1
|
Rocchi L, Latorre A, Menozzi E, Rispoli V, Rothwell JC, Berardelli A, Bhatia KP. Amelioration of Focal Hand Dystonia via Low-Frequency Repetitive Somatosensory Stimulation. Mov Disord 2024; 39:2220-2229. [PMID: 39254362 PMCID: PMC11657077 DOI: 10.1002/mds.30011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Dystonia presents a growing concern based on evolving prevalence insights. Previous research found that, in cervical dystonia, high-frequency repetitive somatosensory stimulation (RSS; HF-RSS) applied on digital nerves paradoxically diminishes sensorimotor inhibitory mechanisms, whereas low-frequency RSS (LF-RSS) increases them. However, direct testing on affected body parts was not conducted. OBJECTIVE This study aims to investigate whether RSS applied directly to forearm muscles involved in focal hand dystonia can modulate cortical inhibitory mechanisms and clinical symptoms. METHODS We applied HF-RSS and LF-RSS, the latter either synchronously or asynchronously, on forearm muscles involved in dystonia. Outcome measures included paired-pulse somatosensory evoked potentials, spatial lateral inhibition measured by double-pulse somatosensory evoked potentials, short intracortical inhibition tested with transcranial magnetic stimulation, electromyographic activity from dystonic muscles, and behavioral measures of hand function. RESULTS Both synchronous and asynchronous low-frequency somatosensory stimulation improved cortical inhibitory interactions, indicated by increased short intracortical inhibition and lateral spatial inhibition, as well as decreased amplitude of paired-pulse somatosensory evoked potentials. Opposite effects were observed with high-frequency stimulation. Changes in electrophysiological markers were paralleled by behavioral outcomes: although low-frequency stimulations improved hand function tests and reduced activation of dystonic muscles, high-frequency stimulation operated in an opposite direction. CONCLUSIONS Our findings confirm the presence of abnormal homeostatic plasticity in response to RSS in the sensorimotor system of patients with dystonia, specifically in inhibitory circuits. Importantly, this aberrant response can be harnessed for therapeutic purposes through the application of low-frequency electrical stimulation directly over dystonic muscles. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lorenzo Rocchi
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Vittorio Rispoli
- Neuroscience, Head and Neck Department, Ospedale Civile di BaggiovaraAzienda Ospedaliero‐Universitaria di ModenaModenaItaly
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Alfredo Berardelli
- Department of Human NeurosciencesUniversity of Rome “Sapienza”RomeItaly
- IRCCS NeuromedPozzilliItaly
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
Sasaki R, Kojima S, Saito K, Otsuru N, Shirozu H, Onishi H. Resting-state functional connectivity involved in tactile orientation processing. Neuroimage 2024; 299:120834. [PMID: 39236853 DOI: 10.1016/j.neuroimage.2024.120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Grating orientation discrimination (GOD) is commonly used to assess somatosensory spatial processing. It allows discrimination between parallel and orthogonal orientations of tactile stimuli applied to the fingertip. Despite its widespread application, the underlying mechanisms of GOD, particularly the role of cortico-cortical interactions and local brain activity in this process, remain elusive. Therefore, we aimed to investigate how a specific cortico-cortical network and inhibitory circuits within the primary somatosensory cortex (S1) and secondary somatosensory cortex (S2) contribute to GOD. METHODS In total, 51 healthy young adults were included in our study. We recorded resting-state magnetoencephalography (MEG) and somatosensory-evoked magnetic field (SEF) in participants with open eyes. We converted the data into a source space based on individual structural magnetic resonance imaging. Next, we estimated S1- and S2-seed resting-state functional connectivity (rs-FC) at the alpha and beta bands through resting-state MEG using the amplitude envelope correlation method across the entire brain (i.e., S1/S2-seeds × 15,000 vertices × two frequencies). We assessed the inhibitory response in the S1 and S2 from SEFs using a paired-pulse paradigm. We automatically measured the GOD task in parallel and orthogonal orientations to the index finger, applying various groove widths with a custom-made device. RESULTS We observed a specific association between the GOD threshold (all P < 0.048) and the alpha rs-FC in the S1-superior parietal lobule and S1-adjacent to the parieto-occipital sulcus (i.e., lower rs-FC values corresponded to higher performance). In contrast, no association was observed between the local responses and the threshold. DISCUSSION The results of this study underpin the significance of specific cortico-cortical networks in recognizing variations in tactile stimuli.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Graduate Course of Health and Social Work, Kanagawa University of Human Services, Yokosuka City, Kanagawa, Japan.
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Hiroshi Shirozu
- Department of Functional Neurosurgery, NHO Nishiniigata Chuo Hospital, Niigata City, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| |
Collapse
|
3
|
Wang D, Jin H, Xie F, Wang Z, Xing W. Gray matter structural alterations of cortico-striato-thalamo-cortical loop in familial Paroxysmal Kinesigenic Dyskinesia. Heliyon 2024; 10:e36739. [PMID: 39263125 PMCID: PMC11387349 DOI: 10.1016/j.heliyon.2024.e36739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Background Previous studies have indicated that patients with Paroxysmal Kinesigenic Dyskinesia (PKD) exhibit reduced gray matter volume in certain brain regions within the cortico-striato-thalamo-cortical (CSTC) loop. However, a comprehensive investigation specifically targeting the CSTC loop in PKD has never been conducted. Objectives To provide evidence for the involvement of the CSTC loop in the pathogenesis of PKD from the perspective of structural alterations, this study carried out a surface-based morphometry (SBM), voxel-based morphometry (VBM), and structural covariance networks (SCN) combined analysis in familial PKD patients. Methods A total of 8 familial PKD patients and 10 healthy family members were included in the study and underwent Brain MRI examinations. Based on 3D T1 MPRAGE data, neuroimaging metrics of cortical thickness from SBM, subcortical nuclei volume from VBM, and covariance coefficient from SCN were used to systematically investigate the brain structural alterations along the CSTC loop of PKD patients. Results A significant decrease in the average cortical thickness of the left S1 region in the PKD group was observed. The volumes of subcortical nuclei, including the thalamus, putamen, and globus pallidus were reduced, with a pronounced effect observed in the bilateral putamen. And the structural covariance connection between the left putamen and the left globus pallidus was significantly strengthened. Conclusions The study confirms the involvement of the CSTC loop in the pathogenesis of PKD from the perspective of structural alterations, and the findings may provide potential targets for objective diagnosis and therapeutic monitoring of PKD.
Collapse
Affiliation(s)
- Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha, China
| | - Hong Jin
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha, China
| | - Fangfang Xie
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha, China
| | - Ziyun Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha, China
| | - Wu Xing
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Guo Z, Lin JP, Simeone O, Mills KR, Cvetkovic Z, McClelland VM. Cross-frequency cortex-muscle interactions are abnormal in young people with dystonia. Brain Commun 2024; 6:fcae061. [PMID: 38487552 PMCID: PMC10939448 DOI: 10.1093/braincomms/fcae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/10/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Sensory processing and sensorimotor integration are abnormal in dystonia, including impaired modulation of beta-corticomuscular coherence. However, cortex-muscle interactions in either direction are rarely described, with reports limited predominantly to investigation of linear coupling, using corticomuscular coherence or Granger causality. Information-theoretic tools such as transfer entropy detect both linear and non-linear interactions between processes. This observational case-control study applies transfer entropy to determine intra- and cross-frequency cortex-muscle coupling in young people with dystonia/dystonic cerebral palsy. Fifteen children with dystonia/dystonic cerebral palsy and 13 controls, aged 12-18 years, performed a grasp task with their dominant hand. Mechanical perturbations were provided by an electromechanical tapper. Bipolar scalp EEG over contralateral sensorimotor cortex and surface EMG over first dorsal interosseous were recorded. Multi-scale wavelet transfer entropy was applied to decompose signals into functional frequency bands of oscillatory activity and to quantify intra- and cross-frequency coupling between brain and muscle. Statistical significance against the null hypothesis of zero transfer entropy was established, setting individual 95% confidence thresholds. The proportion of individuals in each group showing significant transfer entropy for each frequency combination/direction was compared using Fisher's exact test, correcting for multiple comparisons. Intra-frequency transfer entropy was detected in all participants bidirectionally in the beta (16-32 Hz) range and in most participants from EEG to EMG in the alpha (8-16 Hz) range. Cross-frequency transfer entropy across multiple frequency bands was largely similar between groups, but a specific coupling from low-frequency EMG to beta EEG was significantly reduced in dystonia [P = 0.0061 (corrected)]. The demonstration of bidirectional cortex-muscle communication in dystonia emphasizes the value of transfer entropy for exploring neural communications in neurological disorders. The novel finding of diminished coupling from low-frequency EMG to beta EEG in dystonia suggests impaired cortical feedback of proprioceptive information with a specific frequency signature that could be relevant to the origin of the excessive low-frequency drive to muscle.
Collapse
Affiliation(s)
- Zhenghao Guo
- Department of Engineering, King's College London, London WC2R 2LS, UK
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jean-Pierre Lin
- Children's Neuroscience, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust (GSTT), London SE1 7EH, UK
| | - Osvaldo Simeone
- Department of Engineering, King's College London, London WC2R 2LS, UK
| | - Kerry R Mills
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 9RX, UK
| | - Zoran Cvetkovic
- Department of Engineering, King's College London, London WC2R 2LS, UK
| | - Verity M McClelland
- Children's Neuroscience, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust (GSTT), London SE1 7EH, UK
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 9RX, UK
| |
Collapse
|
5
|
Ordás CM, Alonso-Frech F. The neural basis of somatosensory temporal discrimination threshold as a paradigm for time processing in the sub-second range: An updated review. Neurosci Biobehav Rev 2024; 156:105486. [PMID: 38040074 DOI: 10.1016/j.neubiorev.2023.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The temporal aspect of somesthesia is a feature of any somatosensory process and a pre-requisite for the elaboration of proper behavior. Time processing in the milliseconds range is crucial for most of behaviors in everyday life. The somatosensory temporal discrimination threshold (STDT) is the ability to perceive two successive stimuli as separate in time, and deals with time processing in this temporal range. Herein, we focus on the physiology of STDT, on a background of the anatomophysiology of somesthesia and the neurobiological substrates of timing. METHODS A review of the literature through PubMed & Cochrane databases until March 2023 was performed with inclusion and exclusion criteria following PRISMA recommendations. RESULTS 1151 abstracts were identified. 4 duplicate records were discarded before screening. 957 abstracts were excluded because of redundancy, less relevant content or not English-written. 4 were added after revision. Eventually, 194 articles were included. CONCLUSIONS STDT encoding relies on intracortical inhibitory S1 function and is modulated by the basal ganglia-thalamic-cortical interplay through circuits involving the nigrostriatal dopaminergic pathway and probably the superior colliculus.
Collapse
Affiliation(s)
- Carlos M Ordás
- Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; Department of Neurology, Hospital Rey Juan Carlos, Móstoles, Madrid, Spain.
| | - Fernando Alonso-Frech
- Department of Neurology, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Spain
| |
Collapse
|
6
|
Trinchillo A, D'Asdia MC, De Luca A, Habetswallner F, Iorillo F, Esposito M. Cervical dystonia following brain tumor: description of an unreported case and a systematic review of literature. Acta Neurol Belg 2023; 123:2357-2360. [PMID: 36630079 DOI: 10.1007/s13760-023-02179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Affiliation(s)
- Assunta Trinchillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II" University, Naples, Italy
| | - Maria Cecilia D'Asdia
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro De Luca
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesco Habetswallner
- Clinical Neurophysiology Unit, Cardarelli Hospital, Via A. Cardarelli, 9, 80131, Naples, Italy
| | - Filippo Iorillo
- Clinical Neurophysiology Unit, Cardarelli Hospital, Via A. Cardarelli, 9, 80131, Naples, Italy
| | - Marcello Esposito
- Clinical Neurophysiology Unit, Cardarelli Hospital, Via A. Cardarelli, 9, 80131, Naples, Italy.
| |
Collapse
|
7
|
Latorre A, Belvisi D, Rothwell JC, Bhatia KP, Rocchi L. Rethinking the neurophysiological concept of cortical myoclonus. Clin Neurophysiol 2023; 156:125-139. [PMID: 37948946 DOI: 10.1016/j.clinph.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/04/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Cortical myoclonus is thought to result from abnormal electrical discharges arising in the sensorimotor cortex. Given the ease of recording of cortical discharges, electrophysiological features of cortical myoclonus have been better characterized than those of subcortical forms, and electrophysiological criteria for cortical myoclonus have been proposed. These include the presence of giant somatosensory evoked potentials, enhanced long-latency reflexes, electroencephalographic discharges time-locked to individual myoclonic jerks and significant cortico-muscular connectivity. Other features that are assumed to support the cortical origin of myoclonus are short-duration electromyographic bursts, the presence of both positive and negative myoclonus and cranial-caudal progression of the jerks. While these criteria are widely used in clinical practice and research settings, their application can be difficult in practice and, as a result, they are fulfilled only by a minority of patients. In this review we reappraise the evidence that led to the definition of the electrophysiological criteria of cortical myoclonus, highlighting possible methodological incongruencies and misconceptions. We believe that, at present, the diagnostic accuracy of cortical myoclonus can be increased only by combining observations from multiple tests, according to their pathophysiological rationale; nevertheless, larger studies are needed to standardise the methods, to resolve methodological issues, to establish the diagnostic criteria sensitivity and specificity and to develop further methods that might be useful to clarify the pathophysiology of myoclonus.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom.
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Erro R, Monfrini E, Di Fonzo A. Early-onset inherited dystonias versus late-onset idiopathic dystonias: Same or different biological mechanisms? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:329-346. [PMID: 37482397 DOI: 10.1016/bs.irn.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia syndromes encompass a heterogeneous group of movement disorders which might be differentiated by several clinical-historical features. Among the latter, age-at-onset is probably the most important in predicting the likelihood both for the symptoms to spread from focal to generalized and for a genetic cause to be found. Accordingly, dystonia syndromes are generally stratified into early-onset and late-onset forms, the former having a greater likelihood of being monogenic disorders and the latter to be possibly multifactorial diseases, despite being currently labeled as idiopathic. Nonetheless, there are several similarities between these two groups of dystonia, including shared pathophysiological and biological mechanisms. Moreover, there is also initial evidence of age-related modifiers of early-onset dystonia syndromes and of critical periods of vulnerability of the sensorimotor network, during which a combination of genetic and non-genetic insults is more likely to produce symptoms. Based on these lines of evidence, we reappraise the double-hit hypothesis of dystonia, which would accommodate both similarities and differences between early-onset and late-onset dystonia in a single framework.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.
| | - Edoardo Monfrini
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
9
|
Nishida D, Mizuno K, Takahashi O, Liu M, Tsuji T. Electrically Induced Sensory Trick in a Patient with Musician's Dystonia: A Case Report. Brain Sci 2023; 13:brainsci13020223. [PMID: 36831766 PMCID: PMC9954457 DOI: 10.3390/brainsci13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
A sensory trick is a specific maneuver that temporarily improves focal dystonia. We describe a case of musician's dystonia in the right-hand fingers of a patient, who showed good and immediate improvement after using an electrical stimulation-mimicking sensory trick. A 49-year-old professional guitarist presented with chronic involuntary flexion of the right-hand third and fourth fingers that occurred during guitar performances. Electrical stimulation with a frequency of 40 Hz and an intensity of 1.5 times the sensory threshold was administered on the third and fourth fingernails of the right hand, which facilitated fluent guitar playing. While he played guitar with and without electrical stimulation, we measured the surface electromyograms (sEMG) of the right extensor digitorum and flexor digitorum superficialis muscles to evaluate the sensory-trick-like effects of electrical stimulation. This phenomenon can offer clues for developing electrical stimulation-based treatment devices for focal dystonia. Electrical stimulation has the advantage that it can be turned off to avoid habituation. Moreover, the device is easy to use and portable. These findings warrant further investigation into the use of sensory stimulation for treating focal dystonia.
Collapse
Affiliation(s)
- Daisuke Nishida
- Department of Rehabilitation Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Katsuhiro Mizuno
- Department of Rehabilitation Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Correspondence: ; Tel.: +81-463-95-1121
| | - Osamu Takahashi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
10
|
Le Cong D, Sato D, Ikarashi K, Fujimoto T, Ochi G, Yamashiro K. Effect of whole-hand water flow stimulation on the neural balance between excitation and inhibition in the primary somatosensory cortex. Front Hum Neurosci 2022; 16:962936. [DOI: 10.3389/fnhum.2022.962936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Sustained peripheral somatosensory stimulations, such as high-frequency repetitive somatosensory stimulation (HF-RSS) and vibrated stimulation, are effective in altering the balance between excitation and inhibition in the somatosensory cortex (S1) and motor cortex (M1). A recent study reported that whole-hand water flow (WF) stimulation induced neural disinhibition in the M1. Based on previous results, we hypothesized that whole-hand WF stimulation would lead to neural disinhibition in the S1 because there is a strong neural connection between M1 and S1 and aimed to examine whether whole-hand WF stimulation would change the neural balance between excitation and inhibition in the S1. Nineteen healthy volunteers were studied by measuring excitation and inhibition in the S1 before and after each of the four 15-min interventions. The excitation and inhibition in the S1 were assessed using somatosensory evoked potentials (SEPs) and paired-pulse inhibition (PPI) induced by single- and paired-pulse stimulations, respectively. The four interventions were as follows: control, whole-hand water immersion, whole-hand WF, and HF-RSS. The results showed no significant changes in SEPs and PPI following any intervention. However, changes in PPI with an interstimulus interval (ISI) of 30 ms were significantly correlated with the baseline value before whole-hand WF. Thus, the present findings indicated that the whole-hand WF stimulation had a greater decreased neural inhibition in participants with higher neural inhibition in the S1 at baseline. Considering previous results on M1, the present results possibly show that S1 has lower plasticity than M1 and that the duration (15 min) of each intervention may not have been enough to alter the balance of excitation and inhibition in the S1.
Collapse
|
11
|
di Biase L, Di Santo A, Caminiti ML, Pecoraro PM, Carbone SP, Di Lazzaro V. Dystonia Diagnosis: Clinical Neurophysiology and Genetics. J Clin Med 2022; 11:jcm11144184. [PMID: 35887948 PMCID: PMC9320296 DOI: 10.3390/jcm11144184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 12/12/2022] Open
Abstract
Dystonia diagnosis is based on clinical examination performed by a neurologist with expertise in movement disorders. Clues that indicate the diagnosis of a movement disorder such as dystonia are dystonic movements, dystonic postures, and three additional physical signs (mirror dystonia, overflow dystonia, and geste antagonists/sensory tricks). Despite advances in research, there is no diagnostic test with a high level of accuracy for the dystonia diagnosis. Clinical neurophysiology and genetics might support the clinician in the diagnostic process. Neurophysiology played a role in untangling dystonia pathophysiology, demonstrating characteristic reduction in inhibition of central motor circuits and alterations in the somatosensory system. The neurophysiologic measure with the greatest evidence in identifying patients affected by dystonia is the somatosensory temporal discrimination threshold (STDT). Other parameters need further confirmations and more solid evidence to be considered as support for the dystonia diagnosis. Genetic testing should be guided by characteristics such as age at onset, body distribution, associated features, and coexistence of other movement disorders (parkinsonism, myoclonus, and other hyperkinesia). The aim of the present review is to summarize the state of the art regarding dystonia diagnosis focusing on the role of neurophysiology and genetic testing.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
- Brain Innovations Lab., Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
- Correspondence: or ; Tel.: +39-062-2541-1220
| | - Alessandro Di Santo
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Maria Letizia Caminiti
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Simona Paola Carbone
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
12
|
Sasaki R, Watanabe H, Onishi H. Therapeutic benefits of noninvasive somatosensory cortex stimulation on cortical plasticity and somatosensory function: a systematic review. Eur J Neurosci 2022; 56:4669-4698. [PMID: 35804487 DOI: 10.1111/ejn.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Optimal limb coordination requires efficient transmission of somatosensory information to the sensorimotor cortex. The primary somatosensory cortex (S1) is frequently damaged by stroke, resulting in both somatosensory and motor impairments. Noninvasive brain stimulation (NIBS) to the primary motor cortex is thought to induce neural plasticity that facilitates neurorehabilitation. Several studies have also examined if NIBS to the S1 can enhance somatosensory processing as assessed by somatosensory-evoked potentials (SEPs) and improve behavioral task performance, but it remains uncertain if NIBS can reliably modulate S1 plasticity or even whether SEPs can reflect this plasticity. This systematic review revealed that NIBS has relatively minor effects on SEPs or somatosensory task performance, but larger early SEP changes after NIBS can still predict improved performance. Similarly, decreased paired-pulse inhibition in S1 post-NIBS is associated with improved somatosensory performance. However, several studies still debate the role of inhibitory function in somatosensory performance after NIBS in terms of the direction of the change (that, disinhibition or inhibition). Altogether, early SEP and paired-pulse inhibition (particularly inter-stimulus intervals of 30-100 ms) may become useful biomarkers for somatosensory deficits, but improved NIBS protocols are required for therapeutic applications.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
13
|
Optimal deep brain stimulation sites and networks for cervical vs. generalized dystonia. Proc Natl Acad Sci U S A 2022; 119:e2114985119. [PMID: 35357970 PMCID: PMC9168456 DOI: 10.1073/pnas.2114985119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied deep brain stimulation effects in two types of dystonia and conclude that different specific connections between the pallidum and thalamus are responsible for optimal treatment effects. Since alternative treatment options for dystonia beyond deep brain stimulation are scarce, our results will be crucial to maximize treatment outcome in this population of patients. Dystonia is a debilitating disease with few treatment options. One effective option is deep brain stimulation (DBS) to the internal pallidum. While cervical and generalized forms of isolated dystonia have been targeted with a common approach to the posterior third of the nucleus, large-scale investigations regarding optimal stimulation sites and potential network effects have not been carried out. Here, we retrospectively studied clinical results following DBS for cervical and generalized dystonia in a multicenter cohort of 80 patients. We model DBS electrode placement based on pre- and postoperative imaging and introduce an approach to map optimal stimulation sites to anatomical space. Second, we investigate which tracts account for optimal clinical improvements, when modulated. Third, we investigate distributed stimulation effects on a whole-brain functional connectome level. Our results show marked differences of optimal stimulation sites that map to the somatotopic structure of the internal pallidum. While modulation of the striatopallidofugal axis of the basal ganglia accounted for optimal treatment of cervical dystonia, modulation of pallidothalamic bundles did so in generalized dystonia. Finally, we show a common multisynaptic network substrate for both phenotypes in the form of connectivity to the cerebellum and somatomotor cortex. Our results suggest a brief divergence of optimal stimulation networks for cervical vs. generalized dystonia within the pallidothalamic loop that merge again on a thalamo-cortical level and share a common whole-brain network.
Collapse
|
14
|
Exploring the connections between basal ganglia and cortex revealed by transcranial magnetic stimulation, evoked potential and deep brain stimulation in dystonia. Eur J Paediatr Neurol 2022; 36:69-77. [PMID: 34922163 DOI: 10.1016/j.ejpn.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/30/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
We review the findings for motor cortical excitability, plasticity and evoked potentials in dystonia. Plasticity can be induced and assessed in cortical areas by non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and the invasive technique of deep brain stimulation (DBS), which allows access to deep brain structures. Single-pulse TMS measures have been widely studied in dystonia and consistently showed reduced silent period duration. Paired pulse TMS measures showed reduced short and long interval intracortical inhibition, interhemispheric inhibition, long-latency afferent inhibition and increased intracortical facilitation in dystonia. Repetitive transcranial magnetic stimulation (rTMS) of the premotor cortex improved handwriting with prolongation of the silent period in focal hand dystonia patients. Continuous theta-burst stimulation (cTBS) of the cerebellum or cTBS of the dorsal premotor cortex improved dystonia in some studies. Plasticity induction protocols in dystonia demonstrated excessive motor cortical plasticity with the reduction in cortico-motor topographic specificity. Bilateral DBS of the globus pallidus internus (GPi) improves dystonia, associated pain and functional disability. Local field potentials recordings in dystonia patients suggested that there is increased power in the low-frequency band (4-12 Hz) in the GPi. Cortical evoked potentials at peak latencies of 10 and 25 ms can be recorded with GPi stimulation in dystonia. Plasticity induction protocols based on the principles of spike timing dependent plasticity that involved repeated pairing of GPi-DBS and motor cortical TMS at latencies of cortical evoked potentials induced motor cortical plasticity. These studies expanded our knowledge of the pathophysiology of dystonia and how cortical excitability and plasticity are altered with different treatments such as DBS.
Collapse
|
15
|
McClelland VM, Lin JP. Sensorimotor Integration in Childhood Dystonia and Dystonic Cerebral Palsy-A Developmental Perspective. Front Neurol 2021; 12:668081. [PMID: 34367047 PMCID: PMC8343097 DOI: 10.3389/fneur.2021.668081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
Dystonia is a disorder of sensorimotor integration, involving dysfunction within the basal ganglia, cortex, cerebellum, or their inter-connections as part of the sensorimotor network. Some forms of dystonia are also characterized by maladaptive or exaggerated plasticity. Development of the neuronal processes underlying sensorimotor integration is incompletely understood but involves activity-dependent modeling and refining of sensorimotor circuits through processes that are already taking place in utero and which continue through infancy, childhood, and into adolescence. Several genetic dystonias have clinical onset in early childhood, but there is evidence that sensorimotor circuit development may already be disrupted prenatally in these conditions. Dystonic cerebral palsy (DCP) is a form of acquired dystonia with perinatal onset during a period of rapid neurodevelopment and activity-dependent refinement of sensorimotor networks. However, physiological studies of children with dystonia are sparse. This discussion paper addresses the role of neuroplasticity in the development of sensorimotor integration with particular focus on the relevance of these mechanisms for understanding childhood dystonia, DCP, and implications for therapy selection, including neuromodulation and timing of intervention.
Collapse
Affiliation(s)
- Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
16
|
Blahak C, Wolf ME, Saryyeva A, Baezner H, Krauss JK. Improvement of head and neck range of motion induced by chronic pallidal deep brain stimulation for cervical dystonia. J Neural Transm (Vienna) 2021; 128:1205-1213. [PMID: 34231038 DOI: 10.1007/s00702-021-02365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the globus pallidus internus (GPi) has become an accepted treatment for severe cervical dystonia (CD). Assessment of therapeutic efficacy of DBS mostly focused on head position at rest but hardly on limitations of head and neck mobility, which represent a functionally important impairment in CD. OBJECTIVE We aimed to determine prospectively head and neck range of motion (ROM) preoperatively and during chronic bilateral GPi DBS in a series of 11 patients with idiopathic CD or segmental dystonia with prominent CD using a computerized motion analysis. METHODS Maximum horizontal rotation of the head in the transverse plane and lateral inclination in the frontal plane were measured preoperatively and at a median of 7 months of chronic GPi DBS, using an ultrasound-based three-dimensional measuring system combined with surface electromyography of cervical muscles. RESULTS Horizontal rotation of the head increased from 78.8° ± 31.5° (mean ± SD) preoperatively to 100.7° ± 24.7° with GPi DBS (p < 0.01), thereby improvement of head rotation to the anti-dystonic side (+ 14,2° ± 12,2°) was greater than to the pro-dystonic side (+ 7,8° ± 9,2°; p < 0.05). Movement-related agonistic-antagonistic EMG modulation during head rotation was enhanced with GPi DBS in both sternocleidomastoid (modulation index (MI) 35.8% ± 26.7% preoperatively vs. 67.3% ± 16.9% with GPi DBS, p < 0.01), and splenius capitis muscles (MI 1.9% ± 24.5% preoperatively vs. 44.8% ± 11.6% with GPi DBS, p < 0.01). CONCLUSION Chronic bilateral GPi DBS significantly improves head ROM in CD, likely due to enhanced agonist-antagonist EMG activity with reduced co-contraction. Computerized motion analysis provides an objective measurement to assess the improvement of head and neck mobility in CD.
Collapse
Affiliation(s)
- Christian Blahak
- Department of Neurology, UniversitaetsMedizin Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Neurology, Ortenau-Klinikum Lahr, Klostenstrasse 19, 7933, Lahr, Germany.
| | - Marc E Wolf
- Department of Neurology, UniversitaetsMedizin Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Neurology, Klinikum Stuttgart, Stuttgart, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Hansjoerg Baezner
- Department of Neurology, UniversitaetsMedizin Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Neurology, Klinikum Stuttgart, Stuttgart, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Caux-Dedeystère A, Allart E, Morel P, Kreisler A, Derambure P, Devanne H. Late cortical disinhibition in focal hand dystonia. Eur J Neurosci 2021; 54:4712-4720. [PMID: 34061422 DOI: 10.1111/ejn.15333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022]
Abstract
In writer's cramp (WC), a form of focal hand dystonia, cortical GABAergic inhibitory mechanisms are altered and may cause involuntary tonic contractions while writing. The objective of this study was to explore the time course of long-interval intracortical inhibition (LICI) that involves gamma-amino butyric acid (GABA)-B transmission and late cortical disinhibition (LCD) (that combines GABA-A and GABA-B mechanisms) in patients with WC and in control subjects. A double pulse transcranial magnetic stimulation protocol was used to evoke LICI and LCD while the subjects either gripped a cylinder between their thumb and index fingers or relaxed all their upper limb muscles. We measured the ratio between primed and unprimed motor evoked potential in the first dorsal interosseous at interstimulus intervals ranging between 60 and 300 ms. Though the cortical silent period was not different between the groups, LICI lasted longer in patients with WC, that is, LCD was delayed for more than 30 ms and reached a higher level. In addition to the alteration of inhibitory mechanism mediated by GABA-B transmission, LCD which probably involves presynaptic inhibition is also modified in patients with WC with possible consequences on the activity of primary motor cortex inhibitory and excitatory circuits which control the hand muscles.caus.
Collapse
Affiliation(s)
- Alexandre Caux-Dedeystère
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ Littoral Côte d'Opale, Univ Lille, Univ Artois, Calais, France
| | - Etienne Allart
- Rééducation Neurologique Cérébrolésion, CHU de Lille, Hôpital Pierre Swynghedauw, Lille, France.,univ Lille, UMR-S-1172 lilncog, Lille, France
| | - Pierre Morel
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ Littoral Côte d'Opale, Univ Lille, Univ Artois, Calais, France
| | - Alexandre Kreisler
- Neurologie & Pathologie du Mouvement, CHU de Lille, Hôpital Roger Salengro, Lille, France
| | - Philippe Derambure
- univ Lille, UMR-S-1172 lilncog, Lille, France.,Neurophysiologie Clinique, CHU de Lille, Hôpital Roger Salengro, Lille, France
| | - Hervé Devanne
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ Littoral Côte d'Opale, Univ Lille, Univ Artois, Calais, France.,Neurophysiologie Clinique, CHU de Lille, Hôpital Roger Salengro, Lille, France
| |
Collapse
|
18
|
Mainka T, Azañón E, Zeuner KE, Knutzen A, Bäumer T, Neumann WJ, Borngräber F, Kühn AA, Longo MR, Ganos C. Intact Organization of Tactile Space Perception in Isolated Focal Dystonia. Mov Disord 2021; 36:1949-1955. [PMID: 33942381 DOI: 10.1002/mds.28607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/08/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Systematic perceptual distortions of tactile space have been documented in healthy adults. In isolated focal dystonia impaired spatial somatosensory processing is suggested to be a central pathophysiological finding, but the structure of tactile space for different body parts has not been previously explored. OBJECTIVES The objective of this study was to assess tactile space organization with a novel behavioral paradigm of tactile distance perception in patients with isolated focal dystonia and controls. METHODS Three groups of isolated focal dystonia patients (cervical dystonia, blepharospasm/Meige syndrome, focal hand dystonia) and controls estimated perceived distances between 2 touches across 8 orientations on the back of both hands and the forehead. RESULTS Stimulus size judgments differed significantly across orientations in all groups replicating distortions of tactile space known for healthy individuals. There were no differences between groups in the behavioral parameters we assessed on the hands and forehead. CONCLUSIONS Tactile space organization is comparable between patients with isolated focal dystonia and healthy controls in dystonic and unaffected body parts. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tina Mainka
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Elena Azañón
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Kirsten E Zeuner
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Arne Knutzen
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Tobias Bäumer
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Friederike Borngräber
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany.,NeuroCure Clinical Research Centre, Charité-University Medicine Berlin, Berlin, Germany
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Christos Ganos
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
19
|
Manzo N, Tocco P, Ginatempo F, Bertolasi L, Rocchi L. Brainstem Reflexes in Idiopathic Cervical Dystonia: Does Medullary Dysfunction Play a Role? Mov Disord Clin Pract 2021; 8:377-384. [PMID: 33816666 PMCID: PMC8015899 DOI: 10.1002/mdc3.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/08/2020] [Accepted: 01/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background Neurophysiological markers in dystonia have so far not been sistematically applied in clinical practice due to limited reproducibility of results and low correlations with clinical findings. Exceptions might be represented by the blink reflex (BR), including its recovery cycle (BRRC) and the trigemino‐cervical reflex (TCR) which, compared to other neurophysiological methods, have shown more consistent alterations in cervical dystonia (CD). However, a comparison between the two techniques, and their possible correlation with disease symptoms, have not been thoroughly investigated. Objectives To assess the role of BR, BRCC and TCR in the pathophysiology of idiopathic cervical dystonia. Methods Fourteen patients and 14 age‐matched healthy controls (HC) were recruited. Neurophysiological outcome measures included latency of R1 and R2 components of the BR, R2 amplitude, BRRC, latency and amplitude of P19/N31 complex of TCR. Clinical and demographic features of patients were also collected, including age at disease onset, disease duration, presence of tremor, sensory trick and pain. The Toronto Western Spasmodic Torticollis Rating Scale was used to characterize dystonia. Results Compared to HC, CD patients showed increased latency of the BR R2 and decreased suppression of the BRRC. They also showed increased latency of the P19 and decreased amplitude of P19/N31 complex of TCR. The latency of P19 component of TCR was positively correlated with disease duration. Conclusions We propose that the increased latency of R2 and P19 observed here might be reflective of brainstem dysfunction, mediated either by local interneuronal excitability changes or by subtle structural damage.
Collapse
Affiliation(s)
| | - Pierluigi Tocco
- Department of Neuroscience, Biomedicine and Movement Sciences University of Verona Verona Italy
| | | | - Laura Bertolasi
- Department of Neuroscience, Biomedicine and Movement Sciences University of Verona Verona Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movements Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
20
|
Latorre A, Rocchi L, Batla A, Berardelli A, Rothwell JC, Bhatia KP. The Signature of Primary Writing Tremor Is Dystonic. Mov Disord 2021; 36:1715-1720. [PMID: 33786886 DOI: 10.1002/mds.28579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND It has been debated for decades whether primary writing tremor is a form of dystonic tremor, a variant of essential tremor, or a separate entity. We wished to test the hypothesis that primary writing tremor and dystonia share a common pathophysiology. OBJECTIVES The objective of the present study was to investigate the pathophysiological hallmarks of dystonia in patients affected by primary writing tremor. METHODS Ten patients with idiopathic dystonic tremor syndrome, 7 with primary writing tremor, 10 with essential tremor, and 10 healthy subjects were recruited. They underwent eyeblink classic conditioning, blink recovery cycle, and transcranial magnetic stimulation assessment, including motor-evoked potentials and short- and long-interval intracortical inhibition at baseline. Transcranial magnetic stimulation measures were also recorded after paired-associative plasticity protocol. RESULTS Primary writing tremor and dystonic tremor syndrome had a similar pattern of electrophysiological abnormalities, consisting of reduced eyeblink classic conditioning learning, reduced blink recovery cycle inhibition, and a lack of effect of paired-associative plasticity on long-interval intracortical inhibition. The latter 2 differ from those obtained in essential tremor and healthy subjects. Although not significant, slightly reduced short-interval intracortical inhibition and a larger effect of paired-associative plasticity in primary writing tremor and dystonic tremor syndrome, compared with essential tremor and healthy subjects, was observed. CONCLUSIONS Our initial hypothesis of a common pathophysiology between dystonia and primary writing tremor has been confirmed. Primary writing tremor might be considered a form of dystonic tremor. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London, London, UK.,Department of Human Neurosciences, University of Rome "Sapienza,", Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London, London, UK.,Department of Medical Sciences and Public Health, University of Cagliari, 09124, Cagliari, Italy
| | - Amit Batla
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London, London, UK
| | - Alfredo Berardelli
- Department of Human Neurosciences, University of Rome "Sapienza,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London, London, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London, London, UK
| |
Collapse
|
21
|
Guerra A, Rocchi L, Grego A, Berardi F, Luisi C, Ferreri F. Contribution of TMS and TMS-EEG to the Understanding of Mechanisms Underlying Physiological Brain Aging. Brain Sci 2021; 11:405. [PMID: 33810206 PMCID: PMC8004753 DOI: 10.3390/brainsci11030405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the human brain, aging is characterized by progressive neuronal loss, leading to disruption of synapses and to a degree of failure in neurotransmission. However, there is increasing evidence to support the notion that the aged brain has a remarkable ability to reorganize itself, with the aim of preserving its physiological activity. It is important to develop objective markers able to characterize the biological processes underlying brain aging in the intact human, and to distinguish them from brain degeneration associated with many neurological diseases. Transcranial magnetic stimulation (TMS), coupled with electromyography or electroencephalography (EEG), is particularly suited to this aim, due to the functional nature of the information provided, and thanks to the ease with which it can be integrated with behavioral manipulation. In this review, we aimed to provide up to date information about the role of TMS and TMS-EEG in the investigation of brain aging. In particular, we focused on data about cortical excitability, connectivity and plasticity, obtained by using readouts such as motor evoked potentials and transcranial evoked potentials. Overall, findings in the literature support an important potential contribution of TMS to the understanding of the mechanisms underlying normal brain aging. Further studies are needed to expand the current body of information and to assess the applicability of TMS findings in the clinical setting.
Collapse
Affiliation(s)
| | - Lorenzo Rocchi
- Department of Clinical and Movements Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alberto Grego
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Francesca Berardi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Concetta Luisi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Florinda Ferreri
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
22
|
Rawji V, Kaczmarczyk I, Rocchi L, Fong PY, Rothwell JC, Sharma N. Preconditioning Stimulus Intensity Alters Paired-Pulse TMS Evoked Potentials. Brain Sci 2021; 11:326. [PMID: 33806701 PMCID: PMC7998341 DOI: 10.3390/brainsci11030326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Motor cortex (M1) paired-pulse TMS (ppTMS) probes excitatory and inhibitory intracortical dynamics by measurement of motor-evoked potentials (MEPs). However, MEPs reflect cortical and spinal excitabilities and therefore cannot isolate cortical function. Concurrent TMS-EEG has the ability to measure cortical function, while limiting peripheral confounds; TMS stimulates M1, whilst EEG acts as the readout: the TMS-evoked potential (TEP). Whilst varying preconditioning stimulus intensity influences intracortical inhibition measured by MEPs, the effects on TEPs is undefined. TMS was delivered to the left M1 using single-pulse and three, ppTMS paradigms, each using a different preconditioning stimulus: 70%, 80% or 90% of resting motor threshold. Corticospinal inhibition was present in all three ppTMS conditions. ppTMS TEP peaks were reduced predominantly under the ppTMS 70 protocol but less so for ppTMS 80 and not at all for ppTMS 90. There was a significant negative correlation between MEPs and N45 TEP peak for ppTMS 70 reaching statistical trends for ppTMS 80 and 90. Whilst ppTMS MEPs show inhibition across a range of preconditioning stimulus intensities, ppTMS TEPs do not. TEPs after M1 ppTMS vary as a function of preconditioning stimulus intensity: smaller preconditioning stimulus intensities result in better discriminability between conditioned and unconditioned TEPs. We recommend that preconditioning stimulus intensity should be minimized when using ppTMS to probe intracortical inhibition.
Collapse
Affiliation(s)
- Vishal Rawji
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| | - Isabella Kaczmarczyk
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Po-Yu Fong
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| | - Nikhil Sharma
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| |
Collapse
|
23
|
Ferrazzoli D, Ortelli P, Volpe D, Cucca A, Versace V, Nardone R, Saltuari L, Sebastianelli L. The Ties That Bind: Aberrant Plasticity and Networks Dysfunction in Movement Disorders-Implications for Rehabilitation. Brain Connect 2021; 11:278-296. [PMID: 33403893 DOI: 10.1089/brain.2020.0971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Movement disorders encompass various conditions affecting the nervous system. The pathological processes underlying movement disorders lead to aberrant synaptic plastic changes, which in turn alter the functioning of large-scale brain networks. Therefore, clinical phenomenology does not only entail motor symptoms but also cognitive and motivational disturbances. The result is the disruption of motor learning and motor behavior. Due to this complexity, the responsiveness to standard therapies could be disappointing. Specific forms of rehabilitation entailing goal-based practice, aerobic training, and the use of noninvasive brain stimulation techniques could "restore" neuroplasticity at motor-cognitive circuitries, leading to clinical gains. This is probably associated with modulations occurring at both molecular (synaptic) and circuitry levels (networks). Several gaps remain in our understanding of the relationships among plasticity and neural networks and how neurorehabilitation could promote clinical gains is still unclear. Purposes: In this review, we outline first the networks involved in motor learning and behavior and analyze which mechanisms link the pathological synaptic plastic changes with these networks' disruption in movement disorders. Therefore, we provide theoretical and practical bases to be applied for treatment in rehabilitation.
Collapse
Affiliation(s)
- Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Daniele Volpe
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, Vicenza, Italy
| | - Alberto Cucca
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, Vicenza, Italy.,Department of Neurology, The Marlene & Paolo Fresco Institute for Parkinson's & Movement Disorders, NYU School of Medicine, New York, New York, USA.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital (SABES-ASDAA), Merano-Meran, Italy.,Department of Neurology, Christian Doppler Medical Center, Paracelsus University Salzburg, Salzburg, Austria
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| |
Collapse
|
24
|
Transcranial Evoked Potentials Can Be Reliably Recorded with Active Electrodes. Brain Sci 2021; 11:brainsci11020145. [PMID: 33499330 PMCID: PMC7912161 DOI: 10.3390/brainsci11020145] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 01/11/2023] Open
Abstract
Electroencephalographic (EEG) signals evoked by transcranial magnetic stimulation (TMS) are usually recorded with passive electrodes (PE). Active electrode (AE) systems have recently become widely available; compared to PE, they allow for easier electrode preparation and a higher-quality signal, due to the preamplification at the electrode stage, which reduces electrical line noise. The performance between the AE and PE can differ, especially with fast EEG voltage changes, which can easily occur with TMS-EEG; however, a systematic comparison in the TMS-EEG setting has not been made. Therefore, we recorded TMS-evoked EEG potentials (TEPs) in a group of healthy subjects in two sessions, one using PE and the other using AE. We stimulated the left primary motor cortex and right medial prefrontal cortex and used two different approaches to remove early TMS artefacts, Independent Component Analysis and Signal Space Projection—Source Informed Recovery. We assessed statistical differences in amplitude and topography of TEPs, and their similarity, by means of the concordance correlation coefficient (CCC). We also tested the capability of each system to approximate the final TEP waveform with a reduced number of trials. The results showed that TEPs recorded with AE and PE do not differ in amplitude and topography, and only few electrodes showed a lower-than-expected CCC between the two methods of amplification. We conclude that AE are a viable solution for TMS-EEG recording.
Collapse
|
25
|
Latorre A, Cocco A, Bhatia KP, Erro R, Antelmi E, Conte A, Rothwell JC, Rocchi L. Defective Somatosensory Inhibition and Plasticity Are Not Required to Develop Dystonia. Mov Disord 2020; 36:1015-1021. [PMID: 33332649 DOI: 10.1002/mds.28427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/21/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dystonia may have different neuroanatomical substrates and pathophysiology. This is supported by studies on the motor system showing, for instance, that plasticity is abnormal in idiopathic dystonia, but not in dystonia secondary to basal ganglia lesions. OBJECTIVE The aim of this study was to test whether somatosensory inhibition and plasticity abnormalities reported in patients with idiopathic dystonia also occur in patients with dystonia caused by basal ganglia damage. METHODS Ten patients with acquired dystonia as a result of basal ganglia lesions and 12 healthy control subjects were recruited. They underwent electrophysiological testing at baseline and after a single 45-minute session of high-frequency repetitive somatosensory stimulation. Electrophysiological testing consisted of somatosensory temporal discrimination, somatosensory-evoked potentials (including measurement of early and late high-frequency oscillations and the spatial inhibition ratio of N20/25 and P14 components), the recovery cycle of paired-pulse somatosensory-evoked potentials, and primary motor cortex short-interval intracortical inhibition. RESULTS Unlike previous reports of patients with idiopathic dystonia, patients with acquired dystonia did not differ from healthy control subjects in any of the electrophysiological measures either before or after high-frequency repetitive somatosensory stimulation, except for short-interval intracortical inhibition, which was reduced at baseline in patients compared to control subjects. CONCLUSIONS The data show that reduced somatosensory inhibition and enhanced cortical plasticity are not required for the clinical expression of dystonia, and that the abnormalities reported in idiopathic dystonia are not necessarily linked to basal ganglia damage. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Antoniangela Cocco
- Department of Neurology, IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Neuroscience, Catholic University, Milan, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Elena Antelmi
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
26
|
Erro R, Antelmi E, Bhatia KP, Latorre A, Tinazzi M, Berardelli A, Rothwell JC, Rocchi L. Reversal of Temporal Discrimination in Cervical Dystonia after Low-Frequency Sensory Stimulation. Mov Disord 2020; 36:761-766. [PMID: 33159823 DOI: 10.1002/mds.28369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Somatosensory temporal discrimination is abnormal in dystonia and reflects reduced somatosensory inhibition. In healthy individuals, both the latter are enhanced by high-frequency repetitive somatosensory stimulation, whereas opposite effects are observed in patients with cervical dystonia. OBJECTIVES We tested whether low-frequency repetitive sensory stimulation, which in healthy individuals worsens discrimination, might have the opposite effect in patients with cervical dystonia at the physiological level and, in turn, improve their perceptual performance. METHODS Somatosensory temporal discrimination and several electrophysiological measures of sensorimotor inhibition were collected before and after 45 minutes of low-frequency repetitive sensory stimulation. RESULTS As predicted, and opposite to what happened in controls, low-frequency repetitive sensory stimulation in patients enhanced sensorimotor inhibition and normalized somatosensory temporal discrimination. CONCLUSIONS Patients with cervical dystonia have an abnormal response to repetitive sensory stimulation, which we hypothesize is attributed to abnormally sensitive homeostatic mechanisms of inhibitory circuitry in both sensory and motor systems. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (SA), Italy
| | - Elena Antelmi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
- Department of Human Neurosciences, University of Rome "Sapienza", Rome, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, University of Rome "Sapienza", Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
- Department of Human Neurosciences, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
27
|
Rawji V, Latorre A, Sharma N, Rothwell JC, Rocchi L. On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases. Front Neurol 2020; 11:584664. [PMID: 33224098 PMCID: PMC7669623 DOI: 10.3389/fneur.2020.584664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are a collection of disorders that result in the progressive degeneration and death of neurons. They are clinically heterogenous and can present as deficits in movement, cognition, executive function, memory, visuospatial awareness and language. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation tool that allows for the assessment of cortical function in vivo. We review how TMS has been used for the investigation of three neurodegenerative diseases that differ in their neuroanatomical axes: (1) Motor cortex-corticospinal tract (motor neuron diseases), (2) Non-motor cortical areas (dementias), and (3) Subcortical structures (parkinsonisms). We also make four recommendations that we hope will benefit the use of TMS in neurodegenerative diseases. Firstly, TMS has traditionally been limited by the lack of an objective output and so has been confined to stimulation of the motor cortex; this limitation can be overcome by the use of concurrent neuroimaging methods such as EEG. Given that neurodegenerative diseases progress over time, TMS measures should aim to track longitudinal changes, especially when the aim of the study is to look at disease progression and symptomatology. The lack of gold-standard diagnostic confirmation undermines the validity of findings in clinical populations. Consequently, diagnostic certainty should be maximized through a variety of methods including multiple, independent clinical assessments, imaging and fluids biomarkers, and post-mortem pathological confirmation where possible. There is great interest in understanding the mechanisms by which symptoms arise in neurodegenerative disorders. However, TMS assessments in patients are usually carried out during resting conditions, when the brain network engaged during these symptoms is not expressed. Rather, a context-appropriate form of TMS would be more suitable in probing the physiology driving clinical symptoms. In all, we hope that the recommendations made here will help to further understand the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
28
|
Ishibashi K, Ishii D, Yamamoto S, Noguchi A, Tanamachi K, Kohno Y. Opposite modulations of corticospinal excitability by intermittent and continuous peripheral electrical stimulation in healthy subjects. Neurosci Lett 2020; 740:135467. [PMID: 33152454 DOI: 10.1016/j.neulet.2020.135467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
Peripheral electrical stimulation (PES) modulates the excitability of the corticospinal tract (CST). This modulation of CST excitability depends on the PES intensity, defined by the amplitude and the width of each pulse, the total pulse number, the stimulation frequency, and the intervention duration. Another key PES parameter is the stimulation pattern; little is known about how PES pattern affects CST excitability, as previous studies did not control other PES parameters. Here, we investigated the effect of the net difference in PES pattern on CST excitability. We use three controlled PESs, intermittent PES (30 Hz) (stimulation trains at 30 Hz with pauses), continuous PES (12 Hz) (constant stimulation at 12 Hz without pauses), and continuous PES (30 Hz) with the same stimulation frequency as the intermittent PES (30 Hz), to compare the effect of the stimulation frequency. The motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs) of healthy subjects were recorded before and after these three types of PESs in separate sessions. We found that intermittent PES (30 Hz) increased MEP amplitudes, whereas continuous PES (12 and 30 Hz) decreased amplitudes. A significant change in subcortical SEP component occurred during continuous PES (12 and 30 Hz), but not intermittent PES (30 Hz), whereas cortical SEP components showed similar behavior in three types of PESs. We conclude that (1) opposing modulations of CST excitability were induced by the differences in the PES pattern, and (2) these modulations appear to be mediated through different processes in the sensorimotor system. Our findings suggest the possibility that it may be preferable to select the PES pattern in therapeutic interventions based on the putative desired effect and the neural structure being targeted.
Collapse
Affiliation(s)
- Kiyoshige Ishibashi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan; Graduate School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan.
| | - Daisuke Ishii
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan; Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuouku, Chiba, 260-8670, Japan
| | - Satoshi Yamamoto
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan
| | - Akira Noguchi
- Sakai Neurosurgical Clinic, 55 Tomitsuka-cho, Naka-Ku, Hamamatsu, 432-8002, Japan
| | - Kenya Tanamachi
- Graduate School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan
| |
Collapse
|
29
|
McCambridge AB, Bradnam LV. Cortical neurophysiology of primary isolated dystonia and non-dystonic adults: A meta-analysis. Eur J Neurosci 2020; 53:1300-1323. [PMID: 32991762 DOI: 10.1111/ejn.14987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/30/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive method to assess neurophysiology of the primary motor cortex in humans. Dystonia is a poorly understood neurological movement disorder, often presenting in an idiopathic, isolated form across different parts of the body. The neurophysiological profile of isolated dystonia compared to healthy adults remains unclear. We conducted a systematic review with meta-analysis of neurophysiologic TMS measures in people with isolated dystonia to provide a synthesized understanding of cortical neurophysiology associated with isolated dystonia. We performed a systematic database search and data were extracted independently by the two authors. Separate meta-analyses were performed for TMS measures of: motor threshold, corticomotor excitability, short interval intracortical inhibition, cortical silent period, intracortical facilitation and afferent-induced inhibition. Standardized mean differences were calculated using a random effects model to determine overall effect sizes and confidence intervals. Heterogeneity was explored using dystonia type subgroup analysis. The search resulted in 78 studies meeting inclusion criteria, of these 57 studies reported data in participants with focal hand dystonia, cervical dystonia, blepharospasm or spasmodic dysphonia, and were included in at least one meta-analysis. The cortical silent period, short-interval intracortical inhibition and afferent-induced inhibition was found to be reduced in isolated dystonia compared to controls. Reduced GABAergic-mediated inhibition in the primary motor cortex in idiopathic isolated dystonia's suggest interventions targeted to aberrant cortical disinhibition could provide a novel treatment. Future meta-analyses require neurophysiology studies to use homogeneous cohorts of isolated dystonia participants, publish raw data values, and record electromyographic responses from dystonic musculature where possible.
Collapse
Affiliation(s)
- Alana B McCambridge
- Graduate School of Health, Discipline of Physiotherapy, University of Technology Sydney, Sydney, NSW, Australia
| | - Lynley V Bradnam
- Department of Exercise Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Mantel T, Altenmüller E, Li Y, Lee A, Meindl T, Jochim A, Zimmer C, Haslinger B. Structure-function abnormalities in cortical sensory projections in embouchure dystonia. NEUROIMAGE-CLINICAL 2020; 28:102410. [PMID: 32932052 PMCID: PMC7495104 DOI: 10.1016/j.nicl.2020.102410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/29/2020] [Accepted: 08/30/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Embouchure dystonia (ED) is a task-specific focal dystonia in professional brass players leading to abnormal orofacial muscle posturing/spasms during performance. Previous studies have outlined abnormal cortical sensorimotor function during sensory/motor tasks and in the resting state as well as abnormal cortical sensorimotor structure. Yet, potentially underlying white-matter tract abnormalities in this network disease are unknown. OBJECTIVE To delineate structure-function abnormalities within cerebral sensorimotor trajectories in ED. METHOD Probabilistic tractography and seed-based functional connectivity analysis were performed in 16/16 ED patients/healthy brass players within a simple literature-informed network model of cortical sensorimotor processing encompassing supplementary motor, superior parietal, primary somatosensory and motor cortex as well as the putamen. Post-hoc grey matter volumetry was performed within cortices of abnormal trajectories. RESULTS ED patients showed average axial diffusivity reduction within projections between the primary somatosensory cortex and putamen, with converse increases within projections between supplementary motor and superior parietal cortex in both hemispheres. Increase in the mode of anisotropy in patients was accompanying the latter left-hemispheric projection, as well as in the supplementary motor area's projection to the left primary motor cortex. Patient's left primary somatosensory functional connectivity with the putamen was abnormally reduced and significantly associated with the axial diffusivity reduction. Left primary somatosensory grey matter volume was increased in patients. CONCLUSION Correlates of abnormal tract integrity within primary somatosensory cortico-subcortical projections and higher-order sensorimotor projections support the key role of dysfunctional sensory information propagation in ED pathophysiology. Differential directionality of cortico-cortical and cortico-subcortical abnormalities hints at non-uniform sensory system changes.
Collapse
Affiliation(s)
- Tobias Mantel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany
| | - Eckart Altenmüller
- Hochschule für Musik, Theater und Medien Hannover, Emmichplatz 1, Hanover, Germany
| | - Yong Li
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany
| | - André Lee
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany; Hochschule für Musik, Theater und Medien Hannover, Emmichplatz 1, Hanover, Germany
| | - Tobias Meindl
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany
| | - Angela Jochim
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, Munich, Germany.
| |
Collapse
|
31
|
Paparella G, Rocchi L, Bologna M, Berardelli A, Rothwell J. Differential effects of motor skill acquisition on the primary motor and sensory cortices in healthy humans. J Physiol 2020; 598:4031-4045. [DOI: 10.1113/jp279966] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom
| | - Matteo Bologna
- IRCCS Neuromed Via Atinense 18 Pozzilli IS 86077 Italy
- Department of Human Neurosciences Sapienza University of Rome Italy
| | - Alfredo Berardelli
- IRCCS Neuromed Via Atinense 18 Pozzilli IS 86077 Italy
- Department of Human Neurosciences Sapienza University of Rome Italy
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
32
|
Latorre A, Rocchi L, Bhatia KP. Delineating the electrophysiological signature of dystonia. Exp Brain Res 2020; 238:1685-1692. [PMID: 32712678 DOI: 10.1007/s00221-020-05863-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Over the last 30 years, the concept of dystonia has dramatically changed, from being considered a motor neurosis, to a pure basal ganglia disorder, to finally reach the definition of a network disorder involving the basal ganglia, cerebellum, thalamus and sensorimotor cortex. This progress has been possible due to the collaboration between clinicians and scientists, and the development of increasingly sophisticated electrophysiological techniques able to non-invasively investigate pathophysiological mechanisms in humans. This review is a chronological excursus of the electrophysiological studies that laid the foundation for the understanding of the pathophysiology of dystonia and delineated its electrophysiological signatures. Evidence for neurophysiological abnormalities is grouped according to the neural system involved, and a unifying theory, bringing together all the hypothesis and evidence provided to date, is proposed at the end.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
33
|
Neurophysiological insights in dystonia and its response to deep brain stimulation treatment. Exp Brain Res 2020; 238:1645-1657. [PMID: 32638036 PMCID: PMC7413898 DOI: 10.1007/s00221-020-05833-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023]
Abstract
Dystonia is a movement disorder characterised by involuntary muscle contractions resulting in abnormal movements, postures and tremor. The pathophysiology of dystonia is not fully understood but loss of neuronal inhibition, excessive sensorimotor plasticity and defective sensory processing are thought to contribute to network dysfunction underlying the disorder. Neurophysiology studies have been important in furthering our understanding of dystonia and have provided insights into the mechanism of effective dystonia treatment with pallidal deep brain stimulation. In this article we review neurophysiology studies in dystonia and its treatment with Deep Brain Stimulation, including Transcranial magnetic stimulation studies, studies of reflexes and sensory processing, and oscillatory activity recordings including local field potentials, micro-recordings, EEG and evoked potentials.
Collapse
|
34
|
Mantel T, Dresel C, Welte M, Meindl T, Jochim A, Zimmer C, Haslinger B. Altered sensory system activity and connectivity patterns in adductor spasmodic dysphonia. Sci Rep 2020; 10:10179. [PMID: 32576918 PMCID: PMC7311401 DOI: 10.1038/s41598-020-67295-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Adductor-type spasmodic dysphonia (ADSD) manifests in effortful speech temporarily relievable by botulinum neurotoxin type A (BoNT-A). Previously, abnormal structure, phonation-related and resting-state sensorimotor abnormalities as well as peripheral tactile thresholds in ADSD were described. This study aimed at assessing abnormal central tactile processing patterns, their spatial relation with dysfunctional resting-state connectivity, and their BoNT-A responsiveness. Functional MRI in 14/12 ADSD patients before/under BoNT-A effect and 15 controls was performed (i) during automatized tactile stimulus application to face/hand, and (ii) at rest. Between-group differential stimulation-induced activation and resting-state connectivity (regional homogeneity, connectivity strength within selected sensory(motor) networks), as well as within-patient BoNT-A effects on these differences were investigated. Contralateral-to-stimulation overactivity in ADSD before BoNT-A involved primary and secondary somatosensory representations, along with abnormalities in higher-order parietal, insular, temporal or premotor cortices. Dysphonic impairment in ADSD positively associated with left-hemispheric temporal activity. Connectivity was increased within right premotor (sensorimotor network), left primary auditory cortex (auditory network), and regionally reduced at the temporoparietal junction. Activation/connectivity before/after BoNT-A within-patients did not significantly differ. Abnormal ADSD central somatosensory processing supports its significance as common pathophysiologic focal dystonia trait. Abnormal temporal cortex tactile processing and resting-state connectivity might hint at abnormal cross-modal sensory interactions.
Collapse
Affiliation(s)
- Tobias Mantel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Christian Dresel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany.,Department of Neurology, Johannes Gutenberg University, Langenbeckstrasse, 1, Mainz, Germany
| | - Michael Welte
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Tobias Meindl
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Angela Jochim
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany
| | - Bernhard Haslinger
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse, 22, Munich, Germany.
| |
Collapse
|
35
|
Watanabe H, Kojima S, Otsuru N, Onishi H. The Repetitive Mechanical Tactile Stimulus Intervention Effects Depend on Input Methods. Front Neurosci 2020; 14:393. [PMID: 32410954 PMCID: PMC7198832 DOI: 10.3389/fnins.2020.00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiraku Watanabe
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- *Correspondence: Hiraku Watanabe,
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
36
|
|
37
|
Odorfer TM, Wind T, Zeller D. Temporal Discrimination Thresholds and Proprioceptive Performance: Impact of Age and Nerve Conduction. Front Neurosci 2019; 13:1241. [PMID: 31803012 PMCID: PMC6877661 DOI: 10.3389/fnins.2019.01241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/04/2019] [Indexed: 11/25/2022] Open
Abstract
Background Increasing attention is payed to the contribution of somatosensory processing in motor control. In particular, temporal somatosensory discrimination has been found to be altered differentially in common movement disorders. To date, there have only been speculations as to how impaired temporal discrimination and clinical motor signs may relate to each other. Prior to disentangling this relationship, potential confounders of temporal discrimination, in particular age and peripheral nerve conduction, should be assessed, and a quantifiable measure of proprioceptive performance should be established. Objective To assess the influence of age and polyneuropathy (PNP) on somatosensory temporal discrimination threshold (STDT), temporal discrimination movement threshold (TDMT), and behavioral measures of proprioception of upper and lower limbs. Methods STDT and TDMT were assessed in 79 subjects (54 healthy, 25 with PNP; age 30–79 years). STDT was tested with surface electrodes over the thenar or dorsal foot region. TDMT was probed with needle electrodes in flexor carpi radialis (FCR) and tibialis anterior (TA) muscle. Goniometer-based devices were used to assess limb proprioception during (i) active pointing to LED markers, (ii) active movements in response to variable visual cues, and (iii) estimation of limb position following passive movements. Pointing (or estimation) error was taken as a measure of proprioceptive performance. Results In healthy subjects, higher age was associated with higher STDT and TDMT at upper and lower extremities, while age did not correlate with proprioceptive performance. Patients with PNP showed higher STDT and TDMT values and decreased proprioceptive performance in active pointing tasks compared to matched healthy subjects. As an additional finding, there was a significant correlation between performance in active pointing tasks and temporal discrimination thresholds. Conclusion Given their notable impact on measures of temporal discrimination, age and peripheral nerve conduction need to be accounted for if STDT and TDMT are applied in patients with movement disorders. As a side observation, the correlation between measures of proprioception and temporal discrimination may prompt further studies on the presumptive link between these two domains.
Collapse
Affiliation(s)
| | - Teresa Wind
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
38
|
Gövert F, Becktepe J, Balint B, Rocchi L, Brugger F, Garrido A, Walter T, Hannah R, Rothwell J, Elble R, Deuschl G, Bhatia K. Temporal discrimination is altered in patients with isolated asymmetric and jerky upper limb tremor. Mov Disord 2019; 35:306-315. [PMID: 31724777 DOI: 10.1002/mds.27880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/01/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Unilateral or very asymmetric upper limb tremors with a jerky appearance are poorly investigated. Their clinical classification is an unsolved problem because their classification as essential tremor versus dystonic tremor is uncertain. To avoid misclassification as essential tremor or premature classification as dystonic tremor, the term indeterminate tremor was suggested. OBJECTIVES The aim of this study was to characterize this tremor subgroup electrophysiologically and evaluate whether diagnostically meaningful electrophysiological differences exist compared to patients with essential tremor and dystonic tremor. METHODS We enrolled 29 healthy subjects and 64 patients with tremor: 26 with dystonic tremor, 23 with essential tremor, and 15 patients with upper limb tremor resembling essential tremor but was unusually asymmetric and jerky (indeterminate tremor). We investigated the somatosensory temporal discrimination threshold, the short-interval intracortical inhibition, and the cortical plasticity by paired associative stimulation. RESULTS Somatosensory temporal discrimination threshold was significantly increased in patients with dystonic tremor and indeterminate tremor, but it was normal in the essential tremor patients and healthy controls. Significant differences in short-interval intracortical inhibition and paired associative stimulation were not found among the three patient groups and controls. CONCLUSION These results indicate that indeterminate tremor, as defined in this study, shares electrophysiological similarities with dystonic tremor rather than essential tremor. Therefore, we propose that indeterminate tremor should be considered as a separate clinical entity from essential tremor and that it might be dystonic in nature. Somatosensory temporal discrimination appears to be a useful tool in tremor classification. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Felix Gövert
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany.,Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jos Becktepe
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Florian Brugger
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Alicia Garrido
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Movement Disorders Unit, Neurology Service, Hospital Clínic, Institut d'investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Tim Walter
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Ricci Hannah
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rodger Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Günther Deuschl
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Kailash Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
39
|
Rocchi L, Latorre A, Ibanez Pereda J, Spampinato D, Brown KE, Rothwell J, Bhatia K. A case of congenital hypoplasia of the left cerebellar hemisphere and ipsilateral cortical myoclonus. Mov Disord 2019; 34:1745-1747. [PMID: 31609490 DOI: 10.1002/mds.27881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Human Neuroscience, University of Rome "Sapienza," Rome, Italy
| | - Jaime Ibanez Pereda
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Danny Spampinato
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katlyn E Brown
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash Bhatia
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
40
|
Conte A, Rocchi L, Latorre A, Belvisi D, Rothwell JC, Berardelli A. Ten‐Year Reflections on the Neurophysiological Abnormalities of Focal Dystonias in Humans. Mov Disord 2019; 34:1616-1628. [DOI: 10.1002/mds.27859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- IRCCS Neuromed Pozzilli (IS) Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | - Anna Latorre
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | | | - John C. Rothwell
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | - Alfredo Berardelli
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- IRCCS Neuromed Pozzilli (IS) Italy
| |
Collapse
|
41
|
Kızıltan ME, Yeni SN, Aliş C, Gündüz A. Recovery function of somatosensory evoked potentials in juvenile myoclonic epilepsy*. Somatosens Mot Res 2019; 36:195-201. [DOI: 10.1080/08990220.2019.1644999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Meral E. Kızıltan
- Department of Neurology, Cerrahpasa Medical Faculty, I.U.C., Istanbul, Turkey
| | - S. Naz Yeni
- Department of Neurology, Cerrahpasa Medical Faculty, I.U.C., Istanbul, Turkey
| | - Ceren Aliş
- Department of Neurology, Cerrahpasa Medical Faculty, I.U.C., Istanbul, Turkey
| | - Ayşegül Gündüz
- Department of Neurology, Cerrahpasa Medical Faculty, I.U.C., Istanbul, Turkey
| |
Collapse
|
42
|
The neurobiological basis for novel experimental therapeutics in dystonia. Neurobiol Dis 2019; 130:104526. [PMID: 31279827 DOI: 10.1016/j.nbd.2019.104526] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
Dystonia is a movement disorder characterized by involuntary muscle contractions, twisting movements, and abnormal postures that may affect one or multiple body regions. Dystonia is the third most common movement disorder after Parkinson's disease and essential tremor. Despite its relative frequency, small molecule therapeutics for dystonia are limited. Development of new therapeutics is further hampered by the heterogeneity of both clinical symptoms and etiologies in dystonia. Recent advances in both animal and cell-based models have helped clarify divergent etiologies in dystonia and have facilitated the identification of new therapeutic targets. Advances in medicinal chemistry have also made available novel compounds for testing in biochemical, physiological, and behavioral models of dystonia. Here, we briefly review motor circuit anatomy and the anatomical and functional abnormalities in dystonia. We then discuss recently identified therapeutic targets in dystonia based on recent preclinical animal studies and clinical trials investigating novel therapeutics.
Collapse
|