1
|
Grimaldi S, Guye M, Bianciardi M, Eusebio A. Brain MRI Biomarkers in Isolated Rapid Eye Movement Sleep Behavior Disorder: Where Are We? A Systematic Review. Brain Sci 2023; 13:1398. [PMID: 37891767 PMCID: PMC10604962 DOI: 10.3390/brainsci13101398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing number of MRI studies focused on prodromal Parkinson's Disease (PD) demonstrates a strong interest in identifying early biomarkers capable of monitoring neurodegeneration. In this systematic review, we present the latest information regarding the most promising MRI markers of neurodegeneration in relation to the most specific prodromal symptoms of PD, namely isolated rapid eye movement (REM) sleep behavior disorder (iRBD). We reviewed structural, diffusion, functional, iron-sensitive, neuro-melanin-sensitive MRI, and proton magnetic resonance spectroscopy studies conducted between 2000 and 2023, which yielded a total of 77 relevant papers. Among these markers, iron and neuromelanin emerged as the most robust and promising indicators for early neurodegenerative processes in iRBD. Atrophy was observed in several regions, including the frontal and temporal cortices, limbic cortices, and basal ganglia, suggesting that neurodegenerative processes had been underway for some time. Diffusion and functional MRI produced heterogeneous yet intriguing results. Additionally, reduced glymphatic clearance function was reported. Technological advancements, such as the development of ultra-high field MRI, have enabled the exploration of minute anatomical structures and the detection of previously undetectable anomalies. The race to achieve early detection of neurodegeneration is well underway.
Collapse
Affiliation(s)
- Stephan Grimaldi
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Centre d’Exploration Métabolique par Résonnance Magnétique, Assistance Publique des Hôpitaux de Marseille, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129, USA
| | - Maxime Guye
- Centre d’Exploration Métabolique par Résonnance Magnétique, Assistance Publique des Hôpitaux de Marseille, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129, USA
- Division of Sleep Medicine, Harvard University, Boston, MA 02114, USA
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Institut de Neurosciences de la Timone, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
2
|
Shi D, Ren Z, Zhang H, Wang G, Guo Q, Wang S, Ding J, Yao X, Li Y, Ren K. Amplitude of low-frequency fluctuation-based regional radiomics similarity network: Biomarker for Parkinson's disease. Heliyon 2023; 9:e14325. [PMID: 36950566 PMCID: PMC10025115 DOI: 10.1016/j.heliyon.2023.e14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/18/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease (PD) is a highly heterogeneous disorder that is difficult to diagnose. Therefore, reliable biomarkers are needed. We implemented a method constructing a regional radiomics similarity network (R2SN) based on the amplitude of low-frequency fluctuation (ALFF). We classified patients with PD and healthy individuals by using a machine learning approach in accordance with the R2SN connectome. The ALFF-based R2SN exhibited great reproducibility with different brain atlases and datasets. Great classification performances were achieved both in primary (AUC = 0.85 ± 0.02 and accuracy = 0.81 ± 0.03) and independent external validation (AUC = 0.77 and accuracy = 0.70) datasets. The discriminative R2SN edges correlated with the clinical evaluations of patients with PD. The nodes of discriminative R2SN edges were primarily located in the default mode, sensorimotor, executive control, visual and frontoparietal network, cerebellum and striatum. These findings demonstrate that ALFF-based R2SN is a robust potential neuroimaging biomarker for PD and could provide new insights into connectome reorganization in PD.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhendong Ren
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haoran Zhang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guangsong Wang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiu Guo
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Siyuan Wang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Ding
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Yao
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yanfei Li
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ke Ren
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Corresponding author. Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Meng X, Wei Q, Meng L, Liu J, Wu Y, Liu W. Feature Fusion and Detection in Alzheimer's Disease Using a Novel Genetic Multi-Kernel SVM Based on MRI Imaging and Gene Data. Genes (Basel) 2022; 13:837. [PMID: 35627222 PMCID: PMC9140721 DOI: 10.3390/genes13050837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023] Open
Abstract
Voxel-based morphometry provides an opportunity to study Alzheimer's disease (AD) at a subtle level. Therefore, identifying the important brain voxels that can classify AD, early mild cognitive impairment (EMCI) and healthy control (HC) and studying the role of these voxels in AD will be crucial to improve our understanding of the neurobiological mechanism of AD. Combining magnetic resonance imaging (MRI) imaging and gene information, we proposed a novel feature construction method and a novel genetic multi-kernel support vector machine (SVM) method to mine important features for AD detection. Specifically, to amplify the differences among AD, EMCI and HC groups, we used the eigenvalues of the top 24 Single Nucleotide Polymorphisms (SNPs) in a p-value matrix of 24 genes associated with AD for feature construction. Furthermore, a genetic multi-kernel SVM was established with the resulting features. The genetic algorithm was used to detect the optimal weights of 3 kernels and the multi-kernel SVM was used after training to explore the significant features. By analyzing the significance of the features, we identified some brain regions affected by AD, such as the right superior frontal gyrus, right inferior temporal gyrus and right superior temporal gyrus. The findings proved the good performance and generalization of the proposed model. Particularly, significant susceptibility genes associated with AD were identified, such as CSMD1, RBFOX1, PTPRD, CDH13 and WWOX. Some significant pathways were further explored, such as the calcium signaling pathway (corrected p-value = 1.35 × 10-6) and cell adhesion molecules (corrected p-value = 5.44 × 10-4). The findings offer new candidate abnormal brain features and demonstrate the contribution of these features to AD.
Collapse
Affiliation(s)
- Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China; (X.M.); (Q.W.); (J.L.); (Y.W.)
| | - Qingpeng Wei
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China; (X.M.); (Q.W.); (J.L.); (Y.W.)
| | - Li Meng
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Junlong Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China; (X.M.); (Q.W.); (J.L.); (Y.W.)
| | - Yue Wu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China; (X.M.); (Q.W.); (J.L.); (Y.W.)
| | - Wenjie Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China; (X.M.); (Q.W.); (J.L.); (Y.W.)
| |
Collapse
|
4
|
He F, Li Y, Li C, Fan L, Liu T, Wang J. Repeated anodal high-definition transcranial direct current stimulation over the left dorsolateral prefrontal cortex in mild cognitive impairment patients increased regional homogeneity in multiple brain regions. PLoS One 2021; 16:e0256100. [PMID: 34388179 PMCID: PMC8363005 DOI: 10.1371/journal.pone.0256100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/31/2021] [Indexed: 01/10/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) can improve cognitive function. However, it is not clear how high-definition tDCS (HD-tDCS) regulates the cognitive function and its neural mechanism, especially in individuals with mild cognitive impairment (MCI). This study aimed to examine whether HD-tDCS can modulate cognitive function in individuals with MCI and to determine whether the potential variety is related to spontaneous brain activity changes recorded by resting-state functional magnetic resonance imaging (rs-fMRI). Forty-three individuals with MCI were randomly assigned to receive either 10 HD-tDCS sessions or 10 sham sessions to the left dorsolateral prefrontal cortex (L-DLPFC). The fractional amplitude of low-frequency fluctuation (fALFF) and the regional homogeneity (ReHo) was computed using rs-fMRI data from all participants. The results showed that the fALFF and ReHo values changed in multiple areas following HD-tDCS. Brain regions with significant decreases in fALFF values include the Insula R, Precuneus R, Thalamus L, and Parietal Sup R, while the Temporal Inf R, Fusiform L, Occipital Sup L, Calcarine R, and Angular R showed significantly increased in their fALFF values. The brain regions with significant increases in ReHo values include the Temporal Inf R, Putamen L, Frontal Mid L, Precentral R, Frontal Sup Medial L, Frontal Sup R, and Precentral L. We found that HD-tDCS can alter the intensity and synchrony of brain activity, and our results indicate that fALFF and ReHo analysis are sensitive indicators for the detection of HD-tDCS during spontaneous brain activity. Interestingly, HD-tDCS increases the ReHo values of multiple brain regions, which may be related to the underlying mechanism of its clinical effects, these may also be related to a potential compensation mechanism involving the mobilization of more regions to complete a function following a functional decline.
Collapse
Affiliation(s)
- Fangmei He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Chenxi Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
- * E-mail: (JW); (TL)
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
- * E-mail: (JW); (TL)
| |
Collapse
|
5
|
Sheng Y, Zhou X, Yang S, Ma P, Chen C. Modelling item scores of Unified Parkinson's Disease Rating Scale Part III for greater trial efficiency. Br J Clin Pharmacol 2021; 87:3608-3618. [PMID: 33580584 DOI: 10.1111/bcp.14777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/30/2020] [Accepted: 02/06/2021] [Indexed: 01/06/2023] Open
Abstract
AIMS The multipart Unified Parkinson's Disease Rating Scale is the standard instrument in clinical trials. A sum of scores for all items in 1 or more parts of the instrument is usually analysed. Without accounting for relative importance of individual items, this sum of scores conceivably does not optimize the power of the instrument. The aim was to compare the ability to detect drug effect in slowing down motor function deterioration, as measured by Part III of the Scale-motor examinations-between the item scores and the sum of scores. METHODS We used data from 423 patients in a Parkinson's disease progression trial to estimate the symptom severity by item response modelling; modelled symptom progression using the severity and the sum of scores; and conducted simulations to compare the sensitivity of detecting a broad range of hypothetical drug effects on progression using the severity and the sum of scores. RESULTS The severity endpoint was far more sensitive than the sum of scores for detecting treatment effects, e.g. requiring 275 vs. 625 patients per arm to achieve 60% probability of trial success for detecting a range of potential effects in a 2-year trial. Nontremor items related to the left side of the body seemed most informative. The domain relevance of tremor items appeared questionable. CONCLUSION This analysis generated clear evidence that longitudinal modelling of item scores can enhance trial efficiency and success. It also called for reassessing the placement of the tremor items in the instrument.
Collapse
Affiliation(s)
- Yucheng Sheng
- Clinical Pharmacology Modelling and Simulation, GSK, Shanghai, China
| | - Xuan Zhou
- Clinical Pharmacology Modelling and Simulation, GSK, Shanghai, China
| | - Shuying Yang
- Clinical Pharmacology Modelling and Simulation, GSK, London, UK
| | - Peiming Ma
- Clinical Pharmacology Modelling and Simulation, GSK, Shanghai, China
| | - Chao Chen
- Clinical Pharmacology Modelling and Simulation, GSK, London, UK
| |
Collapse
|
6
|
Alzaid H, Ethofer T, Hobert MA, Kardatzki B, Erb M, Maetzler W, Berg D. Distinct Relationship Between Cognitive Flexibility and White Matter Integrity in Individuals at Risk of Parkinson’s Disease. Front Aging Neurosci 2020; 12:250. [PMID: 32903902 PMCID: PMC7439016 DOI: 10.3389/fnagi.2020.00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Haidar Alzaid
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- *Correspondence: Haidar Alzaid,
| | - Thomas Ethofer
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Markus A. Hobert
- Department of Neurology, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Bernd Kardatzki
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Walter Maetzler
- Department of Neurology, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Christian-Albrecht University of Kiel, Kiel, Germany
| |
Collapse
|
7
|
Chase BA, Markopoulou K. Olfactory Dysfunction in Familial and Sporadic Parkinson's Disease. Front Neurol 2020; 11:447. [PMID: 32547477 PMCID: PMC7273509 DOI: 10.3389/fneur.2020.00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022] Open
Abstract
This minireview discusses our current understanding of the olfactory dysfunction that is frequently observed in sporadic and familial forms of Parkinson's disease and parkinsonian syndromes. We review the salient characteristics of olfactory dysfunction in these conditions, discussing its prevalence and characteristics, how neuronal processes and circuits are altered in Parkinson's disease, and what is assessed by clinically used measures of olfactory function. We highlight how studies of monogenic Parkinson's disease and investigations in ethnically diverse populations have contributed to understanding the mechanisms underlying olfactory dysfunction. Furthermore, we discuss how imaging and system-level approaches have been used to understand the pathogenesis of olfactory dysfunction. We discuss the challenging, remaining gaps in understanding the basis of olfactory dysfunction in neurodegeneration. We propose that insights could be obtained by following longitudinal cohorts with familial forms of Parkinson's disease using a combination of approaches: a multifaceted longitudinal assessment of olfactory function during disease progression is essential to identify not only how dysfunction arises, but also to address its relationship to motor and non-motor Parkinson's disease symptoms. An assessment of cohorts having monogenic forms of Parkinson's disease, available within the Genetic Epidemiology of Parkinson's Disease (GEoPD), as well as other international consortia, will have heuristic value in addressing the complexity of olfactory dysfunction in the context of the neurodegenerative process. This will inform our understanding of Parkinson's disease as a multisystem disorder and facilitate the more effective use of olfactory dysfunction assessment in identifying prodromal Parkinson's disease and understanding disease progression.
Collapse
Affiliation(s)
- Bruce A. Chase
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Neurology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Bor-Seng-Shu E, Paschoal FM, Almeida KJ, De Lima Oliveira M, Nogueira RC, Teixeira MJ, Walter U. Transcranial brain sonography for Parkinsonian syndromes. J Neurosurg Sci 2020; 63:441-449. [PMID: 31210040 DOI: 10.23736/s0390-5616.19.04696-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Substantia nigra (SN) hyperechogenicity has been proved to be a characteristic finding for idiopathic Parkinson's disease (PD), occurring in more than 90% of the patients. This echofeature is owed to increased amounts of iron in the SN region and reflects a functional impairment of the nigrostriatal dopaminergic system. In a prospective blinded study in which a group of patients with early mild signs and symptoms of unclear Parkinsonism were followed until a definite clinical diagnosis of PD, the hyperechogenicity of the SN was demonstrated to be highly predictive of a final diagnosis of PD. For the diagnosis of PD in individuals with early motor symptoms, both the sensitivity and positive predictive value of SN hyperechogenicity were higher than 90% and both the specificity and negative predictive value were higher than 80%. For early differential diagnosis between PD and atypical Parkinsonian syndromes, the sensitivity and positive predictive value of SN hyperechogenicity were higher than 90%, and both the specificity and negative predictive value were higher than 80%. The diagnostic specificity is increased if combining the TCS findings of SN, lenticular nucleus and third ventricle. In asymptomatic adult subjects, SN hyperechogenicity, at least unilaterally, indicates a subclinical functional insufficiency of the nigrostriatal dopaminergic system. Recent papers revealed that SN hyperechogenicity might suggest preclinical PD. Reduced echogenicity of midbrain raphe indicates increased risk of depression in PD patients. Caudate nucleus hyperechogenicity has been associated with drug-induced psychosis, and frontal horn dilatation >20 mm with dementia. Transcranial brain sonography can be a valuable tool for managing patients with Parkinsonian signs and symptoms.
Collapse
Affiliation(s)
- Edson Bor-Seng-Shu
- Division of Neurological Surgery, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil -
| | - Fernando M Paschoal
- Division of Neurological Surgery, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Kelson J Almeida
- Division of Neurological Surgery, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo De Lima Oliveira
- Division of Neurological Surgery, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Ricardo C Nogueira
- Division of Neurological Surgery, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Manoel J Teixeira
- Division of Neurological Surgery, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Uwe Walter
- Department of Neurology, University of Rostock, Rostock, Germany
| |
Collapse
|
9
|
Vaillancourt DE, Lehericy S. Illuminating basal ganglia and beyond in Parkinson's disease. Mov Disord 2019; 33:1373-1375. [PMID: 30311976 DOI: 10.1002/mds.27483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- David E Vaillancourt
- Department of Applied Physiology and Kinesiology, Biomedical Engineering, Neurology, University of Florida, Gainesville, Florida, USA
| | - Stéphane Lehericy
- Institut du Cerveau et de la Moelle - ICM, Centre de NeuroImagerie de Recherche - CENIR, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| |
Collapse
|
10
|
Balck A, Borsche M, Kasten M, Lohmann K, Seibler P, Brüggemann N, Klein C. Discordance in monozygotic Parkinson's disease twins - continuum or dichotomy? Ann Clin Transl Neurol 2019; 6:1102-1105. [PMID: 31211174 PMCID: PMC6562023 DOI: 10.1002/acn3.775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022] Open
Abstract
Differences in concordance rates between monozygotic and dizygotic twin pairs with Parkinson's disease (PD) have been used to estimate genetic influences in PD pathogenesis. We hypothesized that “discordance” may not in all cases adequately reflect the multifaceted disease manifestation of PD that involves a continuum from prodromal to definite PD. Deep clinical phenotyping, combining motor, nonmotor, and imaging modalities in five monozygotic, seemingly discordant twin pairs revealed motor and/or nonmotor features and/or nigral hyperechogenicity in all of the five putatively unaffected twins. In conclusion, our data suggest that concordance rates in monozygotic twins may be higher than previously appreciated.
Collapse
Affiliation(s)
- Alexander Balck
- Institute of Neurogenetics University of Lübeck Lübeck Germany.,Department of Neurology University of Lübeck Lübeck Germany
| | - Max Borsche
- Institute of Neurogenetics University of Lübeck Lübeck Germany.,Department of Neurology University of Lübeck Lübeck Germany
| | - Meike Kasten
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | - Katja Lohmann
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | - Philip Seibler
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics University of Lübeck Lübeck Germany.,Department of Neurology University of Lübeck Lübeck Germany
| | - Christine Klein
- Institute of Neurogenetics University of Lübeck Lübeck Germany
| |
Collapse
|