1
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
2
|
Olmos-Pastoresa CA, Vázquez-Mendoza E, López-Meraz ML, Pérez-Estudillo CA, Beltran-Parrazal L, Morgado-Valle C. Transgenic rodents as dynamic models for the study of respiratory rhythm generation and modulation: a scoping review and a bibliometric analysis. Front Physiol 2023; 14:1295632. [PMID: 38179140 PMCID: PMC10764557 DOI: 10.3389/fphys.2023.1295632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The pre-Bötzinger complex, situated in the ventrolateral medulla, serves as the central generator for the inspiratory phase of the respiratory rhythm. Evidence strongly supports its pivotal role in generating, and, in conjunction with the post-inspiratory complex and the lateral parafacial nucleus, in shaping the respiratory rhythm. While there remains an ongoing debate concerning the mechanisms underlying these nuclei's ability to generate and modulate breathing, transgenic rodent models have significantly contributed to our understanding of these processes. However, there is a significant knowledge gap regarding the spectrum of transgenic rodent lines developed for studying respiratory rhythm, and the methodologies employed in these models. In this study, we conducted a scoping review to identify commonly used transgenic rodent lines and techniques for studying respiratory rhythm generation and modulation. Following PRISMA guidelines, we identified relevant papers in PubMed and EBSCO on 29 March 2023, and transgenic lines in Mouse Genome Informatics and the International Mouse Phenotyping Consortium. With strict inclusion and exclusion criteria, we identified 80 publications spanning 1997-2022 using 107 rodent lines. Our findings revealed 30 lines focusing on rhythm generation, 61 on modulation, and 16 on both. The primary in vivo method was whole-body plethysmography. The main in vitro method was hypoglossal/phrenic nerve recordings using the en bloc preparation. Additionally, we identified 119 transgenic lines with the potential for investigating the intricate mechanisms underlying respiratory rhythm. Through this review, we provide insights needed to design more effective experiments with transgenic animals to unravel the mechanisms governing respiratory rhythm. The identified transgenic rodent lines and methodological approaches compile current knowledge and guide future research towards filling knowledge gaps in respiratory rhythm generation and modulation.
Collapse
Affiliation(s)
| | | | | | | | - Luis Beltran-Parrazal
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Consuelo Morgado-Valle
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
3
|
Stefanova N. A Mouse Model of Multiple System Atrophy: Bench to Bedside. Neurotherapeutics 2023; 20:117-126. [PMID: 35995919 PMCID: PMC10119356 DOI: 10.1007/s13311-022-01287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 10/15/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disorder with unclear etiology, currently difficult and delayed diagnosis, and rapid progression, leading to disability and lethality within 6 to 9 years after symptom onset. The neuropathology of MSA classifies the disease in the group of a-synucleinopathies together with Parkinson's disease and other Lewy body disorders, but features specific oligodendroglial inclusions, which are pathognomonic for MSA. MSA has no efficient therapy to date. Development of experimental models is crucial to elucidate the disease mechanisms in progression and to provide a tool for preclinical screening of putative therapies for MSA. In vitro and in vivo models, based on selective neurotoxicity, a-synuclein oligodendroglial overexpression, and strain-specific propagation of a-synuclein fibrils, have been developed, reflecting various facets of MSA pathology. Over the years, the continuous exchange from bench to bedside and backward has been crucial for the advancing of MSA modelling, elucidating MSA pathogenic pathways, and understanding the existing translational gap to successful clinical trials in MSA. The review discusses specifically advantages and limitations of the PLP-a-syn mouse model of MSA, which recapitulates motor and non-motor features of the human disease with underlying striatonigral degeneration, degeneration of autonomic centers, and sensitized olivopontocerebellar system, strikingly mirroring human MSA pathology.
Collapse
Affiliation(s)
- Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Kermorgant M, Fernagut PO, Meissner WG, Arvanitis DN, N'Guyen D, Senard JM, Pavy-Le Traon A. Age and Gender Differences in Cardiovascular Autonomic Failure in the Transgenic PLP-syn Mouse, a Model of Multiple System Atrophy. Front Neurol 2022; 13:874155. [PMID: 35720100 PMCID: PMC9201283 DOI: 10.3389/fneur.2022.874155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare and progressive neurodegenerative disorder. Autonomic failure (AF) is one main clinical feature which has a significant impact on health-related quality of life. The neuropathological hallmark of MSA is the abnormal accumulation of α-synuclein in oligodendrocytes forming glial cytoplasmic inclusions. Only little is known about gender and age differences in AF in MSA. This study was carried out in 6 and 12 months old transgenic PLP-α-syn and WT male and female mice. Heart rate variability (HRV) was assessed both in time, frequential and non-linear domains. Baroreflex sensitivity (BRS) was estimated by the sequence method. Duration of ventricular depolarization and repolarization (QT/QTc intervals) were evaluated from the ECG signals. Three-way ANOVA (genotype x gender x age) with Sidak's method post-hoc was used to analyze data. BRS was significantly changed in PLP-α-syn mice and was age-dependent. QT and QTc intervals were not significantly modified in PLP-α-syn mice. An impaired HRV was observed at 12 months of age in PLP-α-syn female but not in male mice, indicative of cardiovascular AF.
Collapse
Affiliation(s)
- Marc Kermorgant
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France
- French Reference Center for Multiple System Atrophy, Neurology Department, University Hospital of Toulouse, Toulouse, France
- *Correspondence: Marc Kermorgant
| | - Pierre-Olivier Fernagut
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
- Laboratoire de Neurosciences Expérimentales et Cliniques INSERM U1084, University of Poitiers, Poitiers, France
| | - Wassilios G. Meissner
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
- CRMR AMS, Service de Neurologie - Maladies Neurodégénératives, CHU de Bordeaux, Bordeaux, France
- Department of Medicine, University of Otago, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Dina N. Arvanitis
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France
| | - Du N'Guyen
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France
| | - Jean-Michel Senard
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France
- Department of Clinical Pharmacology, University Hospital of Toulouse, Toulouse, France
| | - Anne Pavy-Le Traon
- INSERM DR Midi-Pyrénées Limousin, Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, University Hospital of Toulouse, Toulouse, France
- French Reference Center for Multiple System Atrophy, Neurology Department, University Hospital of Toulouse, Toulouse, France
| |
Collapse
|
5
|
Lv Q, Pan Y, Chen X, Wei J, Wang W, Zhang H, Wan J, Li S, Zhuang Y, Yang B, Ma D, Ren D, Zhao Z. Depression in multiple system atrophy: Views on pathological, clinical and imaging aspects. Front Psychiatry 2022; 13:980371. [PMID: 36159911 PMCID: PMC9492977 DOI: 10.3389/fpsyt.2022.980371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023] Open
Abstract
Multiple system atrophy (MSA) is a common atypical parkinsonism, characterized by a varying combination of autonomic, cerebellar, and pyramidal systems. It has been noticed that the patients with MSA can be accompanied by some neuropsychiatric disorders, in particular depression. However, there is limited understanding of MSA-related depression. To bridge existing gaps, we summarized research progress on this topic and provided a new perspective regarding pathological, clinical, and imaging aspects. Firstly, we synthesized corresponding studies in order to investigate the relationship between depression and MSA from a pathological perspective. And then, from a clinical perspective, we focused on the prevalence of depression in MS patients and the comparison with other populations. Furthermore, the associations between depression and some clinical characteristics, such as life quality and gender, have been reported. The available neuroimaging studies were too sparse to draw conclusions about the radiological aspect of depression in MSA patients but we still described them in the presence of paper. Finally, we discussed some limitations and shortcomings existing in the included studies, which call for more high-quality basic research and clinical research in this field.
Collapse
Affiliation(s)
- Qiuyi Lv
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Pan
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Xing Chen
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jingpei Wei
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Hua Zhang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jifeng Wan
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Shiqiang Li
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhuang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Baolin Yang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Dayong Ma
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Dawei Ren
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Zijun Zhao
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Marmion DJ, Peelaerts W, Kordower JH. A historical review of multiple system atrophy with a critical appraisal of cellular and animal models. J Neural Transm (Vienna) 2021; 128:1507-1527. [PMID: 34613484 PMCID: PMC8528759 DOI: 10.1007/s00702-021-02419-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by striatonigral degeneration (SND), olivopontocerebellar atrophy (OPCA), and dysautonomia with cerebellar ataxia or parkinsonian motor features. Isolated autonomic dysfunction with predominant genitourinary dysfunction and orthostatic hypotension and REM sleep behavior disorder are common characteristics of a prodromal phase, which may occur years prior to motor-symptom onset. MSA is a unique synucleinopathy, in which alpha-synuclein (aSyn) accumulates and forms insoluble inclusions in the cytoplasm of oligodendrocytes, termed glial cytoplasmic inclusions (GCIs). The origin of, and precise mechanism by which aSyn accumulates in MSA are unknown, and, therefore, disease-modifying therapies to halt or slow the progression of MSA are currently unavailable. For these reasons, much focus in the field is concerned with deciphering the complex neuropathological mechanisms by which MSA begins and progresses through the course of the disease. This review focuses on the history, etiopathogenesis, neuropathology, as well as cell and animal models of MSA.
Collapse
Affiliation(s)
- David J Marmion
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Wouter Peelaerts
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
7
|
Burtscher J, Syed MMK, Keller MA, Lashuel HA, Millet GP. Fatal attraction - The role of hypoxia when alpha-synuclein gets intimate with mitochondria. Neurobiol Aging 2021; 107:128-141. [PMID: 34428721 DOI: 10.1016/j.neurobiolaging.2021.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Alpha-synuclein aggregation and mitochondrial dysfunction are main pathological hallmarks of Parkinson's disease (PD) and several other neurodegenerative diseases, collectively known as synucleinopathies. However, increasing evidence suggests that they may not be sufficient to cause PD. Here we propose the role of hypoxia as a missing link that connects the complex interplay between alpha-synuclein biochemistry and pathology, mitochondrial dysfunctions and neurodegeneration in PD. We review the partly conflicting literature on alpha-synuclein binding to membranes and mitochondria and its impact on mitochondrial functions. From there, we focus on adverse changes in cellular environments, revolving around hypoxic stress, that may trigger or facilitate PD progression. Inter-dependent structural re-arrangements of mitochondrial membranes, including increased cytoplasmic exposure of mitochondrial cardiolipins and changes in alpha-synuclein localization and conformation are discussed consequences of such conditions. Enhancing cellular resilience could be an integral part of future combination-based therapies of PD. This may be achieved by boosting the capacity of cellular and specifically mitochondrial processes to regulate and adapt to altered proteostasis, redox, and inflammatory conditions and by inducing protective molecular and tissue re-modelling.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Burtscher J, Syed MMK, Lashuel HA, Millet GP. Hypoxia Conditioning as a Promising Therapeutic Target in Parkinson's Disease? Mov Disord 2021; 36:857-861. [DOI: 10.1002/mds.28544] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences University of Lausanne Lausanne Switzerland
- Institute of Sport Sciences, University of Lausanne Lausanne Switzerland
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute, EPFL Lausanne Switzerland
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration Brain Mind Institute, EPFL Lausanne Switzerland
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne Lausanne Switzerland
| |
Collapse
|
9
|
Marmion DJ, Rutkowski AA, Chatterjee D, Hiller BM, Werner MH, Bezard E, Kirik D, McCown T, Gray SJ, Kordower JH. Viral-based rodent and nonhuman primate models of multiple system atrophy: Fidelity to the human disease. Neurobiol Dis 2020; 148:105184. [PMID: 33221532 DOI: 10.1016/j.nbd.2020.105184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare and extremely debilitating progressive neurodegenerative disease characterized by variable combinations of parkinsonism, cerebellar ataxia, dysautonomia, and pyramidal dysfunction. MSA is a unique synucleinopathy, in which alpha synuclein-rich aggregates are present in the cytoplasm of oligodendroglia. The precise origin of the alpha synuclein (aSyn) found in the glial cytoplasmic inclusions (GCIs) as well the mechanisms of neurodegeneration in MSA remain unclear. Despite this fact, cell and animal models of MSA rely on oligodendroglial overexpression of aSyn. In the present study, we utilized a novel oligotrophic AAV, Olig001, to overexpress aSyn specifically in striatal oligodendrocytes of rats and nonhuman primates in an effort to further characterize our novel viral vector-mediated MSA animal models. Using two cohorts of animals with 10-fold differences in Olig001 vector titers, we show a dose-dependent formation of MSA-like pathology in rats. High titer of Olig001-aSyn in these animals were required to produce the formation of pS129+ and proteinase K resistant aSyn-rich GCIs, demyelination, and neurodegeneration. Using this knowledge, we injected high titer Olig001 in the putamen of cynomolgus macaques. After six months, histological analysis showed that oligodendroglial overexpression of aSyn resulted in the formation of hallmark GCIs throughout the putamen, demyelination, a 44% reduction of striatal neurons and a 12% loss of nigral neurons. Furthermore, a robust inflammatory response similar to MSA was produced in Olig001-aSyn NHPs, including microglial activation, astrogliosis, and a robust infiltration of T cells into the CNS. Taken together, oligodendroglial-specific viral vector-mediated overexpression of aSyn in rats and nonhuman primates faithfully reproduces many of the pathological disease hallmarks found in MSA. Future studies utilizing these large animal models of MSA would prove extremely valuable as a pre-clinical platform to test novel therapeutics that are so desperately needed for MSA.
Collapse
Affiliation(s)
- David J Marmion
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Angela A Rutkowski
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Diptaman Chatterjee
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Benjamin M Hiller
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Erwan Bezard
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France; CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, Lund 221 00, Sweden
| | - Thomas McCown
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
10
|
Laferrière F, He X, Zinghirino F, Doudnikoff E, Faggiani E, Meissner WG, Bezard E, De Giorgi F, Ichas F. Overexpression of α-Synuclein by Oligodendrocytes in Transgenic Mice Does Not Recapitulate the Fibrillar Aggregation Seen in Multiple System Atrophy. Cells 2020; 9:E2371. [PMID: 33138150 PMCID: PMC7693764 DOI: 10.3390/cells9112371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
The synucleinopathy underlying multiple system atrophy (MSA) is characterized by the presence of abundant amyloid inclusions containing fibrillar α-synuclein (α-syn) aggregates in the brains of the patients and is associated with an extensive neurodegeneration. In contrast to Parkinson's disease (PD) where the pathological α-syn aggregates are almost exclusively neuronal, the α-syn inclusions in MSA are principally observed in oligodendrocytes (OLs) where they form glial cytoplasmic inclusions (GCIs). This is intriguing because differentiated OLs express low levels of α-syn, yet pathogenic amyloid α-syn seeds require significant amounts of α-syn monomers to feed their fibrillar growth and to eventually cause the buildup of cytopathological inclusions. One of the transgenic mouse models of this disease is based on the targeted overexpression of human α-syn in OLs using the PLP promoter. In these mice, the histopathological images showing a rapid emergence of S129-phosphorylated α-syn inside OLs are considered as equivalent to GCIs. Instead, we report here that they correspond to the accumulation of phosphorylated α-syn monomers/oligomers and not to the appearance of the distinctive fibrillar α-syn aggregates that are present in the brains of MSA or PD patients. In spite of a propensity to co-sediment with myelin sheath contaminants, the phosphorylated forms found in the brains of the transgenic animals are soluble (>80%). In clear contrast, the phosphorylated species present in the brains of MSA and PD patients are insoluble fibrils (>95%). Using primary cultures of OLs from PLP-αSyn mice we observed a variable association of S129-phosphorylated α-syn with the cytoplasmic compartment, the nucleus and with membrane domains suggesting that OLs functionally accommodate the phospho-α-syn deriving from experimental overexpression. Yet and while not taking place spontaneously, fibrillization can be seeded in these primary cultures by challenging the OLs with α-syn preformed fibrils (PFFs). This indicates that a targeted overexpression of α-syn does not model GCIs in mice but that it can provide a basis for seeding aggregation using PFFs. This approach could help establishing a link between α-syn aggregation and the development of a clinical phenotype in these transgenic animals.
Collapse
Affiliation(s)
- Florent Laferrière
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
| | - Xin He
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
- Department of Neurology, Sheng Jing Hospital of China Medical University, Shenyang 110004, China
| | - Federica Zinghirino
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
- Dipartimento di Scienze Biomediche e Biotecnologiche, BIOMETEC, Università degli Studi di Catania, 95123 Catania, Italy
| | - Evelyne Doudnikoff
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
| | - Emilie Faggiani
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
| | - Wassilios G. Meissner
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
- Service de Neurologie, CRMR Atrophie Multisystématisée, CHU Bordeaux, 33000 Bordeaux, France
| | - Erwan Bezard
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
| | - Francesca De Giorgi
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
- INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U-1084, Université de Poitiers, 86000 Poitiers, France
| | - François Ichas
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
- INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U-1084, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
11
|
Heras-Garvin A, Refolo V, Reindl M, Wenning GK, Stefanova N. High-salt diet does not boost neuroinflammation and neurodegeneration in a model of α-synucleinopathy. J Neuroinflammation 2020; 17:35. [PMID: 31980040 PMCID: PMC6982394 DOI: 10.1186/s12974-020-1714-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/13/2020] [Indexed: 11/10/2022] Open
Abstract
AIM Pre-clinical studies in models of multiple sclerosis and other inflammatory disorders suggest that high-salt diet may induce activation of the immune system and potentiate inflammation. However, high-salt diet constitutes a common non-pharmacological intervention to treat autonomic problems in synucleinopathies such as Parkinson's disease and multiple system atrophy. Since neuroinflammation plays an important pathogenic role in these neurodegenerative disorders, we asked here whether high-salt diet may aggravate the disease phenotype in a transgenic model of multiple system atrophy. METHODS Nine-month-old PLP-hαSyn and matched wildtype mice received normal or high-salt diet for a period of 3 months. Behavioral, histological, and molecular analyses were performed to evaluate the effect of high-salt diet on motor decline, neuroinflammation, neurodegeneration, and α-synuclein accumulation in these mice. RESULTS Brain subregion-specific molecular and histological analyses showed no deleterious effects of high-salt diet on the level of microglial activation. Moreover, neuroinflammation-related cytokines and chemokines, T cell recruitment or astrogliosis were unaffected by high-salt diet exposure. Behavioral testing showed no effect of diet on motor decline. High-salt diet was not related to the deterioration of neurodegeneration or α-synuclein accumulation in PLP-hαSyn mice. CONCLUSIONS Here, we demonstrate that high-salt diet does not aggravate neuroinflammation and neurodegeneration in PLP-hαSyn mice. Our findings discard a deleterious pro-neuroinflammatory effect of high-salt diet in multiple system atrophy.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | - Violetta Refolo
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | - Markus Reindl
- Department of Neurology, Neuroimmunology Research Group, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria.
| |
Collapse
|
12
|
Heras-Garvin A, Stefanova N. MSA: From basic mechanisms to experimental therapeutics. Parkinsonism Relat Disord 2020; 73:94-104. [PMID: 32005598 DOI: 10.1016/j.parkreldis.2020.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 01/16/2023]
Abstract
Multiple system atrophy (MSA) is a rare and fatal neurodegenerative disorder characterized by rapidly progressive autonomic and motor dysfunction. Pathologically, MSA is mainly characterized by the abnormal accumulation of misfolded α-synuclein in the cytoplasm of oligodendrocytes, which plays a major role in the pathogenesis of the disease. Striatonigral degeneration and olivopontecerebellar atrophy underlie the motor syndrome, while degeneration of autonomic centers defines the autonomic failure in MSA. At present, there is no treatment that can halt or reverse its progression. However, over the last decade several studies in preclinical models and patients have helped to better understand the pathophysiological events underlying MSA. The etiology of this fatal disorder remains unclear and may be multifactorial, caused by a combination of factors which may serve as targets for novel therapeutic approaches. In this review, we summarize the current knowledge about the etiopathogenesis and neuropathology of MSA, its different preclinical models, and the main disease modifying therapies that have been used so far or that are planned for future clinical trials.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Austria.
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Austria.
| |
Collapse
|
13
|
Vijayan S, Singh B, Ghosh S, Stell R, Mastaglia FL. Brainstem Ventilatory Dysfunction: A Plausible Mechanism for Dyspnea in Parkinson's Disease? Mov Disord 2020; 35:379-388. [DOI: 10.1002/mds.27932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Srimathy Vijayan
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| | - Bhajan Singh
- West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital Nedlands Perth, Western Australia Australia
- School of Human Sciences, University of Western Australia Crawley Western Australia Australia
| | - Soumya Ghosh
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| | - Rick Stell
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| |
Collapse
|
14
|
Lee HJ, Ricarte D, Ortiz D, Lee SJ. Models of multiple system atrophy. Exp Mol Med 2019; 51:1-10. [PMID: 31740682 PMCID: PMC6861264 DOI: 10.1038/s12276-019-0346-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/09/2022] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease with diverse clinical manifestations, including parkinsonism, cerebellar syndrome, and autonomic failure. Pathologically, MSA is characterized by glial cytoplasmic inclusions in oligodendrocytes, which contain fibrillary forms of α-synuclein. MSA is categorized as one of the α-synucleinopathy, and α-synuclein aggregation is thought to be the culprit of the disease pathogenesis. Studies on MSA pathogenesis are scarce relative to studies on the pathogenesis of other synucleinopathies, such as Parkinson’s disease and dementia with Lewy bodies. However, recent developments in cellular and animal models of MSA, especially α-synuclein transgenic models, have driven advancements in research on this disease. Here, we review the currently available models of MSA, which include toxicant-induced animal models, α-synuclein-overexpressing cellular models, and mouse models that express α-synuclein specifically in oligodendrocytes through cell type-specific promoters. We will also discuss the results of studies in recently developed transmission mouse models, into which MSA brain extracts were intracerebrally injected. By reviewing the findings obtained from these model systems, we will discuss what we have learned about the disease and describe the strengths and limitations of the models, thereby ultimately providing direction for the design of better models and future research. A review of the models available for studying multiple system atrophy (MSA), a Parkinson’s-like disease, may help identify new treatment options. MSA is difficult to diagnose and unresponsive to drugs. Similar to Parkinson’s disease, it involves accumulation of protein aggregates in brain and spinal cord cells, but the causes are poorly understood. He-Jin Lee at Konkuk University, and Seung-Jae Lee at Seoul National University College of Medicine in South Korea and coworkers have reviewed the models available to study the disease, including toxin-induced and transgenic animal models, and recent evidence that transferring the protein aggregates into cells causes MSA symptoms. Each model mimics some aspects of the disease, but none captures the full range of symptoms. This review helps highlight research pathways that may illuminate treatments for this complex and debilitating adult-onset disease.
Collapse
Affiliation(s)
- He-Jin Lee
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea. .,Research Institute of Medical Science, Konkuk University, Seoul, 05029, South Korea. .,IBST, Konkuk University, Seoul, 05029, South Korea.
| | - Diadem Ricarte
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Darlene Ortiz
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Seung-Jae Lee
- Department of Medicine and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
15
|
Meissner WG, Fernagut PO, Dehay B, Péran P, Traon APL, Foubert-Samier A, Lopez Cuina M, Bezard E, Tison F, Rascol O. Multiple System Atrophy: Recent Developments and Future Perspectives. Mov Disord 2019; 34:1629-1642. [PMID: 31692132 DOI: 10.1002/mds.27894] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare and fatal neurodegenerative disorder characterized by a variable combination of parkinsonism, cerebellar impairment, and autonomic dysfunction. The pathologic hallmark is the accumulation of aggregated α-synuclein in oligodendrocytes, forming glial cytoplasmic inclusions, which qualifies MSA as a synucleinopathy together with Parkinson's disease and dementia with Lewy bodies. The underlying pathogenesis is still not well understood. Some symptomatic treatments are available, whereas neuroprotection remains an urgent unmet treatment need. In this review, we critically appraise significant developments of the past decade with emphasis on pathogenesis, diagnosis, prognosis, and treatment development. We further discuss unsolved questions and highlight some perspectives. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Wassilios G Meissner
- CRMR Atrophie Multisystématisée, CHU Bordeaux, Service de Neurologie, Bordeaux, France.,Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.,Dept. of Medicine, University of Otago, Christchurch, New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Pierre-Olivier Fernagut
- Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.,Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France.,INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Benjamin Dehay
- Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Toulouse, France
| | - Anne Pavy-Le Traon
- Services de Neurologie, CRMR Atrophie Multisystématisée, Toulouse, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Alexandra Foubert-Samier
- CRMR Atrophie Multisystématisée, CHU Bordeaux, Service de Neurologie, Bordeaux, France.,Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,Inserm, Bordeaux Population Health Research Center, Bordeaux University, Bordeaux, France
| | - Miguel Lopez Cuina
- Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - François Tison
- CRMR Atrophie Multisystématisée, CHU Bordeaux, Service de Neurologie, Bordeaux, France.,Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Olivier Rascol
- Services de Neurologie et de Pharmacologie Clinique, Centre de Reference AMS, Centre d'Investigation Clinique, Réseau NS-Park/FCRIN et Centre of Excellence for Neurodegenerative Disorders (COEN) de Toulouse, CHU de Toulouse, Toulouse 3 University, Toulouse, France
| |
Collapse
|
16
|
Heras-Garvin A, Weckbecker D, Ryazanov S, Leonov A, Griesinger C, Giese A, Wenning GK, Stefanova N. Anle138b modulates α-synuclein oligomerization and prevents motor decline and neurodegeneration in a mouse model of multiple system atrophy. Mov Disord 2018; 34:255-263. [PMID: 30452793 PMCID: PMC6492169 DOI: 10.1002/mds.27562] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/21/2023] Open
Abstract
Background MSA is a fatal neurodegenerative disease characterized by autonomic failure and severe motor impairment. Its main pathological hallmark is the accumulation of α‐synuclein in oligodendrocytes, leading to glial and neuronal dysfunction and neurodegeneration. These features are recapitulated in the PLP‐hαSyn mouse model expressing human α‐synuclein in oligodendrocytes. At present, there is no effective disease‐modifying therapy. Previous experiments have shown that the aggregation inhibitor, anle138b, reduces neurodegeneration and behavioral deficits in mouse models of other proteinopathies. Objectives To test the therapeutic potential of anle138b in a mouse model of MSA. Methods Two‐month‐old PLP‐hαSyn mice were fed over a period of 4 months with pellets containing anle138b at two different doses (0.6 and 2 g/kg) and compared to healthy controls and PLP‐hαSyn mice fed with placebo pellets. At the end of the treatment, behavioral and histological analyses were performed. Results We observed a reversal of motor function to healthy control levels when PLP‐hαSyn mice were treated with both doses of anle138b. Histological and molecular analyses showed a significant reduction in α‐synuclein oligomers and glial cytoplasmic inclusions in animals fed with anle138b compared to nontreated mice. These animals also present preservation of dopaminergic neurons and reduction in microglial activation in SN correlating with the α‐synuclein reduction observed. Conclusions Anle138b reduces α‐synuclein accumulation in PLP‐hαSyn mice, leading to neuroprotection, reduction of microglial activation, and preservation of motor function supporting the use of anle138b in a future clinical trial for MSA. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Sergey Ryazanov
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andrei Leonov
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,MODAG GmbH, Wendelsheim, Germany
| | - Christian Griesinger
- NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gregor K Wenning
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
18
|
Progressive striatonigral degeneration in a transgenic mouse model of multiple system atrophy: translational implications for interventional therapies. Acta Neuropathol Commun 2018; 6:2. [PMID: 29298733 PMCID: PMC5753576 DOI: 10.1186/s40478-017-0504-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/16/2017] [Indexed: 12/31/2022] Open
Abstract
Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disorder characterized by widespread oligodendroglial cytoplasmic inclusions of filamentous α-synuclein, and neuronal loss in autonomic centres, basal ganglia and cerebellar circuits. It has been suggested that primary oligodendroglial α-synucleinopathy may represent a trigger in the pathogenesis of MSA, but the mechanisms underlying selective vulnerability and disease progression are unclear. The post-mortem analysis of MSA brains provides a static final picture of the disease neuropathology, but gives no clear indication on the sequence of pathogenic events in MSA. Therefore, alternative methods are needed to address these issues. We investigated selective vulnerability and disease progression in the transgenic PLP-α-syn mouse model of MSA characterized by targeted oligodendroglial α-synuclein overexpression aiming to provide a neuropathological correlate of motor deterioration. We show progressive motor deficits that emerge at 6 months of age and deteriorate up to 18 months of follow-up. The motor phenotype was associated with dopaminergic cell loss in the substantia nigra pars compacta at 6 months, followed by loss of striatal dopaminergic terminals and DARPP32-positive medium sized projection neurons at 12 months. Olivopontocerebellar motor loops remained spared in the PLP-α-syn model of MSA. These findings replicate progressive striatonigral degeneration underlying Parkinson-variant MSA. The initiation of the degenerative process was linked to an increase of soluble oligomeric α-synuclein species between 2 and 6 months. Early region-specific α-synuclein-associated activation profile of microglia was found in MSA substantia nigra. The role of abnormal neuroinflammatory signalling in disease progression was further supported by increased levels of CD68, CCL3, CCL5 and M-CSF with a peak in aged PLP-α-syn mice. In summary, transgenic PLP-α-syn mice show a distinctive oligodendroglial α-synucleinopathy that is associated with progressive striatonigral degeneration linked to abnormal neuroinflammatory response. The model provides a relevant tool for preclinical therapeutic target discovery for human Parkinson-variant MSA.
Collapse
|
19
|
Overk C, Rockenstein E, Valera E, Stefanova N, Wenning G, Masliah E. Multiple system atrophy: experimental models and reality. Acta Neuropathol 2018; 135:33-47. [PMID: 29058121 PMCID: PMC6156777 DOI: 10.1007/s00401-017-1772-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 01/08/2023]
Abstract
Multiple system atrophy (MSA) is a rapidly progressing fatal synucleinopathy of the aging population characterized by parkinsonism, dysautonomia, and in some cases ataxia. Unlike other synucleinopathies, in this disorder the synaptic protein, α-synuclein (α-syn), predominantly accumulates in oligodendroglial cells (and to some extent in neurons), leading to maturation defects of oligodendrocytes, demyelination, and neurodegeneration. The mechanisms through which α-syn deposits occur in oligodendrocytes and neurons in MSA are not completely clear. While some studies suggest that α-syn might transfer from neurons to glial cells, others propose that α-syn might be aberrantly overexpressed by oligodendroglial cells. A number of in vivo models have been developed, including transgenic mice overexpressing α-syn under oligodendroglial promoters (e.g.: MBP, PLP, and CNP). Other models have been recently developed either by injecting synthetic α-syn fibrils or brain homogenates from patients with MSA into wild-type mice or by using viral vectors expressing α-syn under the MBP promoter in rats and non-human primates. Each of these models reproduces some of the neuropathological and functional aspects of MSA; however, none of them fully replicate the spectrum of MSA. Understanding better the mechanisms of how α-syn accumulates in oligodendrocytes and neurons will help in developing better models that recapitulate various pathogenic aspects of MSA in combination with translatable biomarkers of early stages of the disease that are necessary to devise disease-modifying therapeutics for MSA.
Collapse
Affiliation(s)
- Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093-0624, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093-0624, USA
| | - Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093-0624, USA
| | - Nadia Stefanova
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093-0624, USA.
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Translational therapies for multiple system atrophy: Bottlenecks and future directions. Auton Neurosci 2017; 211:7-14. [PMID: 29017831 DOI: 10.1016/j.autneu.2017.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 11/24/2022]
Abstract
Over the last decade a prominent amount of studies in preclinical transgenic models of multiple system atrophy (MSA) has been performed. These studies have helped understand mechanisms downstream to the α-synuclein oligodendroglial accumulation relevant to human MSA. However, the successful translation of the preclinical outcomes into a clinical trial has failed. Looking back, we can now identify possible confounders for the failure. Biomarkers of disease progression are mostly missing. Early diagnosis and initiation of therapeutic clinical trials is limited. The need of both proof-of-concept as well as clinically relevant preclinical study designs with clinically relevant timing and preclinical readouts is identified as a must in our translational efforts for MSA to date. Finally, improved clinical study designs with improved enrollment criteria, and measurement outcomes are warranted on the way to finding the successful therapeutic approach for MSA. This review provides an overview of experimental studies and clinical trials for MSA and the lessons learned over the last decade towards the identification of the cure for MSA.
Collapse
|
21
|
Härtner L, Keil TWM, Kreuzer M, Fritz EM, Wenning GK, Stefanova N, Fenzl T. Distinct Parameters in the EEG of the PLP α-SYN Mouse Model for Multiple System Atrophy Reinforce Face Validity. Front Behav Neurosci 2017; 10:252. [PMID: 28119583 PMCID: PMC5222844 DOI: 10.3389/fnbeh.2016.00252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/27/2016] [Indexed: 01/10/2023] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative movement disorder characterized by parkinsonian symptoms and cerebellar symptoms. Sleep disturbances also play a crucial role in MSA. One of the most convincing animal models in MSA research is the PLP α-SYN model, but to date no studies on sleep disturbances in this mouse model, frequently found in MSA patients are available. We identified spectral shifts within the EEG of the model, strikingly resembling results of clinical studies. We also characterized muscle activity during REM sleep, which is one of the key symptoms in REM sleep behavioral disorder. Spectral shifts and REM sleep-linked muscle activity were age dependent, supporting Face Validity of the PLP α-SYN model. We also strongly suggest our findings to be critically evaluated for Predictive Validity in future studies. Currently, research on MSA lacks potential compounds attenuating or curing MSA. Future drugs must prove its potential in animal models, for this our study provides potential biomarkers.
Collapse
Affiliation(s)
- Lorenz Härtner
- Department of Pharmacology and Toxicology, Institute for Pharmacy, Leopold-Franzens University of InnsbruckInnsbruck, Austria
| | - Tobias W. M. Keil
- Department of Pharmacology and Toxicology, Institute for Pharmacy, Leopold-Franzens University of InnsbruckInnsbruck, Austria
| | - Matthias Kreuzer
- Neuroanesthesia Laboratory, Atlanta Veterans Affairs Medical Center/Emory University and Department of Anesthesiology, Emory UniversityAtlanta, Georgia
| | - Eva Maria Fritz
- Department of Pharmacology and Toxicology, Institute for Pharmacy, Leopold-Franzens University of InnsbruckInnsbruck, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University InnsbruckInnsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University InnsbruckInnsbruck, Austria
| | - Thomas Fenzl
- Department of Pharmacology and Toxicology, Institute for Pharmacy, Leopold-Franzens University of InnsbruckInnsbruck, Austria
| |
Collapse
|
22
|
Stefanova N, Wenning GK. Review: Multiple system atrophy: emerging targets for interventional therapies. Neuropathol Appl Neurobiol 2016; 42:20-32. [PMID: 26785838 PMCID: PMC4788141 DOI: 10.1111/nan.12304] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 12/21/2022]
Abstract
Multiple system atrophy (MSA) is a fatal orphan neurodegenerative disorder that manifests with rapidly progressive autonomic and motor dysfunction. The disease is characterized by the accumulation of α-synuclein fibrils in oligodendrocytes that form glial cytoplasmic inclusions, a neuropathological hallmark and central player in the pathogenesis of MSA. Here, we summarize the current knowledge on the etiopathogenesis and neuropathology of MSA. We discuss the role of α-synuclein pathology, microglial activation, oligodendroglial dysfunction and putative cell death mechanisms as candidate therapeutic targets in MSA.
Collapse
Affiliation(s)
- N Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - G K Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Shimohata T, Aizawa N, Nakayama H, Taniguchi H, Ohshima Y, Okumura H, Takahashi T, Yokoseki A, Inoue M, Nishizawa M. Mechanisms and prevention of sudden death in multiple system atrophy. Parkinsonism Relat Disord 2016; 30:1-6. [PMID: 27103478 DOI: 10.1016/j.parkreldis.2016.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/14/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sudden death in multiple system atrophy (MSA) usually occurs during sleep and was therefore attributed to suffocation resulting from vocal cord abductor paralysis, a characteristic laryngeal finding of MSA. This led to the use of tracheostomy and noninvasive positive pressure ventilation (NPPV) for the prevention of sudden death. However, neither method has been able to prevent sudden death, and both have occasionally precipitated treatment-related complications, including central sleep apneas and exacerbation of floppy epiglottis. Therefore, it is important to determine the mechanisms and prevention of sudden death in MSA. METHODS We reviewed the literature on the mechanisms and prevention of sudden death in patients with MSA. RESULTS Sudden death in MSA is hypothesized to be a consequence of disordered central respiration, suffocation caused by sputum and food, upper airway obstruction from NPPV acting on a floppy epiglottis, cardiac autonomic disturbance, or a combination of these factors. CONCLUSION Various factors may be involved in the mechanism of sudden death in MSA. A multidisciplinary approach is needed to prevent sudden death, and this requires an organized system of several medical specialties. Neurologists require a cooperative network that includes experts in otorhinolaryngology, sleep medicine, dysphagia rehabilitation, and cardiology.
Collapse
Affiliation(s)
- Takayoshi Shimohata
- Department of Neurology, Brain Research Institute, Niigata University, Aahimachi-dori 1-757, Chuo-ku, 951-8585, Niigata City, Niigata, Japan.
| | - Naotaka Aizawa
- Department of Otorhinolaryngology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami-uonuma, Japan
| | - Hideaki Nakayama
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hiroshige Taniguchi
- Department of Dentistry, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yasuyoshi Ohshima
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hitoshi Okumura
- Division of Otolaryngology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tetsuya Takahashi
- Department of Neurology, Brain Research Institute, Niigata University, Aahimachi-dori 1-757, Chuo-ku, 951-8585, Niigata City, Niigata, Japan
| | - Akio Yokoseki
- Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Brain Research Institute, Niigata University, Niigata, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Brain Research Institute, Niigata University, Aahimachi-dori 1-757, Chuo-ku, 951-8585, Niigata City, Niigata, Japan
| |
Collapse
|
24
|
Dehay B, Decressac M, Bourdenx M, Guadagnino I, Fernagut PO, Tamburrino A, Bassil F, Meissner WG, Bezard E. Targeting α-synuclein: Therapeutic options. Mov Disord 2016; 31:882-8. [PMID: 26926119 DOI: 10.1002/mds.26568] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
The discovery of the central role of α-synuclein (αSyn) in the pathogenesis of Parkinson's disease (PD) has powered, in the last decade, the emergence of novel relevant models of this condition based on viral vector-mediated expression of the disease-causing protein or inoculation of toxic species of αSyn. Although the development of these powerful tools and models has provided considerable insights into the mechanisms underlying neurodegeneration in PD, it has also been translated into the expansion of the landscape of preclinical therapeutic strategies. Much attention is now brought to the proteotoxic mechanisms induced by αSyn and how to block them using strategies inspired by intrinsic cellular pathways such as the enhancement of cellular clearance by the lysosomal-autophagic system, through proteasome-mediated degradation or through immunization. The important effort undertaken by several laboratories and consortia to tackle these issues and identify novel targets warrants great promise for the discovery not only of neuroprotective approaches but also of restorative strategies for PD and other synucleinopathies. In this viewpoint, we summarize the latest advances in this new area of PD research and will discuss promising approaches and ongoing challenges. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Benjamin Dehay
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | | | - Mathieu Bourdenx
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | | | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Anna Tamburrino
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Fares Bassil
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Wassilios G Meissner
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Department of Neurology, University Hospital Bordeaux, Bordeaux, France
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
25
|
Kuzdas-Wood D, Irschick R, Theurl M, Malsch P, Mair N, Mantinger C, Wanschitz J, Klimaschewski L, Poewe W, Stefanova N, Wenning GK. Involvement of Peripheral Nerves in the Transgenic PLP-α-Syn Model of Multiple System Atrophy: Extending the Phenotype. PLoS One 2015; 10:e0136575. [PMID: 26496712 PMCID: PMC4619736 DOI: 10.1371/journal.pone.0136575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022] Open
Abstract
Multiple system atrophy (MSA) is a fatal, rapidly progressive neurodegenerative disease with (oligodendro-)glial cytoplasmic α-synuclein (α-syn) inclusions (GCIs). Peripheral neuropathies have been reported in up to 40% of MSA patients, the cause remaining unclear. In a transgenic MSA mouse model featuring GCI-like inclusion pathology based on PLP-promoter driven overexpression of human α-syn in oligodendroglia motor and non-motor deficits are associated with MSA-like neurodegeneration. Since α-syn is also expressed in Schwann cells we aimed to investigate whether peripheral nerves are anatomically and functionally affected in the PLP-α-syn MSA mouse model.
Collapse
Affiliation(s)
- Daniela Kuzdas-Wood
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Regina Irschick
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Theurl
- Department of Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Philipp Malsch
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Norbert Mair
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Christine Mantinger
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Julia Wanschitz
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Lars Klimaschewski
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tirol, Austria
- * E-mail:
| |
Collapse
|
26
|
Oligodendroglia and Myelin in Neurodegenerative Diseases: More Than Just Bystanders? Mol Neurobiol 2015; 53:3046-3062. [PMID: 25966971 PMCID: PMC4902834 DOI: 10.1007/s12035-015-9205-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/29/2015] [Indexed: 12/01/2022]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system, mediate rapid action potential conduction and provide trophic support for axonal as well as neuronal maintenance. Their progenitor cell population is widely distributed in the adult brain and represents a permanent cellular reservoir for oligodendrocyte replacement and myelin plasticity. The recognition of oligodendrocytes, their progeny, and myelin as contributing factors for the pathogenesis and the progression of neurodegenerative disease has recently evolved shaping our understanding of these disorders. In the present review, we aim to highlight studies on oligodendrocytes and their progenitors in neurodegenerative diseases. We dissect oligodendroglial biology and illustrate evolutionary aspects in regard to their importance for neuronal functionality and maintenance of neuronal circuitries. After covering recent studies on oligodendroglia in different neurodegenerative diseases mainly in view of their function as myelinating cells, we focus on the alpha-synucleinopathy multiple system atrophy, a prototypical disorder with a well-defined oligodendroglial pathology.
Collapse
|
27
|
Stefanova N, Wenning GK. Animal models of multiple system atrophy. Clin Auton Res 2015; 25:9-17. [PMID: 25585910 PMCID: PMC4412689 DOI: 10.1007/s10286-014-0266-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/18/2014] [Indexed: 11/27/2022]
Abstract
Since their introduction in 1996, animal models of multiple system atrophy (MSA) have generated important insights into pathogenesis and interventional therapies. Toxin and genetic approaches have been used alone or in combination to replicate progressive motor and non-motor symptoms reflecting human neuropathology. Here, we review these developments and discuss the advantages and limitations of the MSA animal models, as well as their application in preclinical target validation.
Collapse
Affiliation(s)
- Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Anichstr. 35, 6020, Innsbruck, Austria,
| | | |
Collapse
|
28
|
Kuzdas-Wood D, Stefanova N, Jellinger KA, Seppi K, Schlossmacher MG, Poewe W, Wenning GK. Towards translational therapies for multiple system atrophy. Prog Neurobiol 2014; 118:19-35. [PMID: 24598411 PMCID: PMC4068324 DOI: 10.1016/j.pneurobio.2014.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/28/2022]
Abstract
Multiple system atrophy (MSA) is a fatal adult-onset neurodegenerative disorder of uncertain etiopathogenesis manifesting with autonomic failure, parkinsonism, and ataxia in any combination. The underlying neuropathology affects central autonomic, striatonigral and olivopontocerebellar pathways and it is associated with distinctive glial cytoplasmic inclusions (GCIs, Papp-Lantos bodies) that contain aggregates of α-synuclein. Current treatment options are very limited and mainly focused on symptomatic relief, whereas disease modifying options are lacking. Despite extensive testing, no neuroprotective drug treatment has been identified up to now; however, a neurorestorative approach utilizing autologous mesenchymal stem cells has shown remarkable beneficial effects in the cerebellar variant of MSA. Here, we review the progress made over the last decade in defining pathogenic targets in MSA and summarize insights gained from candidate disease-modifying interventions that have utilized a variety of well-established preclinical MSA models. We also discuss the current limitations that our field faces and suggest solutions for possible approaches in cause-directed therapies of MSA.
Collapse
Affiliation(s)
- Daniela Kuzdas-Wood
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Nadia Stefanova
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | | | - Klaus Seppi
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Michael G Schlossmacher
- Divisions of Neuroscience and Neurology, The Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, RGH #1412, Ottawa, ON, K1H 8M5, Canada
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Gregor K Wenning
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria.
| |
Collapse
|