI: 10.1016/j.ctim.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022] Open
Abstract
Though abnormalities of visuospatial function occur in Parkinson's disease, the impact of such deficits on functional independence and psychological wellbeing has been historically under- recognized, and effective treatments for this impairment are unknown. These symptoms can be encountered at any stage of the disease, affecting many activities of daily living, and negatively influencing mood, self-efficacy, independence, and overall quality of life. Furthermore, visuospatial dysfunction has been recently linked to gait impairment and falls, symptoms that are known to be poor prognostic factors. Here, we aim to present an original modality of neurorehabilitation designed to address visuospatial dysfunction and related symptoms in Parkinson's disease, known as "Art Therapy". Art creation relies on sophisticated neurologic mechanisms including shape recognition, motion perception, sensory-motor integration, abstraction, and eye-hand coordination. Furthermore, art therapy may enable subjects with disability to understand their emotions and express them through artistic creation and creative thinking, thus promoting self-awareness, relaxation, confidence and self-efficacy. The potential impact of this intervention on visuospatial dysfunction will be assessed by means of combined clinical, behavioral, gait kinematic, neuroimaging and eye tracking analyses. Potential favorable outcomes may drive further trials validating this novel paradigm of neurorehabilitation.
Collapse
|
26
|
Extraction of large-scale structural covariance networks from grey matter volume for Parkinson’s disease classification. Eur Radiol 2018. [DOI: 10.1007/s00330-018-5342-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Abstract
The topological organization underlying the human brain was extensively investigated using resting-state functional magnetic resonance imaging, focusing on a low frequency of signal oscillation from 0.01 to 0.1 Hz. However, the frequency specificities with regard to the topological properties of the brain networks have not been fully revealed. In this study, a novel complementary ensemble empirical mode decomposition (CEEMD) method was used to separate the fMRI time series into five characteristic oscillations with distinct frequencies. Then, the small world properties of brain networks were analyzed for each of these five oscillations in patients (n = 67) with depressed Parkinson’s disease (DPD, n = 20) , non-depressed Parkinson’s disease (NDPD, n = 47) and healthy controls (HC, n = 46). Compared with HC, the results showed decreased network efficiency in characteristic oscillations from 0.05 to 0.12 Hz and from 0.02 to 0.05 Hz for the DPD and NDPD patients, respectively. Furthermore, compared with HC, the most significant inter-group difference across five brain oscillations was found in the basal ganglia (0.01 to 0.05 Hz) and paralimbic-limbic network (0.02 to 0.22 Hz) for the DPD patients, and in the visual cortex (0.02 to 0.05 Hz) for the NDPD patients. Compared with NDPD, the DPD patients showed reduced efficiency of nodes in the basal ganglia network (0.01 to 0.05 Hz). Our results demonstrated that DPD is characterized by a disrupted topological organization in large-scale brain functional networks. Moreover, the CEEMD analysis suggested a prominent dissociation in the topological organization of brain networks between DPD and NDPD in both space and frequency domains. Our findings indicated that these characteristic oscillatory activities in different functional circuits may contribute to distinct motor and non-motor components of clinical impairments in Parkinson’s disease.
Collapse
|
28
|
Emek-Savaş DD, Özmüş G, Güntekin B, Dönmez Çolakoğlu B, Çakmur R, Başar E, Yener GG. Decrease of Delta Oscillatory Responses in Cognitively Normal Parkinson's Disease. Clin EEG Neurosci 2017; 48:355-364. [PMID: 27582502 DOI: 10.1177/1550059416666718] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder. This study aims to compare sensory-evoked oscillations (SEOs) and event-related oscillations (EROs) of visual modality in cognitively normal PD patients and healthy controls. Sixteen PD and 16 age-, gender-, and education-matched healthy controls participated in the study. A simple flashlight was used for SEO and a classical visual oddball paradigm was used for target ERO. Oscillatory responses in the delta frequency range (0.5-3.5 Hz) were examined. Significantly lower delta ERO and SEO responses were found in PD patients than healthy controls. Delta ERO responses were decreased at all frontal, central and parietal locations, whereas delta SEO responses were decreased over mid and right central locations in PD. According to the notion that SEO reflects the activity of sensory networks and ERO reflects cognitive networks, these findings indicate that PD patients have impairments in both cognitive and sensory networks of visual modality. Decreased delta ERO responses indicate that the subliminal cognitive changes in PD can be detected by electrophysiological methods. These results demonstrate that brain oscillatory responses have the potential to be studied as a biomarker for visual cognitive and sensory networks in PD.
Collapse
Affiliation(s)
- Derya Durusu Emek-Savaş
- 1 Department of Psychology, Dokuz Eylül University, Izmir, Turkey.,2 Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Gülin Özmüş
- 2 Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Bahar Güntekin
- 3 Department of Biophysics, Istanbul Medipol University, Istanbul, Turkey
| | | | - Raif Çakmur
- 4 Department of Neurology, Dokuz Eylül University Medical School, Izmir, Turkey.,5 Brain Dynamics Multidisciplinary Research Center, Dokuz Eylül University, Izmir, Turkey
| | - Erol Başar
- 6 Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - Görsev G Yener
- 2 Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey.,4 Department of Neurology, Dokuz Eylül University Medical School, Izmir, Turkey.,5 Brain Dynamics Multidisciplinary Research Center, Dokuz Eylül University, Izmir, Turkey.,6 Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey.,7 Izmir International Biomedicine and Genome Institute, Dokuz Eylül University Health Campus, Izmir, Turkey
| |
Collapse
|
29
|
Ma LY, Chen XD, He Y, Ma HZ, Feng T. Disrupted Brain Network Hubs in Subtype-Specific Parkinson's Disease. Eur Neurol 2017; 78:200-209. [PMID: 28898869 DOI: 10.1159/000477902] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/25/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND/AIMS The topological organization of brain functional networks is impaired in Parkinson's disease (PD). However, the altered patterns of functional network hubs in different subtypes of PD are not completely understood. METHODS 3T resting-state functional MRI and voxel-based graph-theory analysis were employed to systematically investigate the intrinsic functional connectivity patterns of whole-brain networks. We enrolled 31 patients with PD (12 tremor dominant [TD] and 19 with postural instability/gait difficulty [PIGD]) and 22 matched healthy controls. Whole-brain voxel-wise functional networks were constructed by measuring the temporal correlations of each pair of brain voxels. Functional connectivity strength was calculated to explore the brain network hubs. RESULTS We found that both the TD and PIGD subtypes had comprehensive disrupted regions. These mainly involved the basal ganglia, cerebellum, superior temporal gyrus, pre- and postcentral gyri, inferior frontal gyrus, middle temporal gyrus, lingual gyrus, insula, and parahippocampal gyrus. Furthermore, the PIGD subgroup had more disrupted hubs in the cerebellum than the TD subgroup. These disruptions of hub connectivity were not correlated with the HY stage or disease duration. CONCLUSION Our results emphasize the subtype-specific PD-related degeneration of brain hubs, providing novel insights into the pathophysiological mechanisms of connectivity dysfunction in different PD subgroups.
Collapse
|
30
|
Jin H, Zhang JR, Shen Y, Liu CF. Clinical Significance of REM Sleep Behavior Disorders and Other Non-motor Symptoms of Parkinsonism. Neurosci Bull 2017; 33:576-584. [PMID: 28770440 DOI: 10.1007/s12264-017-0164-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/14/2017] [Indexed: 12/16/2022] Open
Abstract
Rapid eye movement sleep behavior disorder (RBD) is one of the most common non-motor symptoms of parkinsonism, and it may serve as a prodromal marker of neurodegenerative disease. The mechanism underlying RBD is unclear. Several prospective studies have reported that specific non-motor symptoms predict a conversion risk of developing a neurodegenerative disease, including olfactory dysfunction, abnormal color vision, autonomic dysfunction, excessive daytime sleepiness, depression, and cognitive impairment. Parkinson's disease (PD) with RBD exhibits clinical heterogeneity with respect to motor and non-motor symptoms compared with PD without RBD. In this review, we describe the main clinical and pathogenic features of RBD, focusing on its association with other non-motor symptoms of parkinsonism.
Collapse
Affiliation(s)
- Hong Jin
- Department of Neurology and Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jin-Ru Zhang
- Department of Neurology and Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yun Shen
- Department of Neurology and Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Chun-Feng Liu
- Department of Neurology and Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
31
|
Lin WC, Chen HL, Hsu TW, Hsu CC, Huang YC, Tsai NW, Lu CH. Correlation between Dopamine Transporter Degradation and Striatocortical Network Alteration in Parkinson's Disease. Front Neurol 2017; 8:323. [PMID: 28769862 PMCID: PMC5511968 DOI: 10.3389/fneur.2017.00323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/21/2017] [Indexed: 11/13/2022] Open
Abstract
The association between dopamine neuron loss and functional change in the striatocortical network was analyzed in 31 patients with Parkinson's disease (PD) [mean disease duration 4.03 ± 4.20 years; Hoehn and Yahr (HY) stage 2.2 ± 1.2] and 37 age-matched normal control subjects. We performed 99mTc-TRODAT-1 SPECT/CT imaging to detect neuron losses and resting-state functional magnetic resonance imaging to detect functional changes. Mean striatal dopamine transporter binding ratios were determined by region of interest analysis. The functional connectivity correlation coefficient (fc-cc) was determined in six striatal subregions, and interactions between these binding ratios and the striatocortical fc-cc values were analyzed. The PD patients had significant functional network alterations in all striatal subregions. Lower striatal dopamine transporter binding correlated significantly with lower fc-cc values in the superior medial frontal (SMF) lobe and superior frontal lobe and higher fc-cc values in the cerebellum and parahippocampus. The difference in fc-cc between the ventral inferior striatum and SMF lobe was significantly correlated with increased disease duration (r = -0.533, P = 0.004), higher HY stage (r = -0.431, P = 0.020), and lower activities of daily living score (r = 0.369, P = 0.049). The correlation of frontostriatal network changes with clinical manifestations suggests that fc-cc may serve as a surrogate marker of disease progression.
Collapse
Affiliation(s)
- Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiu-Ling Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tun-Wei Hsu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Chin Hsu
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yung-Cheng Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Nai-Wen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
32
|
Yousaf T, Wilson H, Politis M. Imaging the Nonmotor Symptoms in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:179-257. [PMID: 28802921 DOI: 10.1016/bs.irn.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is acknowledged to be a multisystem syndrome, manifesting as a result of multineuropeptide dysfunction, including dopaminergic, cholinergic, serotonergic, and noradrenergic deficits. This multisystem disorder ultimately leads to the presentation of a range of nonmotor symptoms, now appreciated to be an integral part of the disease-specific spectrum of symptoms, often preceding the diagnosis of motor Parkinson's disease. In this chapter, we review the dopaminergic and nondopaminergic basis of these symptoms by exploring the neuroimaging evidence based on several techniques including positron emission tomography, single-photon emission computed tomography molecular imaging, magnetic resonance imaging, functional magnetic resonance imaging, and diffusion tensor imaging. We discuss the role of these neuroimaging techniques in elucidating the underlying pathophysiology of NMS in Parkinson's disease.
Collapse
Affiliation(s)
- Tayyabah Yousaf
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Heather Wilson
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| |
Collapse
|
33
|
Disrupted brain metabolic connectivity in a 6-OHDA-induced mouse model of Parkinson's disease examined using persistent homology-based analysis. Sci Rep 2016; 6:33875. [PMID: 27650055 PMCID: PMC5030651 DOI: 10.1038/srep33875] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 09/05/2016] [Indexed: 11/26/2022] Open
Abstract
Movement impairments in Parkinson’s disease (PD) are caused by the degeneration of dopaminergic neurons and the consequent disruption of connectivity in the cortico-striatal-thalamic loop. This study evaluated brain metabolic connectivity in a 6-Hydroxydopamine (6-OHDA)-induced mouse model of PD using 18F-fluorodeoxy glucose positron emission tomography (FDG PET). Fourteen PD-model mice and ten control mice were used for the analysis. Voxel-wise t-tests on FDG PET results yielded no significant regional metabolic differences between the PD and control groups. However, the PD group showed lower correlations between the right caudoputamen and the left caudoputamen and right visual cortex. Further network analyses based on the threshold-free persistent homology framework revealed that brain networks were globally disrupted in the PD group, especially between the right auditory cortex and bilateral cortical structures and the left caudoputamen. In conclusion, regional glucose metabolism of PD was preserved, but the metabolic connectivity of the cortico-striatal-thalamic loop was globally impaired in PD.
Collapse
|
34
|
Regional homogeneity alterations differentiate between tremor dominant and postural instability gait difficulty subtypes of Parkinson's disease. J Neural Transm (Vienna) 2015; 123:219-29. [PMID: 26666253 DOI: 10.1007/s00702-015-1490-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/23/2015] [Indexed: 01/30/2023]
Abstract
Parkinson's disease (PD) can be classified into the tremor dominant (TD) subtype and the postural instability gait difficulty (PIGD) subtype, which present with different clinical courses and prognoses. However, the symptom-specific intrinsic neural mechanisms underlying the subtypes of PD still remain elusive. In the current study, we utilized resting-state fMRI (rs-fMRI) combined with the regional homogeneity (ReHo) method to investigate the modulations of neural activity in 13 patients with predominantly PIGD (p-PIGD) and 15 patients with predominantly TD (p-TD) in the resting state. Compared with healthy controls, the p-PIGD and the p-TD groups both displayed ReHo changes in the default mode network (DMN). By contrast, the p-TD group exhibited more ReHo alterations in the cerebellum involved in the cerebello-thalamo-cortical (CTC) loops, whilst the p-PIGD group in extensive cortical and sub-cortical areas, including the frontal, parietal, occipital, temporal, limbic lobes, basal ganglia and thalamus, which are involved in the striatal-thalamo-cortical (STC) loops. Direct comparison between the two groups showed significant ReHo alterations in the primary visual cortex. Our findings underscore the differential involvement of the STC and CTC circuits underlying the two subtypes of PD. Moreover, relatively widespread neural activity abnormality, especially in the motor-related regions as well as the visual network, is apparently a characteristic feature of PIGD symptoms. This study could shed light on the underlying pathophysiology and clinical heterogeneity of PD presentation.
Collapse
|
35
|
Fearon C, Butler JS, Newman L, Lynch T, Reilly RB. Audiovisual Processing is Abnormal in Parkinson’s Disease and Correlates with Freezing of Gait and Disease Duration. JOURNAL OF PARKINSONS DISEASE 2015; 5:925-36. [DOI: 10.3233/jpd-150655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Conor Fearon
- Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| | - John S. Butler
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
- School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin, Ireland
| | - Louise Newman
- Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| | - Timothy Lynch
- Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
| | - Richard B. Reilly
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Quattrocchi CC, de Pandis MF, Piervincenzi C, Galli M, Melgari JM, Salomone G, Sale P, Mallio CA, Carducci F, Stocchi F. Acute Modulation of Brain Connectivity in Parkinson Disease after Automatic Mechanical Peripheral Stimulation: A Pilot Study. PLoS One 2015; 10:e0137977. [PMID: 26469868 PMCID: PMC4607499 DOI: 10.1371/journal.pone.0137977] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/23/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS) in patients with idiopathic Parkinson Disease. METHODS Eleven patients (6 women and 5 men) with idiopathic Parkinson Disease underwent brain fMRI immediately before and after sham or effective AMPS. Resting state Functional Connectivity (RSFC) was assessed using the seed-ROI based analysis. Seed ROIs were positioned on basal ganglia, on primary sensory-motor cortices, on the supplementary motor areas and on the cerebellum. Individual differences for pre- and post-effective AMPS and pre- and post-sham condition were obtained and first entered in respective one-sample t-test analyses, to evaluate the mean effect of condition. RESULTS Effective AMPS, but not sham stimulation, induced increase of RSFC of the sensory motor cortex, nucleus striatum and cerebellum. Secondly, individual differences for both conditions were entered into paired group t-test analysis to rule out sub-threshold effects of sham stimulation, which showed stronger connectivity of the striatum nucleus with the right lateral occipital cortex and the cuneal cortex (max Z score 3.12) and with the right anterior temporal lobe (max Z score 3.42) and of the cerebellum with the right lateral occipital cortex and the right cerebellar cortex (max Z score 3.79). CONCLUSIONS Our results suggest that effective AMPS acutely increases RSFC of brain regions involved in visuo-spatial and sensory-motor integration. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that automatic mechanical peripheral stimulation is effective in modulating brain functional connectivity of patients with Parkinson Disease at rest. TRIAL REGISTRATION Clinical Trials.gov NCT01815281.
Collapse
Affiliation(s)
| | | | - Claudia Piervincenzi
- Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy
- Institute for Advanced Biomedical Technologies, University G. D’Annunzio Chieti-Pescara, Chieti, Italy
| | - Manuela Galli
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Jean Marc Melgari
- Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gaetano Salomone
- Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Patrizio Sale
- Department of Neurology, Institute for Research and Medical Care, IRCCS San Raffaele, Rome, Italy
| | | | - Filippo Carducci
- Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy
| | - Fabrizio Stocchi
- Department of Neurology, Institute for Research and Medical Care, IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
37
|
Functional connectome assessed using graph theory in drug-naive Parkinson’s disease. J Neurol 2015; 262:1557-67. [DOI: 10.1007/s00415-015-7750-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/05/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022]
|
38
|
Göttlich M, Münte TF, Heldmann M, Kasten M, Hagenah J, Krämer UM. Altered resting state brain networks in Parkinson's disease. PLoS One 2013; 8:e77336. [PMID: 24204812 PMCID: PMC3810472 DOI: 10.1371/journal.pone.0077336] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/30/2013] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate altered whole-brain intrinsic functional connectivity in PD patients (n = 37) compared to healthy controls (n = 20). Global network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules. We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and calcarine), but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome. This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be related to adaptation and compensation processes as a consequence of altered motor function. Our analysis approach proved sensitive for detecting disease-related localized effects as well as changes in network functions on intermediate and global scale.
Collapse
Affiliation(s)
- Martin Göttlich
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Thomas F. Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Meike Kasten
- Department of Psychiatry, University of Lübeck, Lübeck, Germany
| | - Johann Hagenah
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Department of Neurology, Westküstenklinikum Heide, Heide, Germany
| | | |
Collapse
|
39
|
Hacker CD, Perlmutter JS, Criswell SR, Ances BM, Snyder AZ. Resting state functional connectivity of the striatum in Parkinson's disease. ACTA ACUST UNITED AC 2012. [PMID: 23195207 DOI: 10.1093/brain/aws281] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Classical accounts of the pathophysiology of Parkinson's disease have emphasized degeneration of dopaminergic nigrostriatal neurons with consequent dysfunction of cortico-striatal-thalamic loops. In contrast, post-mortem studies indicate that pathological changes in Parkinson's disease (Lewy neurites and Lewy bodies) first appear primarily in the lower brainstem with subsequent progression to more rostral parts of the neuraxis. The nigrostriatal and histological perspectives are not incompatible, but they do emphasize different anatomical structures. To address the question of which brain structures are functionally most affected by Parkinson's disease, we performed a resting-state functional magnetic resonance imaging study focused on striatal functional connectivity. We contrasted 13 patients with advanced Parkinson's disease versus 19 age-matched control subjects, using methodology incorporating scrupulous attention to minimizing the effects of head motion during scanning. The principal finding in the Parkinson's disease group was markedly lower striatal correlations with thalamus, midbrain, pons and cerebellum. This result reinforces the importance of the brainstem in the pathophysiology of Parkinson's disease. Focally altered functional connectivity also was observed in sensori-motor and visual areas of the cerebral cortex, as well the supramarginal gyrus. Striatal functional connectivity with the brainstem was graded (posterior putamen > anterior putamen > caudate), in both patients with Parkinson's disease and control subjects, in a manner that corresponds to well-documented gradient of striatal dopaminergic function loss in Parkinson's disease. We hypothesize that this gradient provides a clue to the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Carl D Hacker
- Department of Radiology, Washington University School of Medicine, Campus Box 8225, 4535 Scott Avenue, Saint Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
40
|
Tessitore A, Amboni M, Esposito F, Russo A, Picillo M, Marcuccio L, Pellecchia MT, Vitale C, Cirillo M, Tedeschi G, Barone P. Resting-state brain connectivity in patients with Parkinson's disease and freezing of gait. Parkinsonism Relat Disord 2012; 18:781-7. [PMID: 22510204 DOI: 10.1016/j.parkreldis.2012.03.018] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/15/2012] [Accepted: 03/20/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND Freezing of gait is a common cause of disability and falls in patients with Parkinson's disease. We studied brain functional connectivity, by means of resting-state functional magnetic resonance imaging, in patients with Parkinson's disease and freezing of gait. METHODS Resting-state functional magnetic resonance imaging at 3 T was collected in 29 patients with Parkinson's disease, of whom 16 presented with freezing of gait as determined by a validated freezing of gait questionnaire, and 15 matched healthy controls. Single-subject and group-level independent component analysis was used to identify the main resting-state networks differing between Parkinson's disease patients with and without freezing of gait. Statistical analysis was performed using BrainVoyager QX. RESULTS Between-group differences in resting-state networks revealed that patients with freezing of gait exhibit significantly reduced functional connectivity within both "executive-attention" (in the right middle frontal gyrus and in the angular gyrus) and visual networks (in the right occipito-temporal gyrus) [p < 0.05 corrected for multiple comparisons]. Freezing of gait clinical severity was significantly correlated with decreased connectivity within the two networks. Consistent with their "executive-attention" network impairment, patients with freezing of gait scored lower on tests of frontal lobe functions (phonemic verbal fluency: p = 0.005; frontal assessment battery: p < 0.001; ten point clock test: p = 0.04). CONCLUSIONS Our findings suggest that a resting-state functional connectivity disruption of "executive-attention" and visual neural networks may be associated with the development of freezing of gait in patients with Parkinson's disease.
Collapse
|
41
|
Botha H, Carr J. Attention and visual dysfunction in Parkinson's disease. Parkinsonism Relat Disord 2012; 18:742-7. [PMID: 22503538 DOI: 10.1016/j.parkreldis.2012.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
Visual processing extends from the retinal level to the ventral temporal lobe, and is modified by top-down and bottom-up processing. Complex visual hallucinations (VH) are commonly a feature of disorders which affect temporal lobe structures, frequently in association with impairment of ascending monoaminergic pathways. When Parkinson's disease (PD) is associated with VH, pathological changes characteristically affect the temporal lobes, a finding which is recapitulated by imaging findings. However, a major association of VH is with cognitive decline, and this is typically linked to deficits in attention and working memory, both of which are modulated by dopamine. Similarly, dopamine plays a crucial role in the function of prefrontal cortex, in addition to controlling access to consciousness via gating mechanisms that are dependent on the basal ganglia.
Collapse
Affiliation(s)
- Hugo Botha
- Division of Neurology, Department of Medicine, Faculty of Health Sciences, University of Stellenbosch, PO Box 19063, Tygerberg 7505, Cape Town, South Africa
| | | |
Collapse
|
42
|
Abstract
THE MULTIPLE ETIOLOGIES OF SCHIZOPHRENIA PROMPT US TO RAISE THE QUESTION: what final common pathway can induce a convincing sense of the reality of the hallucinations in this disease? The observation that artificial stimulation of an intermediate order of neurons of a normal nervous system induces hallucinations indicates that the lateral entry of activity (not resulting from canonical synaptic transmission) at intermediate neuronal orders may provide a mechanism for hallucinations. Meaningful hallucinations can be de-constructed into an organized temporal sequence of internal sensations of associatively learned items that occur in the absence of any external stimuli. We hypothesize that these hallucinations are autonomously generated by the re-activation of pathological non-specific functional LINKs formed between the postsynaptic membranes at certain neuronal orders and are examined as a final common mechanism capable of explaining most of the features of the disease. Reversible and stabilizable hemi-fusion between simultaneously activated adjacent postsynaptic membranes is viewed as one of the normal mechanisms for functional LINK formation and is dependent on lipid membrane composition. Methods of removing the proteins that may traverse the non-specifically hemi-fused membrane segments and attempts to replace the phospholipid side chains to convert the membrane composition to a near-normal state may offer therapeutic opportunities.
Collapse
Affiliation(s)
- Kunjumon I Vadakkan
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
43
|
Ibarretxe-Bilbao N, Junque C, Marti MJ, Tolosa E. Cerebral basis of visual hallucinations in Parkinson's disease: Structural and functional MRI studies. J Neurol Sci 2011; 310:79-81. [DOI: 10.1016/j.jns.2011.06.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/05/2011] [Accepted: 06/08/2011] [Indexed: 11/25/2022]
|
44
|
Levy-Tzedek S, Krebs HI, Arle JE, Shils JL, Poizner H. Rhythmic movement in Parkinson's disease: effects of visual feedback and medication state. Exp Brain Res 2011; 211:277-86. [PMID: 21526337 DOI: 10.1007/s00221-011-2685-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
Previous studies examining discrete movements of Parkinson's disease (PD) patients have found that in addition to performing movements that were slower than those of control participants, they exhibit specific deficits in movement coordination and in sensorimotor integration required to accurately guide movements. With medication, movement speed was normalized, but the coordinative aspects of movement were not. This led to the hypothesis that dopaminergic medication more readily compensates for intensive aspects of movement (such as speed), than for coordinative aspects (such as coordination of different limb segments) (Schettino et al., Exp Brain Res 168:186-202, 2006). We tested this hypothesis on rhythmic, continuous movements of the forearm. In our task, target peak speed and amplitude, availability of visual feedback, and medication state (on/off) were varied. We found, consistent with the discrete-movement results, that peak speed (intensive aspect) was normalized by medication, while accuracy, which required coordination of speed and amplitude modulation (coordinative aspect), was not normalized by dopaminergic treatment. However, our findings that amplitude, an intensive aspect of movement, was also not normalized by medication, suggests that a simple pathway gain increase does not act to remediate all intensive aspects of movement to the same extent. While it normalized movement peak speed, it did not normalize movement amplitude. Furthermore, we found that when visual feedback was not available, all participants (PD and controls) made faster movements. The effects of dopaminergic medication and availability of visual feedback on movement speed were additive. The finding that movement speed uniformly increased both in the PD and the control groups suggests that visual feedback may be necessary for calibration of peak speed, otherwise underestimated by the motor control system.
Collapse
Affiliation(s)
- S Levy-Tzedek
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
45
|
Postuma RB, Gagnon JF, Vendette M, Desjardins C, Montplaisir JY. Olfaction and color vision identify impending neurodegeneration in rapid eye movement sleep behavior disorder. Ann Neurol 2011; 69:811-8. [PMID: 21246603 DOI: 10.1002/ana.22282] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 11/11/2022]
Abstract
OBJECTIVE For development of neuroprotective therapy, neurodegenerative disease must be identified as early as possible. However, current means of identifying "preclinical" neurodegeneration are limited. Patients with idiopathic rapid eye movement (REM) sleep behavior disorder (RBD) are at >50% risk of synuclein-mediated neurodegenerative disease--this provides a unique opportunity to directly observe preclinical synucleinopathy and to test potential markers of preclinical disease. METHODS Patients with RBD without neurodegenerative disease were enrolled in a prospective cohort starting in 2004. Olfaction and color vision were tested at baseline, then annually for 5 years. Test results were compared between patients who developed neurodegenerative disease and those who remained disease-free. RESULTS Out of 64 patients, 62 (97%) participated in annual follow-up. During follow-up, 21 developed disease, and 41 remained disease-free. Out of 21, 16 developed a combination of parkinsonism and dementia, 4 developed isolated parkinsonism (all with tremor), and 1 developed isolated dementia. Compared to those remaining disease-free, patients destined to develop disease had worse baseline olfaction (University of Pennsylvania Smell Identification Test [UPSIT] = 58.3 ± 27.0% age/sex-adjusted normal vs 80.2 ± 26.3%; p = 0.003) and color vision (Farnsworth-Munsell 100-Hue color test [FM-100] errors 153.0 ± 82.2% normal vs 120.2 ± 26.5%; p = 0.022). Kaplan-Meier 5-year-disease-free survival in those with normal olfaction was 86.0%, vs 35.4% with impaired olfaction (p = 0.029). Disease-free survival with normal color vision was 70.3%, vs 26.0% with impaired vision (p = 0.009). Both olfaction and color vision were reduced as much as 5 years before disease diagnosis, with only slight decline in preclinical stages. INTERPRETATION Olfaction and color vision identify early-stage synuclein-mediated neurodegenerative diseases. In most cases, abnormalities are measurable at least 5 years before disease onset, and progress slowly in the preclinical stages.
Collapse
Affiliation(s)
- Ronald B Postuma
- Department of Neurology, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|