1
|
Lagerweij S, van Wieren T, van Beveren M, Tijssen M, van Egmond M. DBS for dystonia: Should we take our patients to the swimming pool? Parkinsonism Relat Disord 2022; 96:36-37. [DOI: 10.1016/j.parkreldis.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
|
2
|
Hirsig A, Barbey C, Schüpbach MW, Bargiotas P. Oculomotor functions in focal dystonias: A systematic review. Acta Neurol Scand 2020; 141:359-367. [PMID: 31990980 DOI: 10.1111/ane.13224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 12/20/2022]
Abstract
Focal Dystonia (FD) is a chronic neurological disorder, which causes twisting and repetitive movements and abnormal postures induced by involuntary sustained contractions of agonist and antagonist muscles. Based on the hypothesis that several dystonia-related brain regions, including cerebellum, are implicated in oculomotor disturbances (OCD), a number of studies investigated oculomotor function in patients with dystonia. However, conceptual clarity with respect to the used assessment tools and interpretation of the findings is lacking in the literature. This is the first article to systematically review studies that assessed oculomotor function in patients with FD. In total, 329 publications, published until September 1, 2019, were identified through MEDLINE search. Twenty out of 329 studies, involving 232 subjects in total, met the inclusion criteria. Most of the studies reported oculomotor disturbances in patients with FD. Abnormalities included asymmetry in vestibulo-ocular reflex (VOR), disturbances in saccadic functions, and prolonged latencies of eye motion. Discrepancies in the results could be explained, at least partially, by the long period of time over which the reviewed studies were published, the different methods used for testing the eye movements, and the limited number of patients assessed since the majority of data derived from case reports or small-scale studies. Further prospective studies with larger subject numbers are needed, using advanced tools for the assessment of oculomotor function in focal dystonia.
Collapse
Affiliation(s)
- Anna Hirsig
- Department of Neurology University Hospital (Inselspital) and University of Bern Bern Switzerland
| | - Carolin Barbey
- Department of Neurology University Hospital (Inselspital) and University of Bern Bern Switzerland
| | - Michael W.M. Schüpbach
- Department of Neurology University Hospital (Inselspital) and University of Bern Bern Switzerland
| | - Panagiotis Bargiotas
- Department of Neurology University Hospital (Inselspital) and University of Bern Bern Switzerland
- Department of Neurology Medical School University of Cyprus Nicosia Cyprus
| |
Collapse
|
3
|
Bradnam L, Chen C, Graetz L, Loetscher T. Reduced vision-related quality of life in people living with dystonia. Disabil Rehabil 2018; 42:1556-1560. [PMID: 30545271 DOI: 10.1080/09638288.2018.1528636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose: Dystonia is a neurological movement disorder with negative impact on function and quality of life. It is currently unclear whether vision-related quality of life is affected. The aim of this study was to determine whether vision-related quality of life is reduced by dystonia.Materials and methods: A vision-related quality of life questionnaire was delivered online to probe visual function in people living with dystonia. Scores for each of six domains were compared to normative data of 819 healthy participants using one sample t-tests. Respondents were divided into two groups based on whether they had botulinum toxin injections and compared using independent samples t-tests.Results: There were 42 completed responses. There was a difference from norm for two domains; ocular symptoms (t(41) = 2.31, p = 0.026) and role performance (t(41) = 2.85, p = 0.007). There was variation in responses for all six domains. No difference in scores for the botulinum toxin injection group was found for either domain (both p > 0.74).Conclusions: Some people with dystonia experience reduced vision-related quality of life, which has potential to contribute to their disability. Health professionals should be aware of vision-related issues when managing people with dystonia and consider appropriate rehabilitative interventions to reduce disability and enhance quality of life.Implications for rehabilitationDystonia is a neurological movement disorder resulting in abnormal postures and movements.Vision-related quality of life is reduced by dystonia which may contribute to disability and reduced function.Strategies to improve vision-related quality of life should be included in rehabilitation programmes for people living with dystonia.
Collapse
Affiliation(s)
- Lynley Bradnam
- Department of Exercise Science, University of Auckland, Auckland, New Zealand.,Discipline of Physiotherapy, University of Technology Sydney, Sydney, Australia
| | - Celia Chen
- Department of Ophthalmology, Flinders Medical Centre and Flinders University, Adelaide, Australia
| | - Lynton Graetz
- Robinson Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - Tobias Loetscher
- School of Psychology, University of South Australia, Adelaide, Australia
| |
Collapse
|
4
|
The effect of a single botulinum toxin treatment on somatosensory processing in idiopathic isolated cervical dystonia: an observational study. J Neurol 2018; 265:2672-2683. [DOI: 10.1007/s00415-018-9045-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 02/01/2023]
|
5
|
Is perception of visual verticality intact in patients with idiopathic cervical dystonia? Acta Neurol Belg 2018; 118:77-84. [PMID: 29101737 DOI: 10.1007/s13760-017-0853-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Idiopathic cervical dystonia (CD) is a focal dystonia characterized by an abnormal tilted or twisted head position. This abnormal head position could lead to a distorted perception of the visual vertical and spatial orientation. The aim of this cross-sectional study was to investigate whether the perception of the visual vertical is impaired in patients with CD. The subjective visual vertical test (SVV) was measured in 24 patients with CD and 30 controls. The SVV test is conducted in a completely darkened room. A laser bar is projected on an opposing white wall, which is deviated from the earth's gravitational vertical. Participants were seated with their head unrestrained and were instructed to position this bar vertically. The deviations in degrees (°) are corrected for the side of laterocollis in order to measure the E-effect. We found that patients were able to position the laser bar as equally close to the earth's gravitational vertical as controls (+ 0.67° SD ± 2.12 vs + 0.29° SD ± 1.08, p = 0.43). No E-effect was measured. Notwithstanding the abnormal position of the head, the perception of the visual vertical in patients with idiopathic CD is intact, possibly because of central neural compensatory mechanisms.
Collapse
|
6
|
Postural control and the relation with cervical sensorimotor control in patients with idiopathic adult-onset cervical dystonia. Exp Brain Res 2018; 236:803-811. [PMID: 29340715 DOI: 10.1007/s00221-018-5174-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Cervical dystonia (CD) is a movement disorder characterized by involuntary muscle contractions leading to an abnormal head posture or movements of the neck. Dysfunctions in somatosensory integration are present and previous data showed enlarged postural sway in stance. Postural control during quiet sitting and the correlation with cervical sensorimotor control were investigated. Postural control during quiet sitting was measured via body sway parameters in 23 patients with CD, regularly receiving botulinum toxin treatment and compared with 36 healthy controls. Amplitude and velocity of displacements of the center of pressure (CoP) were measured by two embedded force plates at 1000 Hz. Three samples of 30 s were recorded with the eyes open and closed. Disease-specific characteristics were obtained in all patients by the Tsui scale, Cervical Dystonia Impact Profile (CDIP-58) and Toronto Western Spasmodic Rating Scale (TWSTRS). Cervical sensorimotor control was assessed with an infrared Vicon system during a head repositioning task. Body sway amplitude and velocity were increased in patients with CD compared to healthy controls. CoP displacements were doubled in patients without head tremor and tripled in patients with a dystonic head tremor. Impairments in cervical sensorimotor control were correlated with larger CoP displacements (rs ranged from 0.608 to 0.748). Postural control is impaired and correlates with dysfunction in cervical sensorimotor control in patients with CD. Treatment is currently focused on the cervical area. Further research towards the potential value of postural control exercises is recommended.
Collapse
|
7
|
Filip P, Gallea C, Lehéricy S, Bertasi E, Popa T, Mareček R, Lungu OV, Kašpárek T, Vaníček J, Bareš M. Disruption in cerebellar and basal ganglia networks during a visuospatial task in cervical dystonia. Mov Disord 2017; 32:757-768. [DOI: 10.1002/mds.26930] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022] Open
Affiliation(s)
- Pavel Filip
- Central European Institute of Technology; Central European Institute of Technology, Masaryk University (CEITEC MU), Behavioral and Social Neuroscience Research Group, Masaryk University; Brno Czech Republic
- First Department of Neurology; Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital; Brno Czech Republic
| | - Cécile Gallea
- Institut du Cerveau et de la Moelle épinière-ICM, Centre de NeuroImagerie de Recherche-Centre de Neuro-Imagerie de Recherche, Sorbonne Universités, University Pierre and Marie CURIE Univ Paris 06, University of Minnesota Rochester (UMR) S 1127, Centre national de la recherche scientifique (CNRS) UMR 7225, ICM, F-75013, ICM team Control of Normal and Abnormal Movement; Paris France
| | - Stéphane Lehéricy
- Institut du Cerveau et de la Moelle épinière-ICM, Centre de NeuroImagerie de Recherche-Centre de Neuro-Imagerie de Recherche, Sorbonne Universités, University Pierre and Marie CURIE Univ Paris 06, University of Minnesota Rochester (UMR) S 1127, Centre national de la recherche scientifique (CNRS) UMR 7225, ICM, F-75013, ICM team Control of Normal and Abnormal Movement; Paris France
| | - Eric Bertasi
- Institut du Cerveau et de la Moelle épinière-ICM, Centre de NeuroImagerie de Recherche-Centre de Neuro-Imagerie de Recherche, Sorbonne Universités, University Pierre and Marie CURIE Univ Paris 06, University of Minnesota Rochester (UMR) S 1127, Centre national de la recherche scientifique (CNRS) UMR 7225, ICM, F-75013, ICM team Control of Normal and Abnormal Movement; Paris France
| | - Traian Popa
- Institut du Cerveau et de la Moelle épinière-ICM, Centre de NeuroImagerie de Recherche-Centre de Neuro-Imagerie de Recherche, Sorbonne Universités, University Pierre and Marie CURIE Univ Paris 06, University of Minnesota Rochester (UMR) S 1127, Centre national de la recherche scientifique (CNRS) UMR 7225, ICM, F-75013, ICM team Control of Normal and Abnormal Movement; Paris France
| | - Radek Mareček
- Central European Institute of Technology; CEITEC MU, Multimodal and Functional Neuroimaging Research Group, Masaryk University; Brno Czech Republic
| | - Ovidiu V. Lungu
- Department of Psychiatry; Université de Montréal; Montréal Québec Canada
- Functional Neuroimaging Unit; Research Center of the Geriatric Institute affiliated with the Université de Montréal; Montréal Québec Canada
| | - Tomáš Kašpárek
- Central European Institute of Technology; Central European Institute of Technology, Masaryk University (CEITEC MU), Behavioral and Social Neuroscience Research Group, Masaryk University; Brno Czech Republic
- Department of Psychiatry; Faculty of Medicine, Masaryk University and Teaching Hospital Brno; Brno Czech Republic
| | - Jiří Vaníček
- Department of Imaging Methods; Masaryk University and St. Anne's Teaching Hospital; Brno Czech Republic
| | - Martin Bareš
- Central European Institute of Technology; Central European Institute of Technology, Masaryk University (CEITEC MU), Behavioral and Social Neuroscience Research Group, Masaryk University; Brno Czech Republic
- First Department of Neurology; Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital; Brno Czech Republic
- Department of Neurology; School of Medicine, University of Minnesota; Minneapolis USA
| |
Collapse
|
8
|
Anastasopoulos D, Maurer C, Mergner T. Interactions between voluntary head control and neck proprioceptive reflexes in cervical dystonia. Parkinsonism Relat Disord 2014; 20:1165-70. [PMID: 25175603 DOI: 10.1016/j.parkreldis.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND To investigate deficiencies in mechanisms of sensorimotor processing and reflexive-voluntary interactions leading to the impaired head position control in primary cervical dystonia. METHODS Thirteen patients and 23 healthy controls were subjected to transient, low amplitude, low velocity head-on-trunk, trunk-under-head and whole-body rotations in the horizontal plane. With the instruction not to resist the imposed displacements, resistance to horizontal neck deflections was evaluated. RESULTS Patients exhibited a torque offset (bias) in the direction of torticollis before stimulus application. While controls reduced and occasionally eliminated completely the initial resistance to head-to-trunk rotations, torque in patients increased throughout displacements. Change of resistance relative to baseline in patients was, however, symmetrical, i.e. independent of torticollis direction. Spontaneous torque fluctuations were significantly larger in patients. Strong correlations existed among these abnormal findings. CONCLUSIONS Patients' ability to manipulate normal postural reactions to head-trunk rotations is impaired. The deficit is bilateral and correlates with the degree of abnormal posture. The present study extends previous work on reflexive-voluntary interactions and provides evidence that malfunctioning proprioceptive feedback may contribute to the pathophysiology of cervical dystonia.
Collapse
Affiliation(s)
- Dimitri Anastasopoulos
- Neurologische Klinik, Neurozentrum, Universität Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany; Department of Physiology and Clinical Neurophysiology, School of Health Sciences, University of Athens, Tetrapoleos 8, 11527 Goudi, Athens, Greece.
| | - Christoph Maurer
- Neurologische Klinik, Neurozentrum, Universität Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
| | - Thomas Mergner
- Neurologische Klinik, Neurozentrum, Universität Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
| |
Collapse
|
9
|
Colebatch JG, Burke D. Vestibular function and vestibular evoked myogenic potentials (VEMPs) in spasticity. Clin Neurophysiol 2014; 125:1934-5. [PMID: 24680317 DOI: 10.1016/j.clinph.2014.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/28/2014] [Indexed: 11/19/2022]
Affiliation(s)
- James G Colebatch
- Department of Neurology, Prince of Wales Hospital and University of New South Wales, Sydney, NSW 2031, Australia.
| | - David Burke
- Department of Neurology, Royal Prince Alfred Hospital and University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Bradnam L, Barry C. The role of the trigeminal sensory nuclear complex in the pathophysiology of craniocervical dystonia. J Neurosci 2013; 33:18358-67. [PMID: 24259561 PMCID: PMC6618800 DOI: 10.1523/jneurosci.3544-13.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/07/2013] [Accepted: 10/11/2013] [Indexed: 12/15/2022] Open
Abstract
Isolated focal dystonia is a neurological disorder that manifests as repetitive involuntary spasms and/or aberrant postures of the affected body part. Craniocervical dystonia involves muscles of the eye, jaw, larynx, or neck. The pathophysiology is unclear, and effective therapies are limited. One mechanism for increased muscle activity in craniocervical dystonia is loss of inhibition involving the trigeminal sensory nuclear complex (TSNC). The TSNC is tightly integrated into functionally connected regions subserving sensorimotor control of the neck and face. It mediates both excitatory and inhibitory reflexes of the jaw, face, and neck. These reflexes are often aberrant in craniocervical dystonia, leading to our hypothesis that the TSNC may play a central role in these particular focal dystonias. In this review, we present a hypothetical extended brain network model that includes the TSNC in describing the pathophysiology of craniocervical dystonia. Our model suggests the TSNC may become hyperexcitable due to loss of tonic inhibition by functionally connected motor nuclei such as the motor cortex, basal ganglia, and cerebellum. Disordered sensory input from trigeminal nerve afferents, such as aberrant feedback from dystonic muscles, may continue to potentiate brainstem circuits subserving craniocervical muscle control. We suggest that potentiation of the TSNC may also contribute to disordered sensorimotor control of face and neck muscles via ascending and cortical descending projections. Better understanding of the role of the TSNC within the extended neural network contributing to the pathophysiology of craniocervical dystonia may facilitate the development of new therapies such as noninvasive brain stimulation.
Collapse
Affiliation(s)
- Lynley Bradnam
- Applied Brain Research Laboratory, Centre for Neuroscience
- Effectiveness of Therapy Group, Centre for Clinical Change and Healthcare Research, School of Medicine, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Christine Barry
- Applied Brain Research Laboratory, Centre for Neuroscience
- Department of Anatomy and Histology School of Medicine, and
| |
Collapse
|
11
|
van Gaalen J, Pennings RJ, Beynon AJ, Münchau A, Bloem BR, van de Warrenburg BP. Cervical dystonia after ear surgery. Parkinsonism Relat Disord 2012; 18:669-71. [DOI: 10.1016/j.parkreldis.2011.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/27/2011] [Accepted: 10/03/2011] [Indexed: 11/25/2022]
|