1
|
Smadja DM, Abreu MM. Hyperthermia and targeting heat shock proteins: innovative approaches for neurodegenerative disorders and Long COVID. Front Neurosci 2025; 19:1475376. [PMID: 39967803 PMCID: PMC11832498 DOI: 10.3389/fnins.2025.1475376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025] Open
Abstract
Neurodegenerative diseases (NDs) and Long COVID represent critical and growing global health challenges, characterized by complex pathophysiological mechanisms including neuronal deterioration, protein misfolding, and persistent neuroinflammation. The emergence of innovative therapeutic approaches, such as whole-body hyperthermia (WBH), offers promising potential to modulate underlying pathophysiological mechanisms in NDs and related conditions like Long COVID. WBH, particularly in fever-range, enhances mitochondrial function, induces heat shock proteins (HSPs), and modulates neuroinflammation-benefits that pharmacological treatments often struggle to replicate. HSPs such as HSP70 and HSP90 play pivotal roles in protein folding, aggregation prevention, and cellular protection, directly targeting pathological processes seen in NDs like Alzheimer's, Parkinson's, and Huntington's disease. Preliminary findings also suggest WBH's potential to alleviate neurological symptoms in Long COVID, where persistent neuroinflammation and serotonin dysregulation are prominent. Despite the absence of robust clinical trials, the therapeutic implications of WBH extend to immune modulation and the restoration of disrupted physiological pathways. However, the dual nature of hyperthermia's effects-balancing pro-inflammatory and anti-inflammatory responses-emphasizes the need for dose-controlled applications and stringent patient monitoring to minimize risks in vulnerable populations. While WBH shows potential interest, significant challenges remain. These include individual variability in response, limited accessibility to advanced hyperthermia technologies, and the need for standardized clinical protocols. Future research must focus on targeted clinical trials, biomarker identification, and personalized treatment strategies to optimize WBH's efficacy in NDs and Long COVID. The integration of WBH into therapeutic paradigms could mark a transformative step in addressing these complex conditions.
Collapse
Affiliation(s)
- David M. Smadja
- Paris Cité University, INSERM, Paris Cardiovascular Research Centre, Team Endotheliopathy and Hemostasis Disorders, Paris, France
- Hematology Department, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Paris, France
| | - M. Marc Abreu
- BTT Medical Institute, Aventura, FL, United States
- BTT Engineering Department, Aventura, FL, United States
| |
Collapse
|
2
|
Sacchini S. Neurodegenerative Diseases: What Can Be Learned from Toothed Whales? Neurosci Bull 2025; 41:326-338. [PMID: 39485652 PMCID: PMC11794736 DOI: 10.1007/s12264-024-01310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/13/2024] [Indexed: 11/03/2024] Open
Abstract
Neurodegeneration involves a wide range of neuropathological alterations affecting the integrity, physiology, and architecture of neural cells. Many studies have demonstrated neurodegeneration in different animals. In the case of Alzheimer's disease (AD), spontaneous animal models should display two neurohistopathological hallmarks: the deposition of β-amyloid and the arrangement of neurofibrillary tangles. However, no natural animal models that fulfill these conditions have been reported and most research into AD has been performed using transgenic rodents. Recent studies have also demonstrated that toothed whales - homeothermic, long-lived, top predatory marine mammals - show neuropathological signs of AD-like pathology. The neuropathological hallmarks in these cetaceans could help to better understand their endangered health as well as neurodegenerative diseases in humans. This systematic review analyzes all the literature published to date on this trending topic and the proposed causes for neurodegeneration in these iconic marine mammals are approached in the context of One Health/Planetary Health and translational medicine.
Collapse
Affiliation(s)
- Simona Sacchini
- Department of Morphology, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de San Cristóbal, c/ Blas Cabrera Felipe s/n, 35016, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
3
|
Canonichesi J, Bellingacci L, Rivelli F, Tozzi A. Enhancing sleep quality in synucleinopathies through physical exercise. Front Cell Neurosci 2025; 19:1515922. [PMID: 39959465 PMCID: PMC11825755 DOI: 10.3389/fncel.2025.1515922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
During sleep, several crucial processes for brain homeostasis occur, including the rearrangement of synaptic connections, which is essential for memory formation and updating. Sleep also facilitates the removal of neurotoxic waste products, the accumulation of which plays a key role in neurodegeneration. Various neural components and environmental factors regulate and influence the physiological transition between wakefulness and sleep. Disruptions in this complex system form the basis of sleep disorders, as commonly observed in synucleinopathies. Synucleinopathies are neurodegenerative disorders characterized by abnormal build-up of α-synuclein protein aggregates in the brain. This accumulation in different brain regions leads to a spectrum of clinical manifestations, including hypokinesia, cognitive impairment, psychiatric symptoms, and neurovegetative disturbances. Sleep disorders are highly prevalent in individuals with synucleinopathies, and they not only affect the overall well-being of patients but also directly contribute to disease severity and progression. Therefore, it is crucial to develop effective therapeutic strategies to improve sleep quality in these patients. Adequate sleep is vital for brain health, and the role of synucleinopathies in disrupting sleep patterns must be taken into account. In this context, it is essential to explore the role of physical exercise as a potential non-pharmacological intervention to manage sleep disorders in individuals with synucleinopathies. The current evidence on the efficacy of exercise programs to enhance sleep quality in this patient population is discussed.
Collapse
Affiliation(s)
| | | | | | - Alessandro Tozzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Tong S, Wang R, Li H, Tong Z, Geng D, Zhang X, Ren C. Executive dysfunction in Parkinson's disease: From neurochemistry to circuits, genetics and neuroimaging. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111272. [PMID: 39880275 DOI: 10.1016/j.pnpbp.2025.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Cognitive decline is one of the most significant non-motor symptoms of Parkinson's disease (PD), with executive dysfunction (EDF) being the most prominent characteristic of PD-associated cognitive deficits. Currently, lack of uniformity in the conceptualization and assessment scales for executive functions impedes the early and accurate diagnosis of EDF in PD. The neurobiological mechanisms of EDF in PD remain poorly understood. Moreover, the treatment of cognitive impairment in PD has progressed slowly and with limited efficacy. Thus, this review explores the characteristics and potential mechanisms of EDF in PD from multiple perspectives, including the concept of executive function, commonly used neuropsychological tests, neurobiochemistry, genetics, electroencephalographic activity and neuroimaging. The available evidence indicates that degeneration of the frontal-striatal circuit, along with mutations in the Catechol-O-methyltransferase (COMT) gene and Leucine-rich repeat kinase 2 (LRRK2) gene, may contribute to EDF in patients with PD. The increase in theta and delta waves, along with the decrease in alpha waves, offers potential biomarkers for the early identification and monitoring of EDF, as well as the development of dementia in patients with PD. The PD cognition-related pattern (PDCP) pattern may serve as a tool for monitoring and assessing cognitive function progression in these patients and is anticipated to become a biomarker for cognitive disorders associated with PD. The aim is to provide new insights for the early and precise diagnosis and treatment of EDF in PD.
Collapse
Affiliation(s)
- Shuyan Tong
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ruiwen Wang
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Huihua Li
- Department of Psychiatry, Zhenjiang Mental Health Center, Zhenjiang, Jiangsu, China
| | - Zhu Tong
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chao Ren
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
| |
Collapse
|
5
|
do Nascimento Silva J, Rodrigues BA, Kawamoto EM. Aged mice show a reduction in 5-HT neurons and decreased cellular activation in the dentate gyrus when exposed to acute running. Brain Struct Funct 2024; 230:7. [PMID: 39688729 DOI: 10.1007/s00429-024-02878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/07/2024] [Indexed: 12/18/2024]
Abstract
Serotonin (5-HT) is an important neurotransmitter for cognition and neurogenesis in the dentate gyrus (DG), which occurs via movement stimulation such as physical activity. Brain 5-HT function changes secondary to aging require further investigation. We evaluated whether aged animals would present changes in the number of 5-HT neurons in regions such as the dorsal (DRN) and median (MRN) raphe nuclei and possible changes in the rate of cellular activation in the DG in response to acute running, as a reduction in 5-HT neurons could contribute to a decline in neuronal activation in the DG in response to physical activity in aged mice. This study was conducted on adult (3 months old) and aged (19 months old) male and female mice. Immunohistochemistry, microscopic analysis, and treadmill-running tests were also performed. The data revealed that in aged mice, a reduction in the number of 5-HT neurons in the DRN and MRN of male and female mice was observed. The reduction in the DRN was greater in females. Furthermore, aged animals demonstrate a lower rate of c-Fos labeling in the DG when stimulated by physical exercise. These data indicate that aging may be associated with a reduction in the number of 5-HT neurons in the DRN and MRN, which may lead to a decline in 5-HT availability in the target regions, including the DG. The reduced c-Fos expression in the DG after running in aged mice indicates a decreased response to physical activity, which is potentially linked to serotonergic deficits.
Collapse
Affiliation(s)
- Josiane do Nascimento Silva
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| | - Bianca Andrade Rodrigues
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
6
|
Santos LG, Kenney LE, Ray A, Paredes A, Ratajska AM, Eversole K, Patel B, Rawls AE, Okun MS, Bowers D. Anticholinergic Medication Burden and Cognitive Subtypes in Parkinson's Disease without Dementia. Arch Clin Neuropsychol 2024; 39:1443-1449. [PMID: 38797973 PMCID: PMC11586454 DOI: 10.1093/arclin/acae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE Cognitive changes are heterogeneous in Parkinson's disease (PD). This study compared whether anticholinergic burden drives differences in cognitive domain performance and empirically-derived PD-cognitive phenotypes. METHOD A retrospective chart review contained participants (n = 493) who had idiopathic PD without dementia. Participants' medications were scored (0-3) and summed based on the anticholinergic cognitive burden scale (ACBS). We examined the ACBS' relationship to five cognitive domain composites (normative z-scores) and three (K-means clustering based) cognitive phenotypes: cognitively intact, low executive function (EF), and predominately impaired EF/memory. Analyses included Spearman correlations, analysis of covariance, and Pearson chi-squared test. RESULTS Overall, phenotypes did not differ in anticholinergic burden, and (after false-discovery-rate corrections) no cognitive domains related. When comparing those above and below the clinically relevant ACBS cutoff (i.e., score ≥3), no significant phenotype or domain differences were found. CONCLUSIONS Anticholinergic medication usage did not drive cognitive performance in a large clinical sample of idiopathic PD without dementia.
Collapse
Affiliation(s)
- Lauren G Santos
- Department of Clinical and Health Psychology, University of Florida, PO Box 100165 Gainesville, FL 32610-0165
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 SW Williston Road Gainesville, FL 32608
| | - Lauren E Kenney
- Department of Clinical and Health Psychology, University of Florida, PO Box 100165 Gainesville, FL 32610-0165
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 SW Williston Road Gainesville, FL 32608
| | - Alyssa Ray
- Department of Clinical and Health Psychology, University of Florida, PO Box 100165 Gainesville, FL 32610-0165
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 SW Williston Road Gainesville, FL 32608
| | - Alfredo Paredes
- Department of Clinical and Health Psychology, University of Florida, PO Box 100165 Gainesville, FL 32610-0165
| | - Adrianna M Ratajska
- Department of Clinical and Health Psychology, University of Florida, PO Box 100165 Gainesville, FL 32610-0165
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 SW Williston Road Gainesville, FL 32608
| | - Kara Eversole
- Department of Clinical and Health Psychology, University of Florida, PO Box 100165 Gainesville, FL 32610-0165
| | - Bhavana Patel
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 SW Williston Road Gainesville, FL 32608
- Department of Neurology, University of Florida, Box 100236 Gainesville, FL 32610-0236
| | - Ashley E Rawls
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 SW Williston Road Gainesville, FL 32608
- Department of Neurology, University of Florida, Box 100236 Gainesville, FL 32610-0236
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 SW Williston Road Gainesville, FL 32608
- Department of Neurology, University of Florida, Box 100236 Gainesville, FL 32610-0236
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida, PO Box 100165 Gainesville, FL 32610-0165
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 SW Williston Road Gainesville, FL 32608
- Department of Neurology, University of Florida, Box 100236 Gainesville, FL 32610-0236
| |
Collapse
|
7
|
Bagwell E, Shin M, Henkel N, Migliaccio D, Peng C, Larsen J. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated adult zebrafish as a model for Parkinson's Disease. Neurosci Lett 2024; 842:137991. [PMID: 39317270 DOI: 10.1016/j.neulet.2024.137991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter that works to regulate cognitive functions. Patients affected by Parkinson's Disease (PD) experience a loss of dopaminergic neurons and downregulated neural DA production. This leads to cognitive and physical decline that is the hallmark of PD for which no cure currently exists. Danio rerio, or zebrafish, have become an increasingly popular disease model used in PD pharmaceutical development. This model still requires extensive development to better characterize which PD features are adequately represented. Furthermore, the great majority of PD zebrafish models have been performed in embryos, which may not be relevant towards age-related human PD. As an improvement, mature D. rerio were treated with neurotoxic prodrug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) through intraperitoneal injection to induce parkinsonism. Behavioral analysis confirmed disparities in movement between saline-injected control and the MPTP-injected experimental group, with swim distance and speed significantly lowered seven days after MPTP injection. Simultaneously, cognitive decline was apparent in MPTP-injected zebrafish, demonstrated by decreased alternation in a y-maze. RT-qPCR confirmed trends consistent with downregulation in Parkinsonian genetic markers, specifically DA transporter (DAT), MAO-B, PINK1. In summary, mature zebrafish injected with MPTP present with similar movement and cognitive decline as compared to human disease. Despite its benefits, this model does not appear to recapitulate pathophysiology of the disease with the full profile of expected gene downregulation. Because of this, it is important that researchers looking for pharmacological interventions for PD only use this zebrafish model when targeting the human-relevant PD symptoms and causes that are represented.
Collapse
Affiliation(s)
- Emmeline Bagwell
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Minhyun Shin
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Nicole Henkel
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | - Doris Migliaccio
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA; Department of Psychology, Clemson University, Clemson, SC, USA
| | - Congyue Peng
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Jessica Larsen
- Department of Bioengineering, Clemson University, Clemson, SC, USA; Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
8
|
Yoo SW, Ryu DW, Oh Y, Ha S, Lyoo CH, Kim JS. Unraveling olfactory subtypes in Parkinson's disease and their effect on the natural history of the disease. J Neurol 2024; 271:6102-6113. [PMID: 39043904 DOI: 10.1007/s00415-024-12586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Hyposmia in Parkinson's disease (PD) had been studied before but had not been detailed by its temporal progression. This study observed how each olfactory subtype evolved in terms of motor symptoms, cardiac sympathetic innervation, and cognition. METHODS Two hundred and three early PD patients were classified as normosmia, hyposmia-converter (hypo-converter), and hyposmia. Their presynaptic monoamine availability at the time of diagnosis was assessed by positron emission tomography imaging using 18F-N-(3-fluoropropyl)-2beta-carbon ethoxy-3beta-(4-iodophenyl) nortropane and compared across the subtypes. Motor symptoms were evaluated in all patients, cardiac denervation was examined in 183 patients, and cognition in 195 patients were assessed using a neuropsychological battery. The domains were re-assessed 2-4 times, and the longitudinal data were analyzed to discern the natural course of each subtype. RESULTS Twenty-nine (14.3%) patients belonged to the normosmia group, 34 (16.7%) to the hypo-converter group, and the rest to the hyposmia (69.0%) group. 85.7% of the total population became hyposmic during an average 3 years of follow-up. The baseline motor symptoms, cardiac denervation, and cognition were comparable across the olfactory subtypes. Across the subtypes, a decline in the presynaptic monoamine densities of the caudate, especially the ventral-anterior subdivisions, correlated inversely with olfaction dysfunction. Over time, motor and cardiac denervation burdens worsened regardless of olfactory subtypes, but hypo-converters experienced faster cognitive deterioration than the other two groups. CONCLUSIONS The results suggest that the olfactory subtypes have differential significance along the disease course, which might reflect the involvement of different neuro-biochemical circuitries.
Collapse
Affiliation(s)
- Sang-Won Yoo
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Dong-Woo Ryu
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yoonsang Oh
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine, Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joong-Seok Kim
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
9
|
Zhu SG, Chen ZL, Xiao K, Wang ZW, Lu WB, Liu RP, Huang SS, Zhu JH, Zhang X, Wang JY. Association analyses of apolipoprotein E genotypes and cognitive performance in patients with Parkinson's disease. Eur J Med Res 2024; 29:334. [PMID: 38880878 PMCID: PMC11181540 DOI: 10.1186/s40001-024-01924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Cognitive impairment is a common non-motor symptom of Parkinson's disease (PD). The apolipoprotein E (APOE) ε4 genotype increases the risk of Alzheimer's disease (AD). However, the effect of APOEε4 on cognitive function of PD patients remains unclear. In this study, we aimed to understand whether and how carrying APOEε4 affects cognitive performance in patients with early-stage and advanced PD. METHODS A total of 119 Chinese early-stage PD patients were recruited. Movement Disorder Society Unified Parkinson's Disease Rating Scale, Hamilton anxiety scale, Hamilton depression scale, non-motor symptoms scale, Mini-mental State Examination, Montreal Cognitive Assessment, and Fazekas scale were evaluated. APOE genotypes were determined by polymerase chain reactions and direct sequencing. Demographic and clinical information of 521 early-stage and 262 advanced PD patients were obtained from Parkinson's Progression Marker Initiative (PPMI). RESULTS No significant difference in cognitive performance was found between ApoEε4 carriers and non-carriers in early-stage PD patients from our cohort and PPMI. The cerebrospinal fluid (CSF) Amyloid Beta 42 (Aβ42) level was significantly lower in ApoEε4 carrier than non-carriers in early-stage PD patients from PPMI. In advanced PD patients from PPMI, the BJLOT, HVLT retention and SDMT scores seem to be lower in ApoEε4 carriers without reach the statistical significance. CONCLUSIONS APOEε4 carriage does not affect the cognitive performance of early-stage PD patients. However, it may promote the decline of CSF Aβ42 level and the associated amyloidopathy, which is likely to further contribute to the cognitive dysfunction of PD patients in the advanced stage.
Collapse
Affiliation(s)
- Shi-Guo Zhu
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhu-Ling Chen
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Ke Xiao
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zi-Wei Wang
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Wen-Bin Lu
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Rong-Pei Liu
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shi-Shi Huang
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jian-Hong Zhu
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xiong Zhang
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Jian-Yong Wang
- Department of Neurology, Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
10
|
Loehrer PA, Bopp MHA, Dafsari HS, Seltenreich S, Knake S, Nimsky C, Timmermann L, Pedrosa DJ, Belke M. Microstructure predicts non-motor outcomes following deep brain stimulation in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:104. [PMID: 38762510 PMCID: PMC11102428 DOI: 10.1038/s41531-024-00717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/25/2024] [Indexed: 05/20/2024] Open
Abstract
Deep brain stimulation of the subthalamic nucleus (STN-DBS) effectively treats motor and non-motor symptoms in advanced Parkinson's disease (PD). As considerable interindividual variability of outcomes exists, neuroimaging-based biomarkers, including microstructural metrics, have been proposed to anticipate treatment response. In this prospective open-label study, we sought to detect microstructural properties of brain areas associated with short-term non-motor outcomes following STN-DBS. Thirty-seven PD patients underwent diffusion MRI and clinical assessments at preoperative baseline and 6-month follow-up. Whole brain voxel-wise analysis assessed associations between microstructural metrics and non-motor outcomes. Intact microstructure within specific areas, including the right insular cortex, right putamen, right cingulum, and bilateral corticospinal tract were associated with greater postoperative improvement of non-motor symptom burden. Furthermore, microstructural properties of distinct brain regions were associated with postoperative changes in sleep, attention/memory, urinary symptoms, and apathy. In conclusion, diffusion MRI could support preoperative patient counselling by identifying patients with above- or below-average non-motor responses.
Collapse
Affiliation(s)
- Philipp A Loehrer
- Department of Neurology, Philipps-University Marburg, Marburg, Germany.
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Miriam H A Bopp
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Haidar S Dafsari
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | | | - Susanne Knake
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Cologne, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Cologne, Germany
| | - David J Pedrosa
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Marcus Belke
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Cologne, Germany
| |
Collapse
|
11
|
Rodriguez K, Schade R, Lopez FV, Kenney L, Ratajska A, Gertler J, Bowers D. Perception of cognitive change by individuals with Parkinson's disease or essential tremor seeking deep brain stimulation: Utility of the cognitive change index. J Int Neuropsychol Soc 2024; 30:370-379. [PMID: 37800314 PMCID: PMC10997739 DOI: 10.1017/s1355617723000620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
OBJECTIVE The Cognitive Change Index (CCI-20) is a validated questionnaire that assesses subjective cognitive complaints (SCCs) across memory, language, and executive domains. We aimed to: (a) examine the internal consistency and construct validity of the CCI-20 in patients with movement disorders and (b) learn how the CCI-20 corresponds to objective neuropsychological and mood performance in individuals with Parkinson's disease (PD) or essential tremor (ET) seeking deep brain stimulation (DBS). METHODS 216 participants (N = 149 PD; N = 67 ET) underwent neuropsychological evaluation and received the CCI-20. The proposed domains of the CCI-20 were examined via confirmatory (CFA) and exploratory (EFA) factor analyses. Hierarchical regressions were used to assess the relationship among subjective cognitive complaints, neuropsychological performance and mood symptoms. RESULTS PD and ET groups were similar across neuropsychological, mood, and CCI-20 scores and were combined into one group who was well educated (m = 15.01 ± 2.92), in their mid-60's (m = 67.72 ± 9.33), predominantly male (63%), and non-Hispanic White (93.6%). Previously proposed 3-domain CCI-20 model failed to achieve adequate fit. Subsequent EFA revealed two CCI-20 factors: memory and non-memory (p < 0.001; CFI = 0.924). Regressions indicated apathy and depressive symptoms were associated with greater memory and total cognitive complaints, while poor executive function and anxiety were associated with more non-memory complaints. CONCLUSION Two distinct dimensions were identified in the CCI-20: memory and non-memory complaints. Non-memory complaints were indicative of worse executive function, consistent with PD and ET cognitive profiles. Mood significantly contributed to all CCI-20 dimensions. Future studies should explore the utility of SCCs in predicting cognitive decline in these populations.
Collapse
Affiliation(s)
- Katie Rodriguez
- Department of Clinical and Health Psychology, University of Florida, Gaineville, FL
| | - Rachel Schade
- Department of Clinical and Health Psychology, University of Florida, Gaineville, FL
| | - Francesca V. Lopez
- Department of Clinical and Health Psychology, University of Florida, Gaineville, FL
| | - Lauren Kenney
- Department of Clinical and Health Psychology, University of Florida, Gaineville, FL
| | - Adrianna Ratajska
- Department of Clinical and Health Psychology, University of Florida, Gaineville, FL
| | - Joshua Gertler
- Department of Clinical and Health Psychology, University of Florida, Gaineville, FL
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida, Gaineville, FL
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL
| |
Collapse
|
12
|
Radlicka-Borysewska A, Jabłońska J, Lenarczyk M, Szumiec Ł, Harda Z, Bagińska M, Barut J, Pera J, Kreiner G, Wójcik DK, Rodriguez Parkitna J. Non-motor symptoms associated with progressive loss of dopaminergic neurons in a mouse model of Parkinson's disease. Front Neurosci 2024; 18:1375265. [PMID: 38745938 PMCID: PMC11091341 DOI: 10.3389/fnins.2024.1375265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Parkinson's disease (PD) is characterized by three main motor symptoms: bradykinesia, rigidity and tremor. PD is also associated with diverse non-motor symptoms that may develop in parallel or precede motor dysfunctions, ranging from autonomic system dysfunctions and impaired sensory perception to cognitive deficits and depression. Here, we examine the role of the progressive loss of dopaminergic transmission in behaviors related to the non-motor symptoms of PD in a mouse model of the disease (the TIF-IADATCreERT2 strain). We found that in the period from 5 to 12 weeks after the induction of a gradual loss of dopaminergic neurons, mild motor symptoms became detectable, including changes in the distance between paws while standing as well as the swing speed and step sequence. Male mutant mice showed no apparent changes in olfactory acuity, no anhedonia-like behaviors, and normal learning in an instrumental task; however, a pronounced increase in the number of operant responses performed was noted. Similarly, female mice with progressive dopaminergic neuron degeneration showed normal learning in the probabilistic reversal learning task and no loss of sweet-taste preference, but again, a robustly higher number of choices were performed in the task. In both males and females, the higher number of instrumental responses did not affect the accuracy or the fraction of rewarded responses. Taken together, these data reveal discrete, dopamine-dependent non-motor symptoms that emerge in the early stages of dopaminergic neuron degeneration.
Collapse
Affiliation(s)
- Anna Radlicka-Borysewska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Judyta Jabłońska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Michał Lenarczyk
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Łukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Zofia Harda
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Monika Bagińska
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Justyna Barut
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Daniel K. Wójcik
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
13
|
Kim B, Hong S, Lee J, Kang S, Kim JS, Jung C, Shin T, Youn B, Moon C. Identifying candidate genes associated with hippocampal dysfunction in a hemiparkinsonian rat model by transcriptomic profiling. Anim Cells Syst (Seoul) 2024; 28:198-215. [PMID: 38693920 PMCID: PMC11062273 DOI: 10.1080/19768354.2024.2348671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 05/03/2024] Open
Abstract
Parkinson's disease (PD) often results in hippocampal dysfunction, which leads to cognitive and emotional challenges and synaptic irregularities. This study attempted to assess behavioral anomalies and identify differentially expressed genes (DEGs) within the hippocampus of a hemiparkinsonian rat model to potentially uncover novel genetic candidates linked to hippocampal dysfunction. Striatal 6-hydroxydopamine (6-OHDA) infusions were performed unilaterally in the brains of adult SD rats, while dopaminergic impairments were verified in rats with 6-OHDA-lesioned striata. RNA sequencing and gene expression analysis unveiled 1018 DEGs in the ipsilateral rat hippocampus following 6-OHDA infusion: 631 genes exhibited upregulation, while 387 genes were downregulated (with FDR-adjusted p-value < 0.05 and absolute fold-change > 1.5). Gene ontology analysis of DEGs indicated that alterations in the hippocampi of 6-OHDA-lesioned rats were primarily associated with synaptic signaling, axon development, behavior, postsynaptic membrane, synaptic membrane, neurotransmitter receptor activity, and peptide receptor activity. The Kyoto Encyclopedia of Genes and Genomes analysis of DEGs demonstrated significant enrichment of the neuroactive ligand-receptor interaction, calcium signaling pathway, cAMP signaling pathway, axon guidance, and notch signaling pathway in rat hippocampi that had been subjected to striatal 6-OHDA infusion. STRING analysis confirmed a notable upregulation of eight hub genes (Notch3, Gng4, Itga3, Grin2d, Hgf, Fgf11, Htr3a, and Col6a2), along with a significant downregulation of two hub genes (Itga11 and Plp1), as validated by reverse transcription-quantitative polymerase chain reaction. This study provides a comprehensive transcriptomic profile of the hippocampi in a hemiparkinsonian rat model, thereby offering insights into the signaling pathways underlying hippocampal dysfunction.
Collapse
Affiliation(s)
- Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sungmoo Hong
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sohi Kang
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - BuHyun Youn
- Department of Biological Science, Pusan National University, Busan, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
14
|
Daniels C, Rodríguez-Antigüedad J, Jentschke E, Kulisevsky J, Volkmann J. Cognitive disorders in advanced Parkinson's disease: challenges in the diagnosis of delirium. Neurol Res Pract 2024; 6:14. [PMID: 38481336 PMCID: PMC10938698 DOI: 10.1186/s42466-024-00309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/15/2024] [Indexed: 03/17/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition that is frequently associated with cognitive disorders. These can arise directly from the primary disease, or be triggered by external factors in susceptible individuals due to PD or other predisposing factors. The cognitive disorders encompass PD-associated cognitive impairment (PD-CI), delirium, PD treatment-associated cognitive side effects, cognitive non-motor fluctuations, and PD-associated psychosis. Accurate diagnosis of delirium is crucial because it often stems from an underlying disease that may be severe and require specific treatment. However, overlapping molecular mechanisms are thought to be involved in both delirium and PD, leading to similar clinical symptoms. Additionally, there is a bidirectional interaction between delirium and PD-CI, resulting in frequent concurrent processes that further complicate diagnosis. No reliable biomarker is currently available for delirium, and the diagnosis is primarily based on clinical criteria. However, the screening tools validated for diagnosing delirium in the general population have not been specifically validated for PD. Our review addresses the current challenges in the diagnosis of these cognitive disorders and highlights existing gaps within this field.
Collapse
Affiliation(s)
- Christine Daniels
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.
| | - Jon Rodríguez-Antigüedad
- Movement Disorders Unit, Sant Pau Hospital, Institut d'Investigacions Biomediques-Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Elisabeth Jentschke
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Jaime Kulisevsky
- Movement Disorders Unit, Sant Pau Hospital, Institut d'Investigacions Biomediques-Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| |
Collapse
|
15
|
Simonetta C, Bissacco J, Conti M, Bovenzi R, Salimei C, Cerroni R, Pierantozzi M, Stefani A, Mercuri NB, Schirinzi T. Motor cortex transcranial direct current stimulation improves non-motor symptoms in early-onset Parkinson's disease: a pilot study. J Neural Transm (Vienna) 2024; 131:189-193. [PMID: 38104296 DOI: 10.1007/s00702-023-02726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Early-onset Parkinson's Disease (EOPD) demands tailored treatments. The younger age of patients might account for a higher sensitivity to transcranial direct current stimulation (tDCS) based non-invasive neuromodulation, which may raise as an integrative therapy in the field. Accordingly, here we assessed the safety and efficacy of the primary left motor cortex (M1) anodal tDCS in EOPD. Ten idiopathic EOPD patients received tDCS at 2.0 mA per 20 min for 10 days within a crossover, double-blind, sham-controlled pilot study. The outcome was evaluated by measuring changes in MDS-UPDRS part III, Non-Motor Symptoms Scale (NMSS), PD-cognitive rating scale, and PD Quality of Life Questionnaire-39 scores. We showed that anodal but not sham tDCS significantly reduced the NMSS total and "item 2" (sleep/fatigue) scores. Other parameters were not modified. No adverse events occurred. M1 anodal tDCS might thus evoke plasticity changes in cortical-subcortical circuits involved in non-motor functions, supporting the value as a therapeutic option in EOPD.
Collapse
Affiliation(s)
- Clara Simonetta
- Unit of Neurology, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 00133, Rome, Italy
| | - Jacopo Bissacco
- Unit of Neurology, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 00133, Rome, Italy
| | - Matteo Conti
- Unit of Neurology, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 00133, Rome, Italy
| | - Roberta Bovenzi
- Unit of Neurology, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 00133, Rome, Italy
| | - Chiara Salimei
- Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Rocco Cerroni
- Unit of Neurology, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 00133, Rome, Italy
| | - Mariangela Pierantozzi
- Unit of Neurology, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 00133, Rome, Italy
- UOSD Parkinson Centre, Tor Vergata University Hospital, Rome, Italy
| | - Alessandro Stefani
- Unit of Neurology, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 00133, Rome, Italy
- UOSD Parkinson Centre, Tor Vergata University Hospital, Rome, Italy
| | - Nicola Biagio Mercuri
- Unit of Neurology, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 00133, Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 00133, Rome, Italy.
| |
Collapse
|
16
|
Caballero HS, McFall GP, Gee M, MacDonald S, Phillips NA, Fogarty J, Montero-Odasso M, Camicioli R, Dixon RA. Cognitive Speed in Neurodegenerative Disease: Comparing Mean Rate and Inconsistency Within and Across the Alzheimer's and Lewy Body Spectra in the COMPASS-ND Study. J Alzheimers Dis 2024; 100:579-601. [PMID: 38875040 DOI: 10.3233/jad-240210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Background Alzheimer's disease (AD) and Lewy body disease (LBD) are characterized by early and gradual worsening perturbations in speeded cognitive responses. Objective Using simple and choice reaction time tasks, we compared two indicators of cognitive speed within and across the AD and LBD spectra: mean rate (average reaction time across trials) and inconsistency (within person variability). Methods The AD spectrum cohorts included subjective cognitive impairment (SCI, n = 28), mild cognitive impairment (MCI, n = 121), and AD (n = 45) participants. The LBD spectrum included Parkinson's disease (PD, n = 32), mild cognitive impairment in PD (PD-MCI, n = 21), and LBD (n = 18) participants. A cognitively unimpaired (CU, n = 39) cohort served as common benchmark. We conducted multivariate analyses of variance and discrimination analyses. Results Within the AD spectrum, the AD cohort was slower and more inconsistent than the CU, SCI, and MCI cohorts. The MCI cohort was slower than the CU cohort. Within the LBD spectrum, the LBD cohort was slower and more inconsistent than the CU, PD, and PD-MCI cohorts. The PD-MCI cohort was slower than the CU and PD cohorts. In cross-spectra (corresponding cohort) comparisons, the LBD cohort was slower and more inconsistent than the AD cohort. The PD-MCI cohort was slower than the MCI cohort. Discrimination analyses clarified the group difference patterns. Conclusions For both speed tasks, mean rate and inconsistency demonstrated similar sensitivity to spectra-related comparisons. Both dementia cohorts were slower and more inconsistent than each of their respective non-dementia cohorts.
Collapse
Affiliation(s)
- H Sebastian Caballero
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - G Peggy McFall
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Myrlene Gee
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Stuart MacDonald
- Department of Psychology, University of Victoria, Victoria, BC, Canada
| | | | | | | | - Richard Camicioli
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Roger A Dixon
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Zhao X, Li L, Ma X, Li Y, Gao B, Luo W. The role of immune and inflammatory-related indicators in cognitive dysfunction and disease severity in patients with parkinson's disease. J Neural Transm (Vienna) 2024; 131:13-24. [PMID: 37864052 DOI: 10.1007/s00702-023-02704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
We aimed to explore the role of immune and inflammatory indicators in cognitive dysfunction and disease severity in patients with Parkinson's disease (PD). A total of 123 patients with Parkinson's disease were enrolled in the PD group and 49 healthy volunteers in the control group. The patients with PD were further divided into 2 subgroups by evaluating cognitive function using the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE): the normal cognitive function (PD-NCI) group and the mild cognitive impairment (PD-MCI) group. Moreover, the PD patients were also divided into 2 subgroups using the defined scale of the Hoehn and Yahr (H-Y) stage: the early-stage group and the middle- and late-stage group. Immune and inflammatory indicators, including serum Aβ1-42, Tau, CD4+, CD8+, CD3+, B lymphocytes cell, NK cell, Th17 cell, Treg cell, IL-6, IL-17, and TNF-α levels, were evaluated and analyzed to explore the potential correlation with the cognitive dysfunction and disease severity of PD. Among the 123 PD patients, 60 (48.8%) were diagnosed with mild cognitive impairment. Aβ1-42, CD4+, CD8+, CD3+, and Treg levels observed in the PD-NCI group were lower than the control group (P < 0.001), while higher than the PD-MCI group (P < 0.001). The levels of Tau, Th17, IL-6, IL-17, and TNF-α observed in the PD-NCI group were higher than the control group (P < 0.001), while lower than in the PD-MCI group (P < 0.01). Using the same method, the results of the early-stage group and the middle- and the late-stage group were the same as above. Logistic regression analysis and ROC curve estimation were performed and indicated that the variation of Tau, CD8+, Treg, TNF-α levels was associated with cognitive decline in PD patients, and may serve as markers of PD onset. Furthermore, the variation of Aβ1-42, IL-6, and TNF-α levels was found to correlate with the disease severity of PD. The immune and inflammatory-related indicators may represent an important factor in the pathogenesis of PD, cognitive dysfunction, and disease severity. The variation of Tau protein, CD8+, Treg, and TNF-α levels are associated with the cognitive dysfunction of PD, which may be considered as onset markers. Moreover, the variation of Aβ1-42, IL-6, and TNF-α levels can predict the progression of PD.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China
- Department of General Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu Province, China
| | - Lei Li
- Department of General Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu Province, China
| | - Xiuping Ma
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu Province, China
| | - Yang Li
- Department of Neurology, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, 313000, Zhejiang Province, China
| | - Beibei Gao
- Department of General Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu Province, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China.
| |
Collapse
|
18
|
Jellinger KA. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int J Mol Sci 2023; 25:498. [PMID: 38203667 PMCID: PMC10778722 DOI: 10.3390/ijms25010498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cognitive impairment (CI) is a characteristic non-motor feature of Parkinson disease (PD) that poses a severe burden on the patients and caregivers, yet relatively little is known about its pathobiology. Cognitive deficits are evident throughout the course of PD, with around 25% of subtle cognitive decline and mild CI (MCI) at the time of diagnosis and up to 83% of patients developing dementia after 20 years. The heterogeneity of cognitive phenotypes suggests that a common neuropathological process, characterized by progressive degeneration of the dopaminergic striatonigral system and of many other neuronal systems, results not only in structural deficits but also extensive changes of functional neuronal network activities and neurotransmitter dysfunctions. Modern neuroimaging studies revealed multilocular cortical and subcortical atrophies and alterations in intrinsic neuronal connectivities. The decreased functional connectivity (FC) of the default mode network (DMN) in the bilateral prefrontal cortex is affected already before the development of clinical CI and in the absence of structural changes. Longitudinal cognitive decline is associated with frontostriatal and limbic affections, white matter microlesions and changes between multiple functional neuronal networks, including thalamo-insular, frontoparietal and attention networks, the cholinergic forebrain and the noradrenergic system. Superimposed Alzheimer-related (and other concomitant) pathologies due to interactions between α-synuclein, tau-protein and β-amyloid contribute to dementia pathogenesis in both PD and dementia with Lewy bodies (DLB). To further elucidate the interaction of the pathomechanisms responsible for CI in PD, well-designed longitudinal clinico-pathological studies are warranted that are supported by fluid and sophisticated imaging biomarkers as a basis for better early diagnosis and future disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
19
|
Xiao Y, Yang T, Zhang L, Wei Q, Ou R, Hou Y, Liu K, Lin J, Jiang Q, Shang H. Association between the blood pressure variability and cognitive decline in Parkinson's disease. Brain Behav 2023; 13:e3319. [PMID: 37969048 PMCID: PMC10726805 DOI: 10.1002/brb3.3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
OBJECTIVES High visit-to-visit blood pressure variability (BPV) was found to be associated with cognitive decline in the elderly. This study aimed to investigate the impact of visit-to-visit BPV on cognition in patients with early-stage Parkinson's disease (PD). DESIGN This is a retrospective analysis of a prospective cohort. SETTING AND PARTICIPANTS A total of 297 patients with early-stage PD (103 mild cognitive impairments [PD-MCI] and 194 normal cognitions [PD-NC] at baseline) were included from the Parkinson's Progression Markers Initiative study. METHODS Variation independent of mean (VIM) of the first year was used as the indicator of BPV. The Montreal Cognitive Assessment (MoCA) was used to assess global cognition. Patients were divided into PD-MCI and PD-NC according to the MoCA score at baseline. Longitudinal cerebrospinal fluid (Aβ-42, Aβ, α-synuclein, neurofilament light protein, tau phosphorylated at the threonine 181 position, total tau, glial fibrillary acidic protein) and serum (neurofilament light protein) biomarkers were assessed. The Bayesian linear growth model was used to evaluate the relationship between baseline BPV and the rate of change in cognition and biomarkers. RESULTS Higher systolic VIM of the first year was related to a greater rate of decline in MoCA score in the following years in PD-MCI (β = -.15 [95% CI -.29, -.01]). No association was found between BPV and biomarkers. CONCLUSION AND IMPLICATIONS Higher systolic VIM predicted a steeper decline in cognitive tests in PD-MCI independently from the mean value of blood pressure, orthostatic hypotension, and supine hypertension.
Collapse
Affiliation(s)
- Yi Xiao
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Tianmi Yang
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Lingyu Zhang
- Health Management CenterWest China Hospital of Sichuan UniversityChengduChina
| | - Qianqian Wei
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Ruwei Ou
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Yanbing Hou
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Kuncheng Liu
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Junyu Lin
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Qirui Jiang
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Huifang Shang
- Department of NeurologyRare Disease Center, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for GeriatricWest China Hospital of Sichuan UniversityChengduSichuanChina
| |
Collapse
|
20
|
Novikov NI, Brazhnik ES, Kitchigina VF. Pathological Correlates of Cognitive Decline in Parkinson's Disease: From Molecules to Neural Networks. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1890-1904. [PMID: 38105206 DOI: 10.1134/s0006297923110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the death of dopaminergic neurons in the substantia nigra and appearance of protein aggregates (Lewy bodies) consisting predominantly of α-synuclein in neurons. PD is currently recognized as a multisystem disorder characterized by severe motor impairments and various non-motor symptoms. Cognitive decline is one of the most common and worrisome non-motor symptoms. Moderate cognitive impairments (CI) are diagnosed already at the early stages of PD, usually transform into dementia. The main types of CI in PD include executive dysfunction, attention and memory decline, visuospatial impairments, and verbal deficits. According to the published data, the following mechanisms play an essential role demonstrates a crucial importance in the decline of the motor and cognitive functions in PD: (1) changes in the conformational structure of transsynaptic proteins and protein aggregation in presynapses; (2) synaptic transmission impairment; (3) neuroinflammation (pathological activation of the neuroglia); (4) mitochondrial dysfunction and oxidative stress; (5) metabolic disorders (hypometabolism of glucose, dysfunction of glycolipid metabolism; and (6) functional rearrangement of neuronal networks. These changes can lead to the death of dopaminergic cells in the substantia nigra and affect the functioning of other neurotransmitter systems, thus disturbing neuronal networks involved in the transmission of information related to the regulation of motor activity and cognitive functions. Identification of factors causing detrimental changes in PD and methods for their elimination will help in the development of new approaches to the therapy of PD. The goal of this review was to analyze pathological processes that take place in the brain and underlie the onset of cognitive disorders in PD, as well as to describe the impairments of cognitive functions in this disease.
Collapse
Affiliation(s)
- Nikolai I Novikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Elena S Brazhnik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Valentina F Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
21
|
Adeyeye TA, Babatunde BR, Ehireme SE, Shallie PD. Caffeine alleviates anxiety-like behavior and brainstem lesions in a rotenone-induced rat model of Parkinson's disease. J Chem Neuroanat 2023; 132:102315. [PMID: 37481171 DOI: 10.1016/j.jchemneu.2023.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. In 2016, approximately 6.1 million individuals were affected by PD, with 211,296 deaths attributed to the disease. The understanding of PD initially came from the observation of dopaminergic system alterations in a specific region of the brainstem, indicating that the core motor and non-motor features of PD are closely associated with brainstem dysfunction. The primary treatment approach for PD revolves around dopamine replacement, as many of the symptoms are responsive to this therapeutic intervention. However, long-term administration of this approach is linked to several complications, and a definitive gold-standard therapy for PD is yet to be identified. The pharmacological management of PD has been challenging and inconsistent, mainly due to the unclear underlying cause of the disease. This study aims to evaluate the effects of caffeine on the brainstem of rats with PD induced by rotenone. METHODOLOGY Fifty adult male Wistar rats weighing between 150 and 200 g were used in this study. The rats were randomly divided into five groups of ten rats each: Vehicle Group, Rotenone-only treated Group (rotenone only treated with 3 mg/kg, intraperitoneal administration [IP]), Preventive Group (caffeine 30 mg/kg + rotenone 3 mg/kg, IP), Curative Group (rotenone 3 mg/kg + caffeine 30 mg/kg, IP), and Caffeine only treated Group (caffeine only treated with 30 mg/kg, IP). The animals underwent neurobehavioral assessments, followed by sacrifice. The brains were then excised, weighed, and processed histologically. Appropriate brain sections were taken and processed. Photomicrographs were obtained, morphometric and statistical analysis was performed using an Omax LED digital RESULTS: The results demonstrated a significant (p < 0.05) reduction in body weight and relative brain weight, which were increased by caffeine treatments. Rotenone administration led to histological changes similar to those observed in PD, including neuronal structural derangement, degenerated nerve fibers, loss of myelinated neurons, and Nissl substance, as well as downregulation in the expressions of NRF2 and TH in the midbrain. However, these pathological features were counteracted or ameliorated by caffeine treatment. CONCLUSION Our study contributes additional evidence to the growing body of research supporting the therapeutic potential of caffeine in Parkinson's disease (PD). The results underscore the neuroprotective properties of caffeine and its capacity to mitigate oxidative stress by modulating TH (tyrosine hydroxylase) and cytoplasmic NRF2 (nuclear factor erythroid 2-related factor 2) in the mesencephalon. These findings suggest that caffeine holds promise as a viable treatment option for PD.
Collapse
|
22
|
Khan AF, Adewale Q, Lin SJ, Baumeister TR, Zeighami Y, Carbonell F, Palomero-Gallagher N, Iturria-Medina Y. Patient-specific models link neurotransmitter receptor mechanisms with motor and visuospatial axes of Parkinson's disease. Nat Commun 2023; 14:6009. [PMID: 37752107 PMCID: PMC10522603 DOI: 10.1038/s41467-023-41677-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease involves multiple neurotransmitter systems beyond the classical dopaminergic circuit, but their influence on structural and functional alterations is not well understood. Here, we use patient-specific causal brain modeling to identify latent neurotransmitter receptor-mediated mechanisms contributing to Parkinson's disease progression. Combining the spatial distribution of 15 receptors from post-mortem autoradiography with 6 neuroimaging-derived pathological factors, we detect a diverse set of receptors influencing gray matter atrophy, functional activity dysregulation, microstructural degeneration, and dendrite and dopaminergic transporter loss. Inter-individual variability in receptor mechanisms correlates with symptom severity along two distinct axes, representing motor and psychomotor symptoms with large GABAergic and glutamatergic contributions, and cholinergically-dominant visuospatial, psychiatric and memory dysfunction. Our work demonstrates that receptor architecture helps explain multi-factorial brain re-organization, and suggests that distinct, co-existing receptor-mediated processes underlie Parkinson's disease.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Sue-Jin Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Tobias R Baumeister
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Yashar Zeighami
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA - Translational Brain Medicine, Aachen, Germany
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada.
| |
Collapse
|
23
|
Fernandez HH, Weintraub D, Macklin E, Litvan I, Schwarzschild MA, Eberling J, Videnovic A, Kenney CJ. Safety, tolerability, and preliminary efficacy of SYN120, a dual 5-HT6/5-HT2A antagonist, for the treatment of Parkinson disease dementia: A randomized, controlled, proof-of-concept trial. Parkinsonism Relat Disord 2023; 114:105511. [PMID: 37532622 DOI: 10.1016/j.parkreldis.2023.105511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND SYN120 is a dual serotonin receptor (5-HT6/5-HT2A) antagonist hypothesized to improve cognition and psychiatric symptoms. OBJECTIVES We evaluated the safety, tolerability, and efficacy of SYN120 in patients with Parkinson disease dementia (PDD). METHODS In a multicenter, double-blind, parallel-group, 16-week phase 2a proof-of-concept trial in PDD with concomitant cholinesterase inhibitor use, eligible patients were randomized to oral SYN120 (100 mg/day) or placebo. Adverse events (AEs), Unified Parkinson's Disease Rating Scale (UPDRS) scores, and discontinuations assessed safety and tolerability. The primary and key secondary efficacy measures were the Cognitive Drug Research (CDR) computerized assessment system Continuity of Attention and Quality of Episodic Memory scores. Other efficacy measures were: Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), Alzheimer's Disease Cooperative Study-Clinician's Global Impression of Change (ADCS-CGIC), Brief Penn Parkinson's Daily Activity Questionnaire-15 (PDAQ-15), Scales for Outcomes in Parkinson's Disease-Sleep Scale (SCOPA-Sleep), and Neuropsychiatric Inventory (NPI). RESULTS Eighty-two patients were randomized to SYN120 (N = 38) or placebo (N = 44), AEs occurred in 74% and 77% of patients, and treatment discontinuation in both groups was 16%. Nausea and vomiting were more frequent, and motor symptoms (UPDRS) worsened in the SYN120 group. At week 16, the SYN120 and placebo groups did not differ significantly for any cognitive assessment. Cognitive activities of daily living (PDAQ-15) and the NPI-Apathy/Indifference scores improved nominally in the SYN120 group compared with placebo (unadjusted p = 0.029 and 0.028). CONCLUSIONS SYN120 was adequately tolerated, mild worsening of motor symptoms was noted and it did not improve cognition in PDD patients. Its potential benefits for cognitive activities of daily living and apathy warrant further study. REGISTRATION Clinicaltrials.gov as NCT02258152.
Collapse
Affiliation(s)
| | - Daniel Weintraub
- University of Pennsylvania School of Medicine, Departments of Neurology and Psychiatry, USA
| | - Eric Macklin
- Massachusetts General Hospital/Harvard Medical School, USA
| | - Irene Litvan
- University of California San Diego, Department of Neurology, USA
| | | | | | | | | |
Collapse
|
24
|
Hosseini M, Borhani-Haghighi A, Petramfar P, Foroughi AA, Ostovan VR, Nami M. Evaluating cognitive impairment in the early stages of Parkinson's disease using the Cambridge brain sciences-cognitive platform. Clin Neurol Neurosurg 2023; 232:107866. [PMID: 37413872 DOI: 10.1016/j.clineuro.2023.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Non-motor symptoms (NMS) such as cognitive impairment are among common presentations in patients with Parkinson's disease (PD). In parallel with motor symptoms, these impediments can affect PD patients' quality of life. However, cognitive impairment has received less attention in early PD. On the other hand, the relationship between olfactory symptoms and cognitive impairment is unclear in early PD. Considering the importance of accurate and timely assessment of cognitive function in PD patients using readily available/validated tests, this study has employed the Cambridge Brain Sciences-Cognitive Platform (CBS-CP) as a computer-based tool to assess cognitive presentations in early PD patients. METHODS Thirty-four eligible males and females were assigned to PD and healthy controls (HCs). The cognitive performance was assessed using CBS-CP and Mini-Mental State Examination (MMSE), and olfactory function was measured through the standardized olfactory Quick Smell test (QST). RESULTS PD patients had poorer performance in all CBS-CP tasks, including short-term memory, attention, and reasoning domains than HCs. Meanwhile, the verbal domain task scores showed no significant difference between groups. PD MMSE results were in the normal range (mean=26.96), although there was a significant difference between the PD and HCs groups (P = 0.000). Our results revealed no correlation between cognitive impairment and olfactory function in PD patients. CONCLUSION Given the widely studied features of CBS-CP and its reliability across published evidence, CBS-CP appears to be a suitable measurement to evaluate cognitive impairment in early PD with normal MMSE scores. It seems cognitive and olfactory impairments are independent in early PD. DATA AVAILABILITY STATEMENT The datasets generated during the current study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; DANA Brain Health Institute, Iranian Neuroscience Society-Fars Branch, Shiraz, Iran
| | | | - Peyman Petramfar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Abolhasani Foroughi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Reza Ostovan
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Nami
- DANA Brain Health Institute, Iranian Neuroscience Society-Fars Branch, Shiraz, Iran; Cognitive Neuropsychology Unit, Department of Social Sciences, Canadian University Dubai, Dubai, United Arab Emirates.
| |
Collapse
|
25
|
Siciliano M, De Micco R, Russo AG, Esposito F, Sant'Elia V, Ricciardi L, Morgante F, Russo A, Goldman JG, Chiorri C, Tedeschi G, Trojano L, Tessitore A. Memory Phenotypes In Early, De Novo Parkinson's Disease Patients with Mild Cognitive Impairment. Mov Disord 2023; 38:1461-1472. [PMID: 37319041 DOI: 10.1002/mds.29502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Memory deficits in mild cognitive impairment related to Parkinson's disease (PD-MCI) are quite heterogeneous, and there is no general agreement on their genesis. OBJECTIVES To define memory phenotypes in de novo PD-MCI and their associations with motor and non-motor features and patients' quality of life. METHODS From a sample of 183 early de novo patients with PD, cluster analysis was applied to neuropsychological measures of memory function of 82 patients with PD-MCI (44.8%). The remaining patients free of cognitive impairment were considered as a comparison group (n = 101). Cognitive measures and structural magnetic resonance imaging-based neural correlates of memory function were used to substantiate the results. RESULTS A three-cluster model produced the best solution. Cluster A (65.85%) included memory unimpaired patients; Cluster B (23.17%) included patients with mild episodic memory disorder related to a "prefrontal executive-dependent phenotype"; Cluster C (10.97%) included patients with severe episodic memory disorder related to a "hybrid phenotype," where hippocampal-dependent deficits co-occurred with prefrontal executive-dependent memory dysfunctions. Cognitive and brain structural imaging correlates substantiated the findings. The three phenotypes did not differ in terms of motor and non-motor features, but the attention/executive deficits progressively increased from Cluster A, through Cluster B, to Cluster C. This last cluster had worse quality of life compared to others. CONCLUSIONS Our results demonstrated the memory heterogeneity of de novo PD-MCI, suggesting existence of three distinct memory-related phenotypes. Identification of such phenotypes can be fruitful in understanding the pathophysiological mechanisms underlying PD-MCI and its subtypes and in guiding appropriate treatments. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Rosa De Micco
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Gerardo Russo
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Valeria Sant'Elia
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Ricciardi
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Carlo Chiorri
- Department of Educational Sciences, University of Genova, Genoa, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Trojano
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences-MRI Research Center Vanvitelli-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
26
|
Lee EY. Memory Deficits in Parkinson's Disease Are Associated with Impaired Attentional Filtering and Memory Consolidation Processes. J Clin Med 2023; 12:4594. [PMID: 37510708 PMCID: PMC10380592 DOI: 10.3390/jcm12144594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The present study examined mechanisms underlying memory deficits in Parkinson's disease (PD) and their associations with brain structural metrics. Nineteen PD patients and twenty-two matched controls underwent two memory experiments. In Experiment 1 (delayed memory task), subjects were asked to remember an array of colored rectangles with varying memory set sizes (Low-Load (2 items), Low-Load (relevant 2 items) with Distractor (irrelevant 3 items), and High-Load (5 items)). After a 7 s delay period, they reported whether the orientation of any relevant figures had changed (test period). In Experiment 2 (working memory task), memory arrays were presented in varying set sizes (2 to 6 items) without distractors, followed by a 2 s delay period and a subsequent test period. Brain MRI data were acquired to assess structural differences (volumes and cortical thickness) in areas related to attention, working memory storage capacity, and episodic memory. Multivariate analyses of covariance revealed that, compared with controls, PD patients had lower memory capacity scores in all memory load conditions for Experiment 1 (p < 0.021), whereas there were no group differences in any memory load conditions for Experiment 2 (p > 0.06). In addition, PD patients had lower cortical thickness in the left superior temporal gyrus (p = 0.02), a region related to the ventral attentional system. Moreover, regression analyses revealed that lower cortical thickness values in the left superior temporal gyrus significantly predicted lower memory scores of Low-Load and Low-Load with Distractor conditions in Experiment 1 (p < 0.044) and lower scores of memory load conditions of 4 and 5 items in Experiment 2 (p < 0.012). These findings suggest that memory deficits in PD may partly be due to impaired attentional filtering and memory consolidation processes that may be related to superior temporal neurodegeneration. Future studies are warranted to confirm the current findings to guide the development of effective treatments for memory deficits in PD.
Collapse
Affiliation(s)
- Eun-Young Lee
- Department of Health Care and Science, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
27
|
Ray Chaudhuri K, Leta V, Bannister K, Brooks DJ, Svenningsson P. The noradrenergic subtype of Parkinson disease: from animal models to clinical practice. Nat Rev Neurol 2023:10.1038/s41582-023-00802-5. [PMID: 37142796 DOI: 10.1038/s41582-023-00802-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 05/06/2023]
Abstract
Many advances in understanding the pathophysiology of Parkinson disease (PD) have been based on research addressing its motor symptoms and phenotypes. Various data-driven clinical phenotyping studies supported by neuropathological and in vivo neuroimaging data suggest the existence of distinct non-motor endophenotypes of PD even at diagnosis, a concept further strengthened by the predominantly non-motor spectrum of symptoms in prodromal PD. Preclinical and clinical studies support early dysfunction of noradrenergic transmission in both the CNS and peripheral nervous system circuits in patients with PD that results in a specific cluster of non-motor symptoms, including rapid eye movement sleep behaviour disorder, pain, anxiety and dysautonomia (particularly orthostatic hypotension and urinary dysfunction). Cluster analyses of large independent cohorts of patients with PD and phenotype-focused studies have confirmed the existence of a noradrenergic subtype of PD, which had been previously postulated but not fully characterized. This Review discusses the translational work that unravelled the clinical and neuropathological processes underpinning the noradrenergic PD subtype. Although some overlap with other PD subtypes is inevitable as the disease progresses, recognition of noradrenergic PD as a distinct early disease subtype represents an important advance towards the delivery of personalized medicine for patients with PD.
Collapse
Affiliation(s)
- K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK.
| | - Valentina Leta
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Kirsty Bannister
- Central Modulation of Pain Lab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - David J Brooks
- Institute of Translational and Clinical Research, University of Newcastle upon Tyne, Newcastle, UK
- Department of Nuclear Medicine, Aarhus University, Aarhus, Denmark
| | - Per Svenningsson
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
28
|
Paolini Paoletti F, Gaetani L, Bellomo G, Chipi E, Salvadori N, Montanucci C, Mancini A, Filidei M, Nigro P, Simoni S, Tambasco N, Di Filippo M, Parnetti L. CSF neurochemical profile and cognitive changes in Parkinson's disease with mild cognitive impairment. NPJ Parkinsons Dis 2023; 9:68. [PMID: 37095141 PMCID: PMC10126070 DOI: 10.1038/s41531-023-00509-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Pathophysiological substrate(s) and progression of Parkinson's disease (PD) with mild cognitive impairment (PD-MCI) are still matter of debate. Baseline cerebrospinal fluid (CSF) neurochemical profile and cognitive changes after 2 years were investigated in a retrospective series of PD-MCI (n = 48), cognitively normal PD (PD-CN, n = 40), prodromal Alzheimer's disease (MCI-AD, n = 25) and cognitively healthy individuals with other neurological diseases (OND, n = 44). CSF biomarkers reflecting amyloidosis (Aβ42/40 ratio, sAPPα, sAPPβ), tauopathy (p-tau), neurodegeneration (t-tau, NfL, p-NfH), synaptic damage (α-syn, neurogranin) and glial activation (sTREM2, YKL-40) were measured. The great majority (88%) of PD-MCI patients was A-/T-/N-. Among all biomarkers considered, only NfL/p-NfH ratio was significantly higher in PD-MCI vs. PD-CN (p = 0.02). After 2 years, one-third of PD-MCI patients worsened; such worsening was associated with higher baseline levels of NfL, p-tau, and sTREM2. PD-MCI is a heterogeneous entity requiring further investigations on larger, longitudinal cohorts with neuropathological verification.
Collapse
Affiliation(s)
- Federico Paolini Paoletti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanni Bellomo
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Chipi
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Nicola Salvadori
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Chiara Montanucci
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marta Filidei
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Pasquale Nigro
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simone Simoni
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Nicola Tambasco
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
29
|
Kulisevsky J, Martínez-Horta S, Campolongo A, Pascual-Sedano B, Marín-Lahoz J, Bejr-Kasem H, Labandeira-Garcia JL, Lanciego JL, Puig-Davi A, Horta-Barba A, Pagonabarraga J, Rodríguez-Antigüedad J. A randomized clinical trial of candesartan for cognitive impairment in Parkinson's disease. Parkinsonism Relat Disord 2023; 110:105367. [PMID: 36963339 DOI: 10.1016/j.parkreldis.2023.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 03/12/2023] [Indexed: 03/26/2023]
Affiliation(s)
- Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Medicine Department, Barcelona, Spain; Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Universitat Oberta de Catalunya (UOC), Spain.
| | - Saul Martínez-Horta
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Medicine Department, Barcelona, Spain; Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Medicine Department, Barcelona, Spain; Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Universitat Oberta de Catalunya (UOC), Spain
| | - Berta Pascual-Sedano
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Medicine Department, Barcelona, Spain; Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Universitat Oberta de Catalunya (UOC), Spain
| | - Juan Marín-Lahoz
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Medicine Department, Barcelona, Spain; Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Helena Bejr-Kasem
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Medicine Department, Barcelona, Spain; Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Faculty of Medicine, University of Santiago de Compostela, Spain
| | - Jose L Lanciego
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Neurosciences Division, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Medicine Department, Barcelona, Spain; Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Medicine Department, Barcelona, Spain; Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Medicine Department, Barcelona, Spain; Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jon Rodríguez-Antigüedad
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Medicine Department, Barcelona, Spain; Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
30
|
Jellinger KA. Morphological differences between the two major subtypes of multiple system atrophy with cognitive impairment. Parkinsonism Relat Disord 2023; 107:105273. [PMID: 36603328 DOI: 10.1016/j.parkreldis.2022.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To compare the neuropathology between two types of multiple system atrophy - parkinsonism-predominant (MSA-P) and cerebellar ataxia-predominant (MSA-C) with cognitive impairment. MATERIAL & METHODS 35 cases of MSA-P (mean age at death 60.5 ± 7.8 years) and 15 cases of MSA-C (mean age at death 61.3 ± 6.8 years), 35.% of which associated with mild to moderate cognitive impairment and one with severe dementia, were examined neuropathologically with semiquantitative evaluation of both α-synuclein and Alzheimer pathologies, including cerebral amyloid angiopathy (CAA) and other co-pathologies. RESULTS While the mean age at death of both MSA subgroups was similar, the age at onset and duration of disease were slightly higher in the MSA-C group. In line with the classification, the αSyn pathology glial and neuronal inclusions in both the cortex and brainstem were significantly higher in the MSA-P group. With regard to the Alzheimer disease pathology, tau load in cases with mild to moderate cognitive impairment was slightly but not significantly higher in the MSA-P group, one with severe dementia showing fully developed Alzheimer co-pathology, while the amyloid-β (Aβ) load including the CAA was higher in the MSA-C group. The presence of Lewy co-pathology in this series (20%), being similar to that of other MSA cohorts, was more frequent in MSA cases with mild to severe cognitive impairment, but did not differ between the two subgroups and seems not essentially important for MCI in MSA. CONCLUSIONS In agreement with previous clinical studies that reported more severe cognitive dysfunction in patients with MSA-P, the present neuropathological study showed increased tau pathology in MSA-P and one with severe Alzheimer co-pathology, but only slightly increased amyloid pathology in the MSA-C group. Lewy co-pathology was more frequent in MSA-P cases with cognitive decline. In view of the limited data about the pathobiological basis of cognitive impairment in MSA, further studies to elucidate the differences between the two phenotypes are urgently needed.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150, Vienna, Austria.
| |
Collapse
|
31
|
Kulcsarova K, Bang C, Berg D, Schaeffer E. Pesticides and the Microbiome-Gut-Brain Axis: Convergent Pathways in the Pathogenesis of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1079-1106. [PMID: 37927277 PMCID: PMC10657696 DOI: 10.3233/jpd-230206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The increasing global burden of Parkinson's disease (PD), termed the PD pandemic, is exceeding expectations related purely to population aging and is likely driven in part by lifestyle changes and environmental factors. Pesticides are well recognized risk factors for PD, supported by both epidemiological and experimental evidence, with multiple detrimental effects beyond dopaminergic neuron damage alone. The microbiome-gut-brain axis has gained much attention in recent years and is considered to be a significant contributor and driver of PD pathogenesis. In this narrative review, we first focus on how both pesticides and the microbiome may influence PD initiation and progression independently, describing pesticide-related central and peripheral neurotoxicity and microbiome-related local and systemic effects due to dysbiosis and microbial metabolites. We then depict the bidirectional interplay between pesticides and the microbiome in the context of PD, synthesizing current knowledge about pesticide-induced dysbiosis, microbiome-mediated alterations in pesticide availability, metabolism and toxicity, and complex systemic pesticide-microbiome-host interactions related to inflammatory and metabolic pathways, insulin resistance and other mechanisms. An overview of the unknowns follows, and the role of pesticide-microbiome interactions in the proposed body-/brain-first phenotypes of PD, the complexity of environmental exposures and gene-environment interactions is discussed. The final part deals with possible further steps for translation, consisting of recommendations on future pesticide use and research as well as an outline of promising preventive/therapeutic approaches targeted on strengthening or restoring a healthy gut microbiome, closing with a summary of current gaps and future perspectives in the field.
Collapse
Affiliation(s)
- Kristina Kulcsarova
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
- Department of Clinical Neurosciences, University Scientific Park MEDIPARK, P. J. Safarik University, Kosice, Slovak Republic
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Eva Schaeffer
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
32
|
Tong SY, Wang RW, Li Q, Liu Y, Yao XY, Geng DQ, Gao DS, Ren C. Serum glial cell line-derived neurotrophic factor (GDNF) a potential biomarker of executive function in Parkinson's disease. Front Neurosci 2023; 17:1136499. [PMID: 36908789 PMCID: PMC9995904 DOI: 10.3389/fnins.2023.1136499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Evidence shows that the impairment of executive function (EF) is mainly attributed to the degeneration of frontal-striatal dopamine pathway. Glial cell line-derived neurotrophic factor (GDNF), as the strongest protective neurotrophic factor for dopaminergic neurons (DANs), may play a role in EF to some extent. This study mainly explored the correlation between serum GDNF concentration and EF performance in Parkinson's disease (PD). Methods This study recruited 45 healthy volunteers (health control, HC) and 105 PD patients, including 44 with mild cognitive impairment (PD-MCI), 20 with dementia (PD-D), and 20 with normal cognitive function (PD-N). Neuropsychological tests were performed to evaluate EF (working memory, inhibitory control, and cognitive flexibility), attention, language, memory, and visuospatial function. All subjects were tested for serum GDNF and homovanillic acid (HVA) levels by ELISA and LC-ESI-MS/MS, respectively. Results PD-MCI patients showed impairments in the trail making test (TMT) A (TMT-A), TMT-B, clock drawing test (CDT) and semantic fluency test (SFT), whereas PD-D patients performed worse in most EF tests. With the deterioration of cognitive function, the concentration of serum GDNF and HVA in PD patients decreased. In the PD group, the serum GDNF and HVA levels were negatively correlated with TMT-A (r GDNF = -0.304, P < 0.01; r HVA = -0.334, P < 0.01) and TMT-B (r GDNF = -0.329, P < 0.01; r HVA = -0.323, P < 0.01) scores. Serum GDNF levels were positively correlated with auditory verbal learning test (AVLT-H) (r = 0.252, P < 0.05) and SFT (r = 0.275, P < 0.05) scores. Serum HVA levels showed a positively correlation with digit span test (DST) (r = 0.277, P < 0.01) scores. Stepwise linear regression analysis suggested that serum GDNF and HVA concentrations and UPDRS-III were the influence factors of TMT-A and TMT-B performances in PD patients. Conclusion The decrease of serum GDNF concentration in PD patients was associated with impaired inhibitory control, cognitive flexibility, and attention performances. The changes of GDNF and HVA might synergistically participate in the occurrence and development of executive dysfunction in PD patients.
Collapse
Affiliation(s)
- Shu-Yan Tong
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, General Hospital of Xuzhou Mining Group, Xuzhou, Jiangsu, China
| | - Rui-Wen Wang
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Qian Li
- Department of Scientific Research, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yan Yao
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - De-Qin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dian-Shuai Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Ren
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China.,Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai, Shandong, China.,Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| |
Collapse
|
33
|
Yoo SW, Ha S, Oh YS, Ryu DW, Yoo JY, Lee KS, Kim JS. Caudate-anchored cognitive connectivity pursuant to orthostatic hypotension in early Parkinson's disease. Sci Rep 2022; 12:22161. [PMID: 36550284 PMCID: PMC9780335 DOI: 10.1038/s41598-022-26811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
18F-Florbetaben is a tracer used to evaluate the metabolic activity of and amyloid accumulation in the brain when measured in early- and late-phase, respectively. The metabolism of neural substrates could be viewed as a network and might be an important factor in cognition. Orthostatic hypotension (OH) might play an indirect moderating role in cognition, and its latent influence could modify the inherent cognitive network. This study aimed to identify changes of cognitive connectivity according to orthostatic stress in patients with early Parkinson's disease (PD). This study included 104 early PD patients who were evaluated with a head-up tilt-test and18F-Florbetaben positron emission tomography (PET). Cognition was assessed with a comprehensive neuropsychological battery that gauged attention/working memory, language, visuospatial, memory, and executive functions. PET images were analyzed visually for amyloid deposits, and early-phase images were normalized to obtain standardized uptake ratios (SUVRs) of pre-specified subregions relevant to specific cognitive domains. The caudate nucleus was referenced and paired to these pre-specified regions. The correlations between SUVRs of these regions were assessed and stratified according to presence of orthostatic hypotension. Among the patients studied, 22 (21.2%) participants had orthostatic hypotension. Nineteen patients (18.3%) were positive for amyloid-β accumulation upon visual analysis. Moderate correlations between the caudate and pre-specified subregions were observed (Spearman's rho, range [0.331-0.545]). Cognition did not differ, but the patterns of correlation were altered when the disease was stratified by presence of orthostatic stress. In conclusion, cognition in early PD responds to hemodynamic stress by adapting its neural connections between regions relevant to cognitive functions.
Collapse
Affiliation(s)
- Sang-Won Yoo
- grid.411947.e0000 0004 0470 4224Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seunggyun Ha
- grid.411947.e0000 0004 0470 4224Division of Nuclear Medicine, Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon-Sang Oh
- grid.411947.e0000 0004 0470 4224Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Woo Ryu
- grid.411947.e0000 0004 0470 4224Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Yeon Yoo
- grid.411947.e0000 0004 0470 4224Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kwang-Soo Lee
- grid.411947.e0000 0004 0470 4224Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joong-Seok Kim
- grid.414966.80000 0004 0647 5752Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul St. Mary’s Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| |
Collapse
|
34
|
Obeso JA, Monje MHG, Matarazzo M. Major advances in Parkinson's disease over the past two decades and future research directions. Lancet Neurol 2022; 21:1076-1079. [DOI: 10.1016/s1474-4422(22)00448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
|
35
|
Agbomi LL, Onuoha CP, Nathaniel SI, Coker-Ayo OO, Bailey-Taylor MJ, Roley LT, Poupore N, Goodwin RL, Nathaniel TI. Gender differences in Parkinson's disease with dementia and dementia with Lewy bodies. AGING AND HEALTH RESEARCH 2022. [DOI: 10.1016/j.ahr.2022.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
36
|
Ji S, Choi EJ, Sohn B, Baik K, Shin NY, Moon WJ, Park S, Song S, Lee PH, Shin DH, Oh SH, Kim EY, Lee J. Sandwich spatial saturation for neuromelanin-sensitive MRI: Development and multi-center trial. Neuroimage 2022; 264:119706. [PMID: 36349597 DOI: 10.1016/j.neuroimage.2022.119706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
Neuromelanin (NM)-sensitive MRI using a magnetization transfer (MT)-prepared T1-weighted sequence has been suggested as a tool to visualize NM contents in the brain. In this study, a new NM-sensitive imaging method, sandwichNM, is proposed by utilizing the incidental MT effects of spatial saturation RF pulses in order to generate consistent high-quality NM images using product sequences. The spatial saturation pulses are located both superior and inferior to the imaging volume, increasing MT weighting while avoiding asymmetric MT effects. When the parameters of the spatial saturation were optimized, sandwichNM reported a higher NM contrast ratio than those of conventional NM-sensitive imaging methods with matched parameters for comparability with sandwichNM (SandwichNM: 23.6 ± 5.4%; MT-prepared TSE: 20.6 ± 7.4%; MT-prepared GRE: 17.4 ± 6.0%). In a multi-vendor experiment, the sandwichNM images displayed higher means and lower standard deviations of the NM contrast ratio across subjects in all three vendors (SandwichNM vs. MT-prepared GRE; Vendor A: 28.4 ± 1.5% vs. 24.4 ± 2.8%; Vendor B: 27.2 ± 1.0% vs. 13.3 ± 1.3%; Vendor C: 27.3 ± 0.7% vs. 20.1 ± 0.9%). For each subject, the standard deviations of the NM contrast ratio across the vendors were substantially lower in SandwichNM (SandwichNM vs. MT-prepared GRE; subject 1: 1.5% vs. 8.1%, subject 2: 1.1 % vs. 5.1%, subject 3: 0.9% vs. 4.0%, subject 4: 1.1% vs. 5.3%), demonstrating consistent contrasts across the vendors. The proposed method utilizes product sequences, requiring no alteration of a sequence and, therefore, may have a wide practical utility in exploring the NM imaging.
Collapse
Affiliation(s)
- Sooyeon Ji
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Eun-Jung Choi
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Beomseok Sohn
- Department of Radiology, Severance Hospital, Seoul, Republic of Korea
| | - Kyoungwon Baik
- Department of Radiology, Severance Hospital, Seoul, Republic of Korea
| | - Na-Young Shin
- Department of Radiology, Catholic University of Korea, Seoul, Republic of Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | | | | | - Phil Hyu Lee
- Department of Neurology, Severance Hospital, Seoul, Republic of Korea
| | | | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea
| | - Eung Yeop Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul, Republic of Korea.
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Pizarro-Galleguillos BM, Kunert L, Brüggemann N, Prasuhn J. Iron- and Neuromelanin-Weighted Neuroimaging to Study Mitochondrial Dysfunction in Patients with Parkinson's Disease. Int J Mol Sci 2022; 23:ijms232213678. [PMID: 36430157 PMCID: PMC9696602 DOI: 10.3390/ijms232213678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
The underlying causes of Parkinson's disease are complex, and besides recent advances in elucidating relevant disease mechanisms, no disease-modifying treatments are currently available. One proposed pathophysiological hallmark is mitochondrial dysfunction, and a plethora of evidence points toward the interconnected nature of mitochondria in neuronal homeostasis. This also extends to iron and neuromelanin metabolism, two biochemical processes highly relevant to individual disease manifestation and progression. Modern neuroimaging methods help to gain in vivo insights into these intertwined pathways and may pave the road to individualized medicine in this debilitating disorder. In this narrative review, we will highlight the biological rationale for studying these pathways, how distinct neuroimaging methods can be applied in patients, their respective limitations, and which challenges need to be overcome for successful implementation in clinical studies.
Collapse
Affiliation(s)
- Benjamin Matis Pizarro-Galleguillos
- Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-500-43420; Fax: +49-451-500-43424
| | - Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
38
|
Ratajska AM, Scott BM, Lopez FV, Kenney LE, Foote KD, Okun MS, Price C, Bowers D. Differential contributions of depression, apathy, and anxiety to neuropsychological performance in Parkinson's disease versus essential tremor. J Clin Exp Neuropsychol 2022; 44:651-664. [PMID: 36600515 PMCID: PMC10013508 DOI: 10.1080/13803395.2022.2157796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Mood symptoms are common features of Parkinson's disease (PD) and essential tremor (ET) and have been linked to worse cognition. The goals of the present study were to compare the severity of anxiety, apathy, and depressive symptoms in PD, ET, and healthy controls (HC) and to examine differential relationships between mood and cognition. METHOD Older adults with idiopathic PD (N = 448), ET (N = 128), or HC (N = 136) completed a multi-domain neuropsychological assessment consisting of memory, executive function, and attention/working memory domains. Participants also completed self-reported mood measures. Between-group differences in mood and cognition were assessed, and hierarchical regression models were conducted to examine relationships between mood and cognition in each group. RESULTS Relative to the HC group, the PD and ET groups reported more mood symptoms and scored lower across all cognitive measures. There were no differences between the two movement disorder groups. Mood variables explained 3.9-13.7% of the total variance in cognitive domains, varying by disease group. For PD, apathy was the only unique predictor of executive function (β = -.114, p = .05), and trait anxiety was the only unique predictor of attention/working memory (β = -.188, p < .05). For ET, there were no unique predictors, though the overall models significantly predicted performance in the executive function and attention/working memory domains. CONCLUSIONS In a large cohort of ET and PD, we observed that the two groups had similar self-reported mood symptoms. Mood symptoms were differentially associated with cognition in PD versus ET. In PD, increased apathy was associated with worse executive function and higher trait anxiety predicted worse attention/working memory. For ET, there were no unique predictors, though the overall mood symptom severity was related to cognition. Our study highlights the importance of considering the relationship between mood and neuropsychological performance in individuals with movement disorders.
Collapse
Affiliation(s)
- Adrianna M. Ratajska
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
| | - Bonnie M. Scott
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Francesca V. Lopez
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
| | - Lauren E. Kenney
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
| | - Kelly D. Foote
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL
| | - Catherine Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL
| |
Collapse
|
39
|
van der Zee S, Kanel P, Müller MLTM, van Laar T, Bohnen NI. Identification of cholinergic centro-cingulate topography as main contributor to cognitive functioning in Parkinson’s disease: Results from a data-driven approach. Front Aging Neurosci 2022; 14:1006567. [PMID: 36337707 PMCID: PMC9631831 DOI: 10.3389/fnagi.2022.1006567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDegeneration of the cholinergic system plays an important role in cognitive impairment in Parkinson’s disease (PD). Positron emission tomography (PET) imaging using the presynaptic vesicular acetylcholine transporter (VAChT) tracer [18F]Fluoroethoxybenzovesamicol ([18F]FEOBV) allows for regional assessment of cholinergic innervation. The purpose of this study was to perform a data-driven analysis to identify co-varying cholinergic regions and to evaluate the relationship of these with cognitive functioning in PD.Materials and methodsA total of 87 non-demented PD patients (77% male, mean age 67.9 ± 7.6 years, disease duration 5.8 ± 4.6 years) and 27 healthy control (HC) subjects underwent [18F]FEOBV brain PET imaging and neuropsychological assessment. A volume-of-interest based factor analysis was performed for both groups to identify cholinergic principal components (PCs).ResultsSeven main PCs were identified for the PD group: (1) bilateral posterior cortex, (2) bilateral subcortical, (3) bilateral centro-cingulate, (4) bilateral frontal, (5) right-sided fronto-temporal, (6) cerebellum, and (7) predominantly left sided temporal regions. A complementary principal component analysis (PCA) analysis in the control group showed substantially different cholinergic covarying patterns. A multivariate linear regression analyses demonstrated PC3, PC5, and PC7, together with motor impairment score, as significant predictors for cognitive functioning in PD. PC3 showed most robust correlations with cognitive functioning (p < 0.001).ConclusionA data-driven approach identified covarying regions in the bilateral peri-central and cingulum cortex as a key determinant of cognitive impairment in PD. Cholinergic vulnerability of the centro-cingulate network appears to be disease-specific for PD rather than being age-related. The cholinergic system may be an important contributor to regional and large scale neural networks involved in cognitive functioning.
Collapse
Affiliation(s)
- Sygrid van der Zee
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, United States
| | - Martijn L. T. M. Müller
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, United States
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Neurology Service and Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, United States
- University of Michigan Parkinson’s Foundation Center of Excellence, Ann Arbor, MI, United States
- *Correspondence: Nicolaas I. Bohnen,
| |
Collapse
|
40
|
Wang F, Lai Y, Pan Y, Li H, Liu Q, Sun B. A systematic review of brain morphometry related to deep brain stimulation outcome in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:130. [PMID: 36224189 PMCID: PMC9556527 DOI: 10.1038/s41531-022-00403-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
While the efficacy of deep brain stimulation (DBS) is well-established in Parkinson’s Disease (PD), the benefit of DBS varies across patients. Using imaging features for outcome prediction offers potential in improving effectiveness, whereas the value of presurgical brain morphometry, derived from the routinely used imaging modality in surgical planning, remains under-explored. This review provides a comprehensive investigation of links between DBS outcomes and brain morphometry features in PD. We systematically searched PubMed and Embase databases and retrieved 793 articles, of which 25 met inclusion criteria and were reviewed in detail. A majority of studies (24/25), including 1253 of 1316 patients, focused on the outcome of DBS targeting the subthalamic nucleus (STN), while five studies included 57 patients receiving globus pallidus internus (GPi) DBS. Accumulated evidence showed that the atrophy of motor cortex and thalamus were associated with poor motor improvement, other structures such as the lateral-occipital cortex and anterior cingulate were also reported to correlated with motor outcome. Regarding non-motor outcomes, decreased volume of the hippocampus was reported to correlate with poor cognitive outcomes. Structures such as the thalamus, nucleus accumbens, and nucleus of basalis of Meynert were also reported to correlate with cognitive functions. Caudal middle frontal cortex was reported to have an impact on postsurgical psychiatric changes. Collectively, the findings of this review emphasize the utility of brain morphometry in outcome prediction of DBS for PD. Future efforts are needed to validate the findings and demonstrate the feasibility of brain morphometry in larger cohorts.
Collapse
Affiliation(s)
- Fengting Wang
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijie Lai
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyang Li
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qimin Liu
- grid.152326.10000 0001 2264 7217Department of Psychology and Human Development, Vanderbilt University, Nashville, USA
| | - Bomin Sun
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Tang CX, Chen J, Shao KQ, Liu YH, Zhou XY, Ma CC, Liu MT, Shi MY, Kambey PA, Wang W, Ayanlaja AA, Liu YF, Xu W, Chen G, Wu J, Li X, Gao DS. Blunt dopamine transmission due to decreased GDNF in the PFC evokes cognitive impairment in Parkinson's disease. Neural Regen Res 2022; 18:1107-1117. [PMID: 36255000 PMCID: PMC9827775 DOI: 10.4103/1673-5374.355816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Studies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson's disease. However, there have not been any studies conducted on the potential relationship between glial cell line-derived neurotrophic factor and cognitive performance in Parkinson's disease. We first performed a retrospective case-control study at the Affiliated Hospital of Xuzhou Medical University between September 2018 and January 2020 and found that a decreased serum level of glial cell line-derived neurotrophic factor was a risk factor for cognitive disorders in patients with Parkinson's disease. We then established a mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and analyzed the potential relationships among glial cell line-derived neurotrophic factor in the prefrontal cortex, dopamine transmission, and cognitive function. Our results showed that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex weakened dopamine release and transmission by upregulating the presynaptic membrane expression of the dopamine transporter, which led to the loss and primitivization of dendritic spines of pyramidal neurons and cognitive impairment. In addition, magnetic resonance imaging data showed that the long-term lack of glial cell line-derived neurotrophic factor reduced the connectivity between the prefrontal cortex and other brain regions, and exogenous glial cell line-derived neurotrophic factor significantly improved this connectivity. These findings suggested that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex leads to neuroplastic degeneration at the level of synaptic connections and circuits, which results in cognitive impairment in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Chuan-Xi Tang
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jing Chen
- Experinental Teaching Center of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Kai-Quan Shao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ye-Hao Liu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiao-Yu Zhou
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Department of Neurology, Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu Province, China
| | - Cheng-Cheng Ma
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Meng-Ting Liu
- Department of Rehabilitation, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ming-Yu Shi
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Wang
- Department of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Abiola Abdulrahman Ayanlaja
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yi-Fang Liu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Xu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jiao Wu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xue Li
- Department of Nursing Care, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Dian-Shuai Gao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Correspondence to: Dian-Shuai Gao, .
| |
Collapse
|
42
|
Sacchini S, Fernández A, Mompeó B, Ramírez R, Arbelo M, Holgersen U, Quesada-Canales O, Castro-Alonso A, Andrada M. Toothed Whales Have Black Neurons in the Blue Spot. Vet Sci 2022; 9:vetsci9100525. [PMID: 36288139 PMCID: PMC9610827 DOI: 10.3390/vetsci9100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Neuromelanin is a dark pigment that is present in several types of neurons of the brain. The role of human neuromelanin is a matter of controversy and, over the past few years, has been attributed to having a dual nature, either in a protective role to shield neurons from toxic compounds, or as a trigger of neuroinflammation. This pigment has been researched mainly in the human brain, but it has also been found in the neurons of monkeys, horses, giraffes, cattle, sheep, goats, dogs, rats, and even in frogs and tadpoles. Even so, neuromelanin in humans and primates presents unique features that are not shown in other animals. A study on the morphology of the locus ceruleus (a key brain structure) of the family Delphinidae highlighted the presence of a large amount of neuromelanin within this brain area. In an attempt to better define the ultrastructure of neuromelanin in toothed whales, two brain specimens of the suborder Odontoceti were investigated. The two toothed whales that were examined presented melanin granules associated with lipid droplets and membranes that bore a striking resemblance with human neuromelanin. Its accumulation takes place over the entire life span, and appears to contain the story of one’s life exposure to several endogenous and environmental metals and/or compounds. Abstract Neuromelanin (NM) is a dark polymer pigment that is located mostly in the human substantia nigra, and in the locus ceruleus, referred to as “the blue spot”. NM increases linearly with age, and has been described mainly in the human brain; however, it also occurs in the neurons of monkeys, horses, giraffes, cattle, sheep, goats, dogs, rats, and even in frogs. While in most of these mammals NM shows the histochemical and ultrastructural features typical of lipofuscins, human NM is confined within cytoplasmic organelles that are surrounded by a double membrane, suggesting an autophagic origin. In a study on the morphology of the locus ceruleus of the family Delphinidae, the presence of a variable quantity of NM in the interior of locus ceruleus neurons was observed for the first time; meanwhile, nothing is known about its ultrastructure and composition. Transmission electron microscopy demonstrated in two toothed whales—an Atlantic spotted dolphin (Stenella frontalis; family Delphinidae) and a Blainville’s beaked whale (Mesoplodon densirostris; family Ziphiidae)—the presence of melanin granules associated with lipid droplets and membranes that were very similar to that of human NM. The relationship between NM and neuronal vulnerability must be studied in depth, and cetaceans may offer a new natural-spontaneous comparative model for the study of NM and its implication in neurodegenerative diseases.
Collapse
Affiliation(s)
- Simona Sacchini
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, c/Transmontaña s/n, 35416 Arucas, Spain
- Department of Morphology, Campus Universitario de San Cristobal, University of Las Palmas de Gran Canaria, c/Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
- Correspondence: ; Tel.: +34-928-451477
| | - Antonio Fernández
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, c/Transmontaña s/n, 35416 Arucas, Spain
| | - Blanca Mompeó
- Department of Morphology, Campus Universitario de San Cristobal, University of Las Palmas de Gran Canaria, c/Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Raquel Ramírez
- Department of Morphology, Campus Universitario de San Cristobal, University of Las Palmas de Gran Canaria, c/Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, c/Transmontaña s/n, 35416 Arucas, Spain
| | - Unn Holgersen
- Nordland Research Institute, P.O. Box 1490, 8049 Bodø, Norway
| | - Oscar Quesada-Canales
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, c/Transmontaña s/n, 35416 Arucas, Spain
| | - Ayoze Castro-Alonso
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, c/Transmontaña s/n, 35416 Arucas, Spain
| | - Marisa Andrada
- Veterinary Histology and Pathology, Veterinary School, Institute of Animal Health, University of Las Palmas de Gran Canaria, c/Transmontaña s/n, 35416 Arucas, Spain
| |
Collapse
|
43
|
Baba T, Takeda A, Murakami A, Koga T, Isomura T, Mori E. Effect of donepezil for dementia prevention in Parkinson's disease with severe hyposmia (The DASH-PD study): A randomized long-term placebo-controlled trial. EClinicalMedicine 2022; 51:101571. [PMID: 35860451 PMCID: PMC9289637 DOI: 10.1016/j.eclinm.2022.101571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Dementia greatly contributes to poor prognosis in patients with Parkinson's disease (PD). We previously reported that severe olfactory dysfunction may be a good predictor of Parkinson's disease dementia (PDD). In this trial, we investigated whether early administration of donepezil to patients with severe hyposmia can reduce the development of PDD. METHODS This was a multi-centre, randomized, double-blind, parallel group, placebo-controlled trial in patients with non-demented PD with severe hyposmia (The Donepezil Application for Severe Hyposmic Parkinson's Disease [DASH-PD] study). A total of 201 patients were randomly allocated to receive donepezil or placebo in addition to standard therapy for PD. Patients were followed up every 6 months until the onset of PDD or for a maximum of 4 years. The primary endpoint was the onset of dementia. The secondary endpoint was cognitive impairment measured by Addenbrooke's Cognitive Examination-Revised (ACE-R) and the Clinical Dementia Rating (CDR).(UMIN000009958: February 2013 to May 2019). FINDINGS A total of 201 hyposmic patients with PD were randomly assigned to a treatment: 103 to donepezil and 98 to placebo. Overall, 141 (70%) patients completed the 4-year intervention. During follow-up, 7 of 103 (6.8%) patients in the donepezil group and 12 of 98 (12.2%) patients in the placebo group developed PDD; however, the hazard ratio of PDD incidence was not statistically significant (hazard ratio (HR), 0.609; 95% confidence interval, 0.240 to 1.547; p = 0.2969). At week 208, the patients in the donepezil group had better scores on the ACE-R (p < 0.005) and the CDR (p < 0.005) than those taking placebo. INTERPRETATION Administration of donepezil to PD patients with severe olfactory dysfunction for 4 years did not change the incidence of dementia but had a beneficial effect on neuropsychological function, with good tolerability. FUNDING The Ministry of Health Labour and Welfare and the Japan Agency for Medical Research and Development provided funding for this study.
Collapse
Affiliation(s)
- Toru Baba
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
- Department of Cognitive & Motor Aging, Tohoku University Graduate School of Medicine, Sendai, Japan
- Corresponding author at: Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, 2-11-11, Kagitorihoncho, Taihaku-ku, Sendai, 982-8555, Japan.
| | | | | | | | - Etsuro Mori
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Behavioral Neurology and Neuropsychiatry, United Graduate School of Child Development, Osaka University, Suita, Japan
| | | |
Collapse
|
44
|
Misri Z, Pillarisetti S, Nayak P, Mahmood A, Ahmed S, Unnikrishnan B. Correlation of Serum Uric Acid with Cognition, Severity, and Stage of Disease in Patients with Idiopathic Parkinson’s Disease and Vascular Parkinsonism: A Cross-Sectional Study. Open Neurol J 2022. [DOI: 10.2174/1874205x-v16-e2207140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Uric acid (UA) being a potent antioxidant may reduce the oxidative stress and progression of Parkinson’s disease. However, the role of UA is not yet established in people with Idiopathic Parkinson’s disease (IPD) and Vascular Parkinsonism (VP).
Objectives:
We aimed i) to compare the serum UA levels in IPD, VP, and healthy adults and ii) to find a relation between UA levels with disease severity, disease stage, and cognitive function in people with IPD and VP.
Methods:
A cross-sectional study was conducted among people with IPD (n=70), VP (n=70), and healthy adults (n=70). Demographics details, body mass index, duration of illness, levodopa usage, comorbidities, MDS-UPDRS scores, modified H&Y scale, MMSE, and serum UA levels were collected from participants. Pearson’s correlation coefficient was used to find the correlation between UA levels, MDS-UPDRS, H & Y, and MMSE scores.
Results:
The age of the participants ranged from 59 to 80 years. Results showed that serum UA level in healthy control (5.41±0.99; p=0.001) and VP groups (5.27 ± 0.99; p=0.001) were significantly higher compared to IPD group (4.34 ±1.03). We found a significant negative correlation between UA and MDS-UPDRS (r=-0.68, p<0.01) and H & Y scores (r = -0.61, p<0.01) and a significant positive correlation of UA with MMSE (r=0.55, p<0.01) in the IPD group. UA levels in the VP group were not correlated with any of the outcome measures.
Conclusion:
In people with IPD, serum UA level was negatively correlated with severity and progression of the disease but positively correlated with cognitive ability.
Collapse
|
45
|
Biomarker characterization of clinical subtypes of Parkinson Disease. NPJ Parkinsons Dis 2022; 8:109. [PMID: 36038597 PMCID: PMC9424224 DOI: 10.1038/s41531-022-00375-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe biological underpinnings of the PD clusters remain unknown as the existing PD clusters lacks biomarker characterization. We try to identify clinical subtypes of Parkinson Disease (PD) in an Asian cohort and characterize them by comparing clinical assessments, genetic status and blood biochemical markers. A total of 206 PD patients were included from a multi-centre Asian cohort. Hierarchical clustering was performed to generate PD subtypes. Clinical and biological characterization of the subtypes were performed by comparing clinical assessments, allelic distributions of Asian related PD gene (SNCA, LRRK2, Park16, ITPKB, SV2C) and blood biochemical markers. Hierarchical clustering method identified three clusters: cluster A (severe subtype in motor, non-motor and cognitive domains), cluster B (intermediate subtype with cognitive impairment and mild non-motor symptoms) and cluster C (mild subtype and young age of onset). The three clusters had significantly different allele frequencies in two SNPs (Park16 rs6679073 A allele carriers in cluster A B C: 67%, 74%, 89%, p = 0.015; SV2C rs246814 T allele distribution: 7%, 12%, 25%, p = 0.026). Serum homocysteine (Hcy) and C-reactive protein (CRP) levels were also significantly different among three clusters (Mean levels of Hcy and CRP among cluster A B C were: 19.4 ± 4.2, 18.4 ± 5.7, 15.6 ± 5.6, adjusted p = 0.005; 2.5 ± 5.0, 1.5 ± 2.4, 0.9 ± 2.1, adjusted p < 0.0001, respectively). Of the 3 subtypes identified amongst early PD patients, the severe subtype was associated with significantly lower frequency of Park16 and SV2C alleles and higher levels of Hcy and CRP. These biomarkers may be useful to stratify PD subtypes and identify more severe subtypes.
Collapse
|
46
|
Leng B, Sun H, Li M, Zhao J, Liu X, Yao R, Shen T, Li Z, Zhang J. Blood neuroexosomal excitatory amino acid transporter-2 is associated with cognitive decline in Parkinson’s disease with RBD. Front Aging Neurosci 2022; 14:952368. [PMID: 36081890 PMCID: PMC9445359 DOI: 10.3389/fnagi.2022.952368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Rapid eye movement (REM) sleep behavior disorder (RBD) predicts cognitive decline in Parkinson’s disease (PD) patients without dementia. However, underlying mechanisms remain unknown. Accumulating studies suggest glutamatergic system dysregulation is associated. Objective To examine the effect of RBD on the rate of cognitive decline in PD patients and investigate whether plasma levels of the neuroexosomal vesicular glutamate transporter-1 (VGLUT-1) and excitatory amino acid transporter-2 (EAAT-2) are altered in PD patients with RBD. Methods This study included 157 newly diagnosed cognitive normal PD patients and 70 healthy controls (HCs). Based on one-night polysomnography recordings, the PD subjects were divided into PD with and without RBD (PD-RBD and PD-nRBD) groups. All participants received a complete clinical and neuropsychological evaluation at baseline. Plasma levels of neuroexosomal VGLUT-1 and EAAT-2 were measured by ELISA kits. After a 3-year follow-up, we evaluated baseline plasma levels of neuroexosomal glutamate transporters in each group as a predictor of cognitive decline using MoCA score changes over 3 years in regression models. Results Plasma levels of neuron-derived exosomal EAAT-2 and VGLUT-1 were significantly lower in PD patients than in HCs. Plasma levels of neuroexosomal EAAT-2 were significantly lower in PD-RBD than PD-nRBD group at baseline. At the 3-year follow-up, PD-RBD patients presented greater cognitive decline. Lower baseline blood neuroexosomal EAAT-2 predicted cognitive decline over 3 years in PD-RBD patients (β = 0.064, P = 0.003). Conclusion These findings indicate that blood neuroexosomal EAAT-2 is associated with cognitive decline in PD with RBD.
Collapse
|
47
|
Uribe P, Fuentes N, Álvarez-Ruf J, Cornejo I, Mariman JJ. Differentiation of the motor cost associated with cognitive tasks in Parkinson's disease: a dual-task study. Eur J Neurosci 2022; 56:5106-5115. [PMID: 35962541 DOI: 10.1111/ejn.15792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
Parkinson's disease is a neurodegenerative condition associated with motor and cognitive impairments. While the execution of dual cognitive-motor tasks imposes a cost on gait velocity, it has been barely determined if the gait deterioration depends on the specific cognitive domain involved in the dual-task. Twenty-four subjects (twelve patients with Parkinson's disease and twelve healthy subjects) carried out a single task (gait alone) and several dual tasks where the concurrent second task was the Trail Making Test (Part A) and the six tasks of the Frontal Assessment Battery. Gait variables were measured by accelerometry via smartphone. Data analysis included analysis of variance and exploratory factorial analysis. Both groups showed a similar gait performance, except for velocity, where patients exhibited a bradykinetic profile. The dual-task during the Trail Making Test showed the highest motor cost. Frontal Assessment Battery's tasks as conceptualization, mental flexibility, and motor programming showed a higher motor cost than the other tasks (sensibility to interference, inhibitory control, and environmental autonomy). The factorial analysis applied to the motor costs confirmed two profiles, grouping those related to the dorsolateral prefrontal cortex (mental flexibility and motor programming tasks) in an independent factor. Among cognitive functions, attention is critical for gait control in Parkinson's disease and healthy elderly people. The interference posed by several executive operations suggests a specific competition in prefrontal regions that support dual tasks. Moreover, the higher cost for Parkinson's disease patients emphasizes the cognitive decline and compensatory cognitive strategy for gait control related to attention and executive functions.
Collapse
Affiliation(s)
- Paula Uribe
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Natalia Fuentes
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Joel Álvarez-Ruf
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.,Laboratorio de Biomecánica Clínica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Carrera de Kinesiología, Santiago, Chile
| | - Isabel Cornejo
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.,Liga Chilena contra el Mal de Parkinson, Santiago, Chile
| | - Juan J Mariman
- Laboratorio de Cognición y Comportamiento Sensoriomotor, Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.,Departamento de Kinesiología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
48
|
Chronic Cerebral Hypoperfusion Aggravates Parkinson’s Disease Dementia-Like Symptoms and Pathology in 6-OHDA-Lesioned Rat through Interfering with Sphingolipid Metabolism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5392966. [PMID: 35979400 PMCID: PMC9377946 DOI: 10.1155/2022/5392966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) is a cardinal risk factor for Parkinson's disease dementia (PDD), but this potential causality lacks mechanistic evidence. We selected bilateral common carotid artery occlusion (BCCAO) to simulate chronic cerebral hypoperfusion in the rat model of PD induced by typical neurotoxin 6-hydroxy dopamine (6-OHDA). Four weeks after unilateral injection of 6-OHDA into the medial forebrain bundle, rats underwent BCCAO. Male Sprague-Dawley rats were divided into five groups of ten, including sham, PD+BCCAO 2 weeks, PD+BCCAO 1 week, PD, and BCCAO 2 weeks. Then, open field test (OFT) and Morris water maze test (MWM) were used to assess the PDD-like symptoms in rats. Also, the pathological manifestations and mechanisms of BCCAO impairing cognitive functions have been explored via hematoxylin-eosin staining, Nissl staining, immunohistochemistry, immunofluorescence, RNA sequencing analysis, lipidomics, and quantitative real-time polymerase chain reaction. In this study, we found that CCH could aggravate PDD-like cognitive symptoms (i.e., learning memory and spatial cognition) and PDD-like pathology (higher expression of α-Syn and Aβ in prefrontal cortex and striatum). Moreover, a potential relationship between differentially expressed mRNAs and lipid metabolism was revealed by RNA sequencing analysis. Lipidomics showed that CCH could affect the intensity of 5 lipids, including sphingomyelin (SM 9:0;2O/26:2; SM 8:1;2O/25:0; and SM 8:0;2O/28:4), cardiolipin, lysophosphatidylcholine, cholesteryl ester, and triacylglycerol. Interestingly, the KEGG pathway analysis of both RNA sequencing analysis and lipidomics suggested that CCH leaded to learning impairment by affecting sphingolipid metabolism. Finally, we found that CCH disrupts the sphingolipid metabolism by affecting the mRNA expression of SMPD1 and SMS2, leading to the accumulation of sphingomyelin in the prefrontal cortex. In summary, CCH, an independent exacerbating reason for impairment in learning and memory within the pathopoiesis of PD, aggravates Parkinson's disease dementia-like symptoms and pathology in 6-OHDA-lesioned rat through interfering with sphingolipid metabolism.
Collapse
|
49
|
Ye R, O'Callaghan C, Rua C, Hezemans FH, Holland N, Malpetti M, Jones PS, Barker RA, Williams‐Gray CH, Robbins TW, Passamonti L, Rowe J. Locus Coeruleus Integrity from 7 T MRI Relates to Apathy and Cognition in Parkinsonian Disorders. Mov Disord 2022; 37:1663-1672. [PMID: 35576973 PMCID: PMC9541468 DOI: 10.1002/mds.29072] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/15/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Neurodegeneration in the locus coeruleus (LC) contributes to neuropsychiatric symptoms in both Parkinson's disease (PD) and progressive supranuclear palsy (PSP). Spatial precision of LC imaging is improved with ultrahigh field 7 T magnetic resonance imaging. OBJECTIVES This study aimed to characterize the spatial patterns of LC pathological change in PD and PSP and the transdiagnostic relationship between LC signals and neuropsychiatric symptoms. METHODS Twenty-five people with idiopathic PD, 14 people with probable PSP-Richardson's syndrome, and 24 age-matched healthy controls were recruited. Participants underwent clinical assessments and high-resolution (0.08 mm3 ) 7 T-magnetization-transfer imaging to measure LC integrity in vivo. Spatial patterns of LC change were obtained using subregional mean contrast ratios and significant LC clusters; we further correlated the LC contrast with measures of apathy and cognition, using both mixed-effect models and voxelwise analyses. RESULTS PSP and PD groups showed significant LC degeneration in the caudal subregion relative to controls. Mixed-effect models revealed a significant interaction between disease-group and apathy-related correlations with LC degeneration (β = 0.46, SE [standard error] = 0.17, F(1, 35) = 7.46, P = 0.01), driven by a strong correlation in PSP (β = -0.58, SE = 0.21, t(35) = -2.76, P = 0.009). Across both disease groups, voxelwise analyses indicated that lower LC integrity was associated with worse cognition and higher apathy scores. CONCLUSIONS The relationship between LC and nonmotor symptoms highlights a role for noradrenergic dysfunction across both PD and PSP, confirming the potential for noradrenergic therapeutic strategies to address transdiagnostic cognitive and behavioral features in neurodegenerative disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rong Ye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical SciencesFaculty of Medicine and Health, University of SydneySydneyAustralia
- Department of PsychiatryUniversity of CambridgeCambridgeUnited Kingdom
| | - Catarina Rua
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - Frank H. Hezemans
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Negin Holland
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - Maura Malpetti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - P. Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
| | - Roger A. Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain RepairUniversity of CambridgeCambridgeUnited Kingdom
- Wellcome Trust—Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Caroline H. Williams‐Gray
- Department of Clinical Neurosciences, John van Geest Centre for Brain RepairUniversity of CambridgeCambridgeUnited Kingdom
| | - Trevor W. Robbins
- Department of PsychologyUniversity of CambridgeCambridgeUnited Kingdom
- Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Luca Passamonti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
- Istituto di Bioimmagini e Fisiologia MolecolareConsiglio Nazionale delle RicercheCefalùItaly
| | - James Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeUnited Kingdom
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
50
|
Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm (Vienna) 2022; 129:977-999. [PMID: 35726096 DOI: 10.1007/s00702-022-02522-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cognitive impairment is one of the most salient non-motor symptoms of Parkinson disease (PD) that poses a significant burden on the patients and carers as well as being a risk factor for early mortality. People with PD show a wide spectrum of cognitive dysfunctions ranging from subjective cognitive decline and mild cognitive impairment (MCI) to frank dementia. The mean frequency of PD with MCI (PD-MCI) is 25.8% and the pooled dementia frequency is 26.3% increasing up to 83% 20 years after diagnosis. A better understanding of the underlying pathological processes will aid in directing disease-specific treatment. Modern neuroimaging studies revealed considerable changes in gray and white matter in PD patients with cognitive impairment, cortical atrophy, hypometabolism, dopamine/cholinergic or other neurotransmitter dysfunction and increased amyloid burden, but multiple mechanism are likely involved. Combined analysis of imaging and fluid markers is the most promising method for identifying PD-MCI and Parkinson disease dementia (PDD). Morphological substrates are a combination of Lewy- and Alzheimer-associated and other concomitant pathologies with aggregation of α-synuclein, amyloid, tau and other pathological proteins in cortical and subcortical regions causing destruction of essential neuronal networks. Significant pathological heterogeneity within PD-MCI reflects deficits in various cognitive domains. This review highlights the essential neuroimaging data and neuropathological changes in PD with cognitive impairment, the amount and topographical distribution of pathological protein aggregates and their pathophysiological relevance. Large-scale clinicopathological correlative studies are warranted to further elucidate the exact neuropathological correlates of cognitive impairment in PD and related synucleinopathies as a basis for early diagnosis and future disease-modifying therapies.
Collapse
|