1
|
Crossman AR, Obeso JA. Functions of the basal ganglia-paradox or no paradox? Mov Disord 2016; 31:1120-1. [PMID: 27506637 DOI: 10.1002/mds.26745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Jose A Obeso
- HM CINAC, HM Puerta del Sur, Mostoles, Madrid, Universidad CEU San Pablo, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
2
|
MacDonald HJ, Byblow WD. Does response inhibition have pre- and postdiagnostic utility in Parkinson's disease? J Mot Behav 2016; 47:29-45. [PMID: 25575221 DOI: 10.1080/00222895.2014.941784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (Pd) is the second most prevalent degenerative neurological condition worldwide. Improving and sustaining quality of life is an important goal for Parkinson's patients. Key areas of focus to achieve this goal include earlier diagnosis and individualized treatment. In this review the authors discuss impulse control in Pd and examine how measures of impulse control from a response inhibition task may provide clinically useful information (a) within an objective test battery to aid earlier diagnosis of Pd and (b) in postdiagnostic Pd, to better identify individuals at risk of developing impulse control disorders with dopaminergic medication.
Collapse
Affiliation(s)
- Hayley J MacDonald
- a Department of Sport and Exercise Science , University of Auckland , New Zealand
| | | |
Collapse
|
3
|
Da Cunha C, Boschen SL, Gómez-A A, Ross EK, Gibson WSJ, Min HK, Lee KH, Blaha CD. Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation. Neurosci Biobehav Rev 2015; 58:186-210. [PMID: 25684727 DOI: 10.1016/j.neubiorev.2015.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/01/2015] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson's disease, Huntington's disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms.
Collapse
Affiliation(s)
- Claudio Da Cunha
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Suelen L Boschen
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Alexander Gómez-A
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Erika K Ross
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Charles D Blaha
- Department of Psychology, The University of Memphis, Memphis, TN, USA.
| |
Collapse
|
4
|
Gago B, Marin C, Rodríguez-Oroz MC, Obeso JA. l-dopa-induced dyskinesias in unilateral 6-hydroxydopamine-lesioned rats are not modified by excitotoxic lesion of the entopeduncular nucleus and substantia nigra pars reticulata. Synapse 2013; 67:407-14. [DOI: 10.1002/syn.21652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/11/2013] [Indexed: 11/09/2022]
|