1
|
Orth L, Meeh J, Leiding D, Habel U, Neuner I, Sarkheil P. Aberrant Functional Connectivity of the Salience Network in Adult Patients with Tic Disorders: A Resting-State fMRI Study. eNeuro 2024; 11:ENEURO.0223-23.2024. [PMID: 38744491 PMCID: PMC11167695 DOI: 10.1523/eneuro.0223-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 05/16/2024] Open
Abstract
Tic disorders (TD) are characterized by the presence of motor and/or vocal tics. Common neurophysiological frameworks suggest dysregulations of the cortico-striatal-thalamo-cortical (CSTC) brain circuit that controls movement execution. Besides common tics, there are other "non-tic" symptoms that are primarily related to sensory perception, sensorimotor integration, attention, and social cognition. The existence of these symptoms, the sensory tic triggers, and the modifying effect of attention and cognitive control mechanisms on tics may indicate the salience network's (SN) involvement in the neurophysiology of TD. Resting-state functional MRI measurements were performed in 26 participants with TD and 25 healthy controls (HC). The group differences in resting-state functional connectivity patterns were measured based on seed-to-voxel connectivity analyses. Compared to HC, patients with TD exhibited altered connectivity between the core regions of the SN (insula, anterior cingulate cortex, and temporoparietal junction) and sensory, associative, and motor-related cortices. Furthermore, connectivity changes were observed in relation to the severity of tics in the TD group. The SN, particularly the insula, is likely to be an important site of dysregulation in TD. Our results provide evidence for large-scale neural deviations in TD beyond the CSTC pathologies. These findings may be relevant for developing treatment targets.
Collapse
Affiliation(s)
- Linda Orth
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Johanna Meeh
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany
| | - Delia Leiding
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Pegah Sarkheil
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany
| |
Collapse
|
2
|
Robert C, Weiblen R, Wagner-Altendorf TA, Paulus T, Müller-Vahl K, Münchau A, Krämer UM, Heldmann M, Roessner V, Münte TF. Slips of the tongue in patients with Gilles de la Tourette syndrome. Neurol Res Pract 2024; 6:25. [PMID: 38693574 PMCID: PMC11064284 DOI: 10.1186/s42466-024-00324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Motor and vocal tics are the main symptom of Gilles de la Tourette-syndrome (GTS). A particular complex vocal tic comprises the utterance of swear words, termed coprolalia. Since taboo words are socially inappropriate, they are normally suppressed by people, which implies cognitive control processes. METHOD To investigate the control of the unintentional pronunciation of taboo words and the associated processes of conflict monitoring, we used the "Spoonerisms of Laboratory Induced Predisposition" (SLIP) paradigm. Participants read multiple inductor word pairs with the same phonemes, followed by pronouncing a target pair with inverse phonemes. This led to a conflict between two competing speech plans: the correct word pair and the word pair with inverted phonemes. Latter speech error, a spoonerism, could result in a neutral or taboo word. We investigated 19 patients with GTS and 23 typically developed controls (TDC) and measured participants' electroencephalography (EEG) during the SLIP task. RESULTS At the behavioral level less taboo than neutral word spoonerisms occurred in both groups without significant differences. Event-related brain potentials (ERP) revealed a difference between taboo and neutral word conditions in the GTS group at the midline electrodes in a time range of 250-400 ms after the speech prompt, which was not found in the TDC group. The extent of this effect depended on the number of inductor word pairs, suggesting an increasing level of cognitive control in the GTS group. CONCLUSION The differences between taboo and neutral word conditions in patients with GTS compared to TDC suggest an altered recruitment of cognitive control processes in GTS, likely enlisted to suppress taboo words.
Collapse
Affiliation(s)
- Carina Robert
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Straße, Building 66, 23562, Lübeck, Germany
| | - Ronja Weiblen
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Straße, Building 66, 23562, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | | | - Theresa Paulus
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Straße, Building 66, 23562, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexander Münchau
- Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Straße, Building 66, 23562, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Ulrike M Krämer
- Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Straße, Building 66, 23562, Lübeck, Germany
- Institute of Medical Psychology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Straße, Building 66, 23562, Lübeck, Germany
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Thomas F Münte
- Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Straße, Building 66, 23562, Lübeck, Germany.
| |
Collapse
|
3
|
Levit B, Funk PF, Hanein Y. Soft electrodes for simultaneous bio-potential and bio-impedance study of the face. Biomed Phys Eng Express 2024; 10:025036. [PMID: 38350124 DOI: 10.1088/2057-1976/ad28cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
The human body's vascular system is a finely regulated network: blood vessels can change in shape (i.e. constrict, or dilate), their elastic response may shift and they may undergo temporary and partial blockages due to pressure applied by skeletal muscles in their immediate vicinity. Simultaneous measurement of muscle activation and the corresponding changes in vessel diameter, in particular at anatomical regions such as the face, is challenging, and how muscle activation constricts blood vessels has been experimentally largely overlooked. Here we report on a new electronic skin technology for facial investigations to address this challenge. The technology consists of screen-printed dry carbon electrodes on soft polyurethane substrate. Two dry electrode arrays were placed on the face: One array for bio-potential measurements to capture muscle activity and a second array for bio-impedance. For the bio-potential signals, independent component analysis (ICA) was used to differentiate different muscle activations. Four-contact bio-impedance measurements were used to extract changes (related to artery volume change), as well as beats per minute (BPM). We performed concurrent bio-potential and bio-impedance measurements in the face. From the simultaneous measurements we successfully captured fluctuations in the superficial temporal artery diameter in response to facial muscle activity, which ultimately changes blood flow. The observed changes in the face, following muscle activation, were consistent with measurements in the forearm and were found to be notably more intricate. Both at the arm and the face, a clear increase in the baseline impedance was recorded during muscle activation (artery narrowing), while the impedance changes signifying the pulse had a clear repetitive trend only at the forearm. These results reveal the direct connection between muscle activation and the blood vessels in their vicinity and start to unveil the complex mechanisms through which facial muscles might modulate blood flow and possibly affect human physiology.
Collapse
Affiliation(s)
- Bara Levit
- School of Physics, Tel Aviv University, Tel Aviv, Israel
| | - Paul F Funk
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Weiblen R, Robert C, Petereit P, Heldmann M, Münte TF, Münchau A, Müller-Vahl K, Krämer UM. Neural, physiological and behavioural correlates of empathy for pain in Tourette syndrome. Brain Commun 2023; 5:fcad212. [PMID: 37601409 PMCID: PMC10438210 DOI: 10.1093/braincomms/fcad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
Persons with Tourette syndrome show altered social behaviours, such as echophenomena and increased personal distress in emotional situations. These symptoms may reflect an overactive mirror neuron system, causing both increased automatic imitation and a stronger tendency to share others' emotions. To test this, we measured the individual level of echophenomena with a video protocol and experimentally induced empathy for pain in 21 participants with Tourette syndrome and 25 matched controls. In the empathy for pain paradigm, pictures of hands and feet in painful or neutral situations were presented, while we measured participants' EEG and skin conductance response. Changes in somatosensory mu suppression during the observation of the pictures and pain ratings were compared between groups, and correlations were calculated with the occurrence of echophenomena, self-reported empathy and clinical measures. Our Tourette syndrome sample showed significantly more echophenomena than controls, but the groups showed no behavioural differences in empathic abilities. However, controls, but not patients with Tourette syndrome, showed the predicted increased mu suppression when watching painful compared to neutral actions. While echophenomena were present in all persons with Tourette syndrome, the hypothesis of an overactive mirror neuron system in Tourette syndrome could not be substantiated. On the contrary, the Tourette syndrome group showed a noticeable lack of mu attenuation in response to pain stimuli. In conclusion, we found a first hint of altered processing of others' emotional states in a brain region associated with the mirror neuron system.
Collapse
Affiliation(s)
- Ronja Weiblen
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, 23562 Lübeck, Germany
| | - Carina Robert
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
| | - Pauline Petereit
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Alexander Münchau
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrike M Krämer
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
5
|
Beste C. Overcoming the phenomenological Perpetuum mobile in clinical cognitive neuroscience for the benefit of replicability in research and the societal view on mental disorders. Front Hum Neurosci 2022; 16:1054714. [DOI: 10.3389/fnhum.2022.1054714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Cognitive neuroscience comes in many facets, and a particularly large branch of research is conducted in individuals with mental health problems. This article outlines why it is important that cognitive neuroscientists re-shape their role in mental health research and re-define directions of research for the next decades. At present, cognitive neuroscience research in mental health is too firmly rooted in categorial diagnostic definitions of mental health conditions. It is discussed why this hampers a mechanistic understanding of brain functions underlying mental health problems and why this is a problem for replicability in research. A possible solution to these problems is presented. This solution affects the strategy of research questions to be asked, how current trends to increase replicability in research can or cannot be applied in the mental health field and how data are analyzed. Of note, these aspects are not only relevant for the scientific process, but affect the societal view on mental disorders and the position of affected individuals as members of society, as well as the debate on the inclusion of so-called WEIRD and non-WEIRD people in studies. Accordingly, societal and science political aspects of re-defining the role of cognitive neuroscientists in mental health research are elaborated that will be important to shape cognitive neuroscience in mental health for the next decades.
Collapse
|
6
|
Towards an Ideology-Free, Truly Mechanistic Health Psychology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111126. [PMID: 34769644 PMCID: PMC8583446 DOI: 10.3390/ijerph182111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023]
Abstract
Efficient transfer of concepts and mechanistic insights from the cognitive to the health sciences and back requires a clear, objective description of the problem that this transfer ought to solve. Unfortunately, however, the actual descriptions are commonly penetrated with, and sometimes even motivated by, cultural norms and preferences, a problem that has colored scientific theorizing about behavioral control—the key concept for many psychological health interventions. We argue that ideologies have clouded our scientific thinking about mental health in two ways: by considering the societal utility of individuals and their behavior a key criterion for distinguishing between healthy and unhealthy people, and by dividing what actually seem to be continuous functions relating psychological and neurocognitive underpinnings to human behavior into binary, discrete categories that are then taken to define clinical phenomena. We suggest letting both traditions go and establish a health psychology that restrains from imposing societal values onto individuals, and then taking the fit between behavior and values to conceptualize unhealthiness. Instead, we promote a health psychology that reconstructs behavior that is considered to be problematic from well-understood mechanistic underpinnings of human behavior.
Collapse
|
7
|
Beste C, Mückschel M, Rauch J, Bluschke A, Takacs A, Dilcher R, Toth-Faber E, Bäumer T, Roessner V, Li SC, Münchau A. Distinct Brain-Oscillatory Neuroanatomical Architecture of Perception-Action Integration in Adolescents With Tourette Syndrome. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:123-134. [PMID: 36324991 PMCID: PMC9616364 DOI: 10.1016/j.bpsgos.2021.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 04/18/2021] [Indexed: 11/26/2022] Open
Abstract
Background Gilles de la Tourette Syndrome (GTS) is a neurodevelopmental disorder with a peak of symptom severity around late childhood and early adolescence. Previous findings in adult GTS suggest that changes in perception-action integration, as conceptualized in the theory of event coding framework, are central for the understanding of GTS. However, the neural mechanisms underlying these processes in adolescence are elusive. Methods A total of 59 children/adolescents aged 9 to 18 years (n = 32 with GTS, n = 27 typically developing youths) were examined using a perception-action integration task (event file task) derived from the theory of event coding. Event-related electroencephalogram recordings (theta and beta band activity) were analyzed using electroencephalogram–beamforming methods. Results Behavioral data showed robust event file binding effects in both groups without group differences. Neurophysiological data showed that theta and beta band activity were involved in event file integration in both groups. However, the functional neuroanatomical organization was markedly different for theta band activity between the groups. The typically developing group mainly relied on superior frontal regions, whereas the GTS group engaged parietal and inferior frontal regions. A more consistent functional neuroanatomical activation pattern was observed for the beta band, engaging inferior parietal and temporal regions in both groups. Conclusions Perception-action integration processes lag behind in persisting GTS but not in the GTS population as a whole, underscoring differences in developmental trajectories and the importance of longitudinal investigations for the understanding of GTS. The findings corroborate known differences in the functional/structural brain organization in GTS and suggest an important role of theta band activity in these patients.
Collapse
|
8
|
Schubert L, Verrel J, Behm A, Bäumer T, Beste C, Münchau A. Inter-individual differences in urge-tic associations in Tourette syndrome. Cortex 2021; 143:80-91. [PMID: 34391084 DOI: 10.1016/j.cortex.2021.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
Premonitory urges are a cardinal feature in Tourette syndrome (GTS) and are commonly viewed as a driving force of tics. However, inter-individual differences in experimentally measured urges, tics and urge-tic associations, as well as possible relations to clinical characteristics and abnormal perception-action processing recently demonstrated in these patients have not been investigated in detail. Here, we analyze the temporal associations between urges and tics in 21 adult patients with GTS including inter-individual differences and the relation of such associations with clinical measures and experimentally tested perception-action coupling. At the group level, our results confirm known positive associations between subjective urges and tics, with increased tic frequency and tic intensity during periods of elevated urge. Inter-individual differences in the associations between urges and tics were, however, substantial. While most participants (57-66 % depending on the specific measure) showed positive associations as expected, several participants did not, and two even had negative associations with tic occurrence and intensity being reduced at times of increased urges. Subjective urge levels and tic occurrence correlated with corresponding clinical scores, providing converging evidence. Measures of the strength of urge-tic associations did not correlate with clinical measures nor the strength of perception-action coupling. Taken together, urge-tic associations in GTS are complex and heterogenous, casting doubt on the notion that tics are primarily driven by urges.
Collapse
Affiliation(s)
- Lina Schubert
- Institute of Systems Motor Science, Center of Brain, Behavior and Metabolism, University of Lübeck, Germany
| | - Julius Verrel
- Institute of Systems Motor Science, Center of Brain, Behavior and Metabolism, University of Lübeck, Germany
| | - Amelie Behm
- Institute of Systems Motor Science, Center of Brain, Behavior and Metabolism, University of Lübeck, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, Center of Brain, Behavior and Metabolism, University of Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, Center of Brain, Behavior and Metabolism, University of Lübeck, Germany.
| |
Collapse
|
9
|
Takacs A, Münchau A, Nemeth D, Roessner V, Beste C. Lower-level associations in Gilles de la Tourette syndrome: Convergence between hyperbinding of stimulus and response features and procedural hyperfunctioning theories. Eur J Neurosci 2021; 54:5143-5160. [PMID: 34155701 DOI: 10.1111/ejn.15366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Gilles de la Tourette syndrome (GTS) can be characterized by enhanced cognitive functions related to creating, modifying and maintaining connections between stimuli and responses (S-R links). Specifically, two areas, procedural sequence learning and, as a novel finding, also event file binding, show converging evidence of hyperfunctioning in GTS. In this review, we describe how these two enhanced functions can be considered as cognitive mechanisms behind habitual behaviour, such as tics in GTS. Moreover, the presence of both procedural sequence learning and event file binding hyperfunctioning in the same disorder can be treated as evidence for their functional connections, even beyond GTS. Importantly though, we argue that hyperfunctioning of event file binding and procedural learning are not interchangeable: they have different time scales, different sensitivities to potential impairment in action sequencing and distinguishable contributions to the cognitive profile of GTS. An integrated theoretical account of hyperbinding and hyperlearning in GTS allows to formulate predictions for the emergence, activation and long-term persistence of tics in GTS.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Dezso Nemeth
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Lyon Neuroscience Research Center (CRNL), Université de Lyon, Lyon, France
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
10
|
Somatosensory perception-action binding in Tourette syndrome. Sci Rep 2021; 11:13388. [PMID: 34183712 PMCID: PMC8238990 DOI: 10.1038/s41598-021-92761-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
It is a common phenomenon that somatosensory sensations can trigger actions to alleviate experienced tension. Such “urges” are particularly relevant in patients with Gilles de la Tourette (GTS) syndrome since they often precede tics, the cardinal feature of this common neurodevelopmental disorder. Altered sensorimotor integration processes in GTS as well as evidence for increased binding of stimulus- and response-related features (“hyper-binding”) in the visual domain suggest enhanced perception–action binding also in the somatosensory modality. In the current study, the Theory of Event Coding (TEC) was used as an overarching cognitive framework to examine somatosensory-motor binding. For this purpose, a somatosensory-motor version of a task measuring stimulus–response binding (S-R task) was tested using electro-tactile stimuli. Contrary to the main hypothesis, there were no group differences in binding effects between GTS patients and healthy controls in the somatosensory-motor paradigm. Behavioral data did not indicate differences in binding between examined groups. These data can be interpreted such that a compensatory “downregulation” of increased somatosensory stimulus saliency, e.g., due to the occurrence of somatosensory urges and hypersensitivity to external stimuli, results in reduced binding with associated motor output, which brings binding to a “normal” level. Therefore, “hyper-binding” in GTS seems to be modality-specific.
Collapse
|
11
|
Mielke E, Takacs A, Kleimaker M, Schappert R, Conte G, Onken R, Künemund T, Verrel J, Bäumer T, Beste C, Münchau A. Tourette syndrome as a motor disorder revisited - Evidence from action coding. NEUROIMAGE-CLINICAL 2021; 30:102611. [PMID: 33740752 PMCID: PMC7985708 DOI: 10.1016/j.nicl.2021.102611] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/02/2022]
Abstract
Feature Binding/integration in the motor domain in Tourette Syndrome (TS) is examined. Motor binding processes and interleaved action are intact in TS. Binding processes are differentially modulated in the motor domain and sensori-motor processes.
Because tics are the defining clinical feature of Tourette syndrome, it is conceptualized predominantly as a motor disorder. There is some evidence though suggesting that the neural basis of Tourette syndrome is related to perception–action processing and binding between perception and action. However, binding processes have not been examined in the motor domain in these patients. If it is particularly perception–action binding but not binding processes within the motor system, this would further corroborate that Tourette syndrome it is not predominantly, or solely, a motor disorder. Here, we studied N = 22 Tourette patients and N = 24 healthy controls using an established action coding paradigm derived from the Theory of Event Coding framework and concomitant EEG-recording addressing binding between a planned but postponed, and an interleaved immediate reaction with different levels of overlap of action elements. Behavioral performance during interleaved action coding was normal in Tourette syndrome. Response locked lateralized readiness potentials reflecting processes related to motor execution were larger in Tourette syndrome, but only in simple conditions. However, pre-motor processes including response preparation and configuration reflected by stimulus-locked lateralized readiness potentials were normal. This was supported by a Bayesian data analysis providing evidence for the null hypothesis. The finding that processes integrating different action-related elements prior to motor execution are normal in Tourette syndrome suggests that Tourette it is not solely a motor disorder. Considering other recent evidence, the data show that changes in “binding” in Tourette syndrome are specific for perception–action integration but not for action coding.
Collapse
Affiliation(s)
- Emily Mielke
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Maximilian Kleimaker
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany; Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Ronja Schappert
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Giulia Conte
- Department of Human Neuroscience, Institute of Child and Adolescent Neuropsychiatry, Sapienza University of Rome, Italy
| | - Rebecca Onken
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Till Künemund
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Julius Verrel
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
12
|
Kleimaker A, Kleimaker M, Bäumer T, Beste C, Münchau A. Gilles de la Tourette Syndrome-A Disorder of Action-Perception Integration. Front Neurol 2020; 11:597898. [PMID: 33324336 PMCID: PMC7726237 DOI: 10.3389/fneur.2020.597898] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
Gilles de la Tourette syndrome is a multifaceted and complex neuropsychiatric disorder. Given that tics as motor phenomena are the defining and cardinal feature of Tourette syndrome, it has long been conceptualized as a motor/movement disorder. However, considering premonitory urges preceding tics, hypersensitivity to external stimuli and abnormalities in sensorimotor integration perceptual processes also seem to be relevant in the pathophysiology of Tourette syndrome. In addition, tic expression depends on attention and tics can, at least partly and transiently, be controlled, so that cognitive processes need to be considered as well. Against this background, explanatory concepts should encompass not only the motor phenomenon tic but also perceptual and cognitive processes. Representing a comprehensive theory of the processing of perceptions and actions paying particular attention to their interdependency and the role of cognitive control, the Theory of Event Coding seems to be a suitable conceptual framework for the understanding of Tourette syndrome. In fact, recent data suggests that addressing the relation between actions (i.e., tics) and perceptions (i.e., sensory phenomena like premonitory urges) in the context of event coding allows to gaining relevant insights into perception-action coding in Tourette syndrome indicating that perception action binding is abnormally strong in this disorder.
Collapse
Affiliation(s)
- Alexander Kleimaker
- Center of Brain, Behavior and Metabolism, Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Maximilian Kleimaker
- Center of Brain, Behavior and Metabolism, Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Tobias Bäumer
- Center of Brain, Behavior and Metabolism, Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Alexander Münchau
- Center of Brain, Behavior and Metabolism, Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Cavanna AE, Ganos C, Hartmann A, Martino D, Pringsheim T, Seri S. The cognitive neuropsychiatry of Tourette syndrome. Cogn Neuropsychiatry 2020; 25:254-268. [PMID: 32372718 DOI: 10.1080/13546805.2020.1760812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Converging evidence from both clinical and experimental studies has shown that Tourette syndrome (TS) is not a unitary condition, but a cluster of multiple phenotypes, which encompass both tics and specific behavioural and cognitive symptoms (mainly attention-deficit and hyperactivity disorder and obsessive-compulsive disorder). Methods: We conducted a narrative review of the recent literature on the cognitive neuropsychiatry of TS. Results: Although clinical research has shown that TS is not associated with cognitive deficits per se, the findings of recent studies have suggested the presence of subtle alterations in specific cognitive functions. A promising line of research on imitative behaviour could provide a common background for the alterations in executive control and social cognition observed in TS. Two different (but not mutually exclusive) neurocognitive theories have recently suggested that TS could originate from altered perception-action binding and social decision-making dysfunction, respectively. Conclusions: Since the presence of behavioural comorbidities influences individualised treatment approaches, it is likely that a more precise characterisation of TS phenotypes, including cognitive aspects, will result in improved levels of care for patients with tic disorders.
Collapse
Affiliation(s)
- Andrea E Cavanna
- Department of Neuropsychiatry, BSMHFT and University of Birmingham, Birmingham, United Kingdom.,Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology and University College London, London, United Kingdom.,School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, United Kingdom
| | - Christos Ganos
- Department of Neurology, Charité, University Medicine Berlin, Germany
| | - Andreas Hartmann
- French Reference Centre for Gilles de la Tourette Syndrome, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, CNRS UMR 7225, ICM, Paris, France.,Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary and Hotchkiss Brain Institute, Calgary, Canada
| | - Tamara Pringsheim
- Department of Clinical Neurosciences, Psychiatry, Pediatrics and Community Health Sciences, University of Calgary, Calgary, Canada
| | - Stefano Seri
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, United Kingdom
| |
Collapse
|
14
|
Kleimaker M, Takacs A, Conte G, Onken R, Verrel J, Bäumer T, Münchau A, Beste C. Increased perception-action binding in Tourette syndrome. Brain 2020; 143:1934-1945. [DOI: 10.1093/brain/awaa111] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/26/2020] [Accepted: 02/20/2020] [Indexed: 11/13/2022] Open
Abstract
Abstract
Gilles de la Tourette syndrome is a multifaceted neurodevelopmental disorder characterized by multiple motor and vocal tics. Research in Tourette syndrome has traditionally focused on the motor system. However, there is increasing evidence that perceptual and cognitive processes play a crucial role as well. Against this background it has been reasoned that processes linking perception and action might be particularly affected in these patients with the strength of perception-action binding being increased. However, this has not yet been studied experimentally. Here, we investigated adult Tourette patients within the framework of the ‘Theory of Event Coding’ using an experimental approach allowing us to directly test the strength of perception-action binding. We included 24 adult patients with Tourette syndrome and n = 24 healthy control subjects using a previously established visual-motor event file task with four levels of feature overlap requiring repeating or alternating responses. Concomitant to behavioural testing, EEG was recorded and analysed using temporal signal decomposition and source localization methods. On a behavioural level, perception-action binding was increased in Tourette patients. Tic frequency correlated with performance in conditions where unbinding processes of previously established perception-action bindings were required with higher tic frequency being associated with stronger perception-action binding. This suggests that perception-action binding is intimately related to the occurrence of tics. Analysis of EEG data showed that behavioural changes cannot be explained based on simple perceptual or motor processes. Instead, cognitive processes linking perception to action in inferior parietal cortices are crucial. Our findings suggest that motor or sensory processes alone are less relevant for the understanding of Tourette syndrome than cognitive processes engaged in linking and restructuring of perception-action association. A broader cognitive framework encompassing perception and action appears well suited to opening new routes for the understanding of Tourette syndrome.
Collapse
Affiliation(s)
- Maximilian Kleimaker
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behaviour and Metabolism, University of Lübeck, Lübeck, Germany
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Giulia Conte
- Department of Human Neuroscience, Institute of Child and Adolescent Neuropsychiatry, Sapienza University of Rome, Italy
| | - Rebecca Onken
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behaviour and Metabolism, University of Lübeck, Lübeck, Germany
| | - Julius Verrel
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behaviour and Metabolism, University of Lübeck, Lübeck, Germany
| | - Tobias Bäumer
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behaviour and Metabolism, University of Lübeck, Lübeck, Germany
| | - Alexander Münchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behaviour and Metabolism, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
15
|
Inzelberg L, David-Pur M, Gur E, Hanein Y. Multi-channel electromyography-based mapping of spontaneous smiles. J Neural Eng 2020; 17:026025. [DOI: 10.1088/1741-2552/ab7c18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Abstract
Background:Tics, defined as quick, rapid, sudden, recurrent, non-rhythmic motor movements or vocalizations are required components of Tourette Syndrome (TS) - a complex disorder characterized by the presence of fluctuating, chronic motor and vocal tics, and the presence of co-existing neuropsychological problems. Despite many advances, the underlying pathophysiology of tics/TS remains unknown.Objective:To address a variety of controversies surrounding the pathophysiology of TS. More specifically: 1) the configuration of circuits likely involved; 2) the role of inhibitory influences on motor control; 3) the classification of tics as either goal-directed or habitual behaviors; 4) the potential anatomical site of origin, e.g. cortex, striatum, thalamus, cerebellum, or other(s); and 5) the role of specific neurotransmitters (dopamine, glutamate, GABA, and others) as possible mechanisms (Abstract figure).Methods:Existing evidence from current clinical, basic science, and animal model studies are reviewed to provide: 1) an expanded understanding of individual components and the complex integration of the Cortico-Basal Ganglia-Thalamo-Cortical (CBGTC) circuit - the pathway involved with motor control; and 2) scientific data directly addressing each of the aforementioned controversies regarding pathways, inhibition, classification, anatomy, and neurotransmitters.Conclusion:Until a definitive pathophysiological mechanism is identified, one functional approach is to consider that a disruption anywhere within CBGTC circuitry, or a brain region inputting to the motor circuit, can lead to an aberrant message arriving at the primary motor cortex and enabling a tic. Pharmacologic modulation may be therapeutically beneficial, even though it might not be directed toward the primary abnormality.
Collapse
Affiliation(s)
- Harvey S. Singer
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Farhan Augustine
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
17
|
Weiblen R, Jonas M, Krach S, Krämer UM. Social Cognition in Gilles de la Tourette Syndrome. ZEITSCHRIFT FUR NEUROPSYCHOLOGIE 2019. [DOI: 10.1024/1016-264x/a000272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract. Research on the neural mechanisms underlying Gilles de la Tourette syndrome (GTS) has mostly concentrated on abnormalities in basal ganglia circuits. Recent alternative accounts, however, focused more on social and affective aspects. Individuals with GTS show peculiarities in their social and affective domain, including echophenomena, coprolalia, and nonobscene socially inappropriate behavior. This article reviews the experimental and theoretical work done on the social symptoms of GTS. We discuss the role of different social cognitive and affective functions and associated brain networks, namely, the social-decision-making system, theory-of-mind functions, and the so-called “mirror-neuron” system. Although GTS affects social interactions in many ways, and although the syndrome includes aberrant social behavior, the underlying cognitive, affective, and neural processes remain to be investigated.
Collapse
Affiliation(s)
- Ronja Weiblen
- Department of Neurology, University of Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Melanie Jonas
- Department of Human Resources, Health and Social Affairs, Fachhochschule des Mittelstands (FHM), Cologne, Germany
| | - Sören Krach
- Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Ulrike M. Krämer
- Department of Neurology, University of Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Germany
| |
Collapse
|
18
|
Abstract
Tics are sudden, rapid, recurrent, nonrhythmic motor movements or vocalizations (phonic productions) that are commonly present in children and are required symptoms for the diagnosis of Tourette syndrome. Despite their frequency, the underlying pathophysiology of tics/Tourette syndrome remains unknown. In this review, we discuss a variety of controversies surrounding the pathophysiology of tics, including the following: Are tics voluntary or involuntary? What is the role of the premonitory urge? Are tics due to excess excitatory or deficient inhibition? Is it time to adopt the contemporary version of the cortico-basal ganglia-thalamocortical (CBGTC) circuit? and Do we know the primary abnormal neurotransmitter in Tourette syndrome? Data from convergent clinical and animal model studies support complex interactions among the various CBGTC sites and neurotransmitters. Advances are being made; however, numerous pathophysiologic questions persist.
Collapse
Affiliation(s)
- Harvey S Singer
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Farhan Augustine
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
19
|
Inzelberg L, Hanein Y. Electrophysiology Meets Printed Electronics: The Beginning of a Beautiful Friendship. Front Neurosci 2019; 12:992. [PMID: 30662393 PMCID: PMC6328473 DOI: 10.3389/fnins.2018.00992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/10/2018] [Indexed: 11/23/2022] Open
Abstract
Electroencephalography (EEG) and surface electromyography (sEMG) are notoriously cumbersome technologies. A typical setup may involve bulky electrodes, dangling wires, and a large amplifier unit. Adapting these technologies to numerous applications has been accordingly fairly limited. Thanks to the availability of printed electronics, it is now possible to effectively simplify these techniques. Elegant electrode arrays with unprecedented performances can be readily produced, eliminating the need to handle multiple electrodes and wires. Specifically, in this Perspective paper, we focus on the advantages of electrodes printed on soft films as manifested in signal transmission at the electrode-skin interface, electrode-skin stability, and user convenience during electrode placement while achieving prolonged use. Customizing electrode array designs and implementing blind source separation methods can also improve recording resolution, reduce variability between individuals and minimize signal cross-talk between nearby electrodes. Finally, we outline several important applications in the field of neuroscience and how each can benefit from the convergence of electrophysiology and printed electronics.
Collapse
Affiliation(s)
- Lilah Inzelberg
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Tübing J, Gigla B, Brandt VC, Verrel J, Weissbach A, Beste C, Münchau A, Bäumer T. Associative plasticity in supplementary motor area - motor cortex pathways in Tourette syndrome. Sci Rep 2018; 8:11984. [PMID: 30097615 PMCID: PMC6086903 DOI: 10.1038/s41598-018-30504-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/31/2018] [Indexed: 12/29/2022] Open
Abstract
The important role of the supplementary motor area (SMA) in the generation of tics and urges in Gilles de la Tourette syndrome (GTS) is underscored by an increased SMA-motor cortex (M1) connectivity. However, whether plasticity is also altered in SMA-M1 pathways is unclear. We explored whether SMA-M1 plasticity is altered in patients with Tourette syndrome. 15 patients with GTS (mean age of 33.4 years, SD = 9.9) and 19 age and sex matched healthy controls were investigated with a paired association stimulation (PAS) protocol using three transcranial magnetic stimulation (TMS) coils stimulating both M1 and the SMA. Standard clinical measures for GTS symptoms were collected. There was a significant PAS effect showing that MEP amplitudes measured in blocks during and after PAS were significantly higher compared to those in the first block. However, the degree of PAS was not differentially modulated between patients and controls as shown by a Bayesian data analysis. PAS effects in GTS correlated positively with the YGTSS motor tic severity. Plasticity previously reported to be altered in sensorimotor pathways in GTS is normal in SMA-M1 projections suggesting that the dysfunction of the SMA in GTS is not primarily related to altered plasticity in SMA-M1 connections.
Collapse
Affiliation(s)
- Jennifer Tübing
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, University of Lübeck, 23562, Lübeck, Germany.,Department of Neurology, University Medical Hospital of Schleswig-Holstein, 23538, Lübeck, Germany
| | - Bettina Gigla
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, University of Lübeck, 23562, Lübeck, Germany
| | - Valerie Cathérine Brandt
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, University of Lübeck, 23562, Lübeck, Germany.,Centre for Innovation in Mental Health, Department of Psychology, University of Southampton, SO17 1BJ, Southampton, England
| | - Julius Verrel
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, University of Lübeck, 23562, Lübeck, Germany
| | - Anne Weissbach
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, University of Lübeck, 23562, Lübeck, Germany.,Department of Neurology, University Medical Hospital of Schleswig-Holstein, 23538, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, 01307, Dresden, Germany
| | - Alexander Münchau
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, University of Lübeck, 23562, Lübeck, Germany
| | - Tobias Bäumer
- Institute of Neurogenetics, Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, University of Lübeck, 23562, Lübeck, Germany.
| |
Collapse
|
21
|
Beste C, Münchau A. Tics and Tourette syndrome - surplus of actions rather than disorder? Mov Disord 2017; 33:238-242. [DOI: 10.1002/mds.27244] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden; Dresden Germany
- Experimental Neurobiology, National Institute of Mental Health; Klecany Czech Republic
| | - Alexander Münchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behavior and Metabolism; University of Lubeck; Lubeck Germany
| |
Collapse
|
22
|
Tunc S, Münchau A. Boys in a famous choir: Singing and ticcing. Ann Neurol 2017; 82:1029-1031. [DOI: 10.1002/ana.25112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Sinem Tunc
- Institute of Neurogenetics, University of Lübeck
- Department of NeurologyUniversity of LübeckLübeck Germany
| | | |
Collapse
|
23
|
Abstract
This article presents highlights chosen from research that appeared during 2016 on Tourette syndrome and other tic disorders. Selected articles felt to represent meaningful advances in the field are briefly summarized.
Collapse
Affiliation(s)
- Kevin J. Black
- Departments of Psychiatry, Neurology, Radiology, and Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
24
|
Abstract
This article presents highlights chosen from research that appeared during 2016 on Tourette syndrome and other tic disorders. Selected articles felt to represent meaningful advances in the field are briefly summarized.
Collapse
Affiliation(s)
- Kevin J. Black
- Departments of Psychiatry, Neurology, Radiology, and Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|