1
|
Zhong S, Lian Y, Zhou B, Ren R, Duan L, Pan Y, Gong Y, Wu X, Cheng D, Zhang P, Lu B, Wang X, Ding J. Microglia contribute to polyG-dependent neurodegeneration in neuronal intranuclear inclusion disease. Acta Neuropathol 2024; 148:21. [PMID: 39150562 DOI: 10.1007/s00401-024-02776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder caused by the expansion of GGC trinucleotide repeats in NOTCH2NLC gene. Despite identifying uN2CpolyG, a toxic polyglycine (polyG) protein translated by expanded GGC repeats, the exact pathogenic mechanisms of NIID remain unclear. In this study, we investigated the role of polyG by expressing various forms of NOTCH2NLC in mice: the wild-type, the expanded form with 100 GGC repeats (either translating or not translating into uN2CpolyG), and the mutated form that encodes a pure polyG without GGC-repeat RNA and the C-terminal stretch (uN2CpolyG-dCT). Both uN2CpolyG and uN2CpolyG-dCT induced the formation of inclusions composed by filamentous materials and resulted in neurodegenerative phenotypes in mice, including impaired motor and cognitive performance, shortened lifespan, and pathologic lesions such as white-matter lesions, microgliosis, and astrogliosis. In contrast, expressing GGC-repeat RNA alone was non-pathogenic. Through bulk and single-nuclei RNA sequencing, we identified common molecular signatures linked to the expression of uN2CpolyG and uN2CpolyG-dCT, particularly the upregulation of inflammation and microglia markers, and the downregulation of immediate early genes and splicing factors. Importantly, microglia-mediated inflammation was visualized in NIID patients using positron emission tomography, correlating with levels of white-matter atrophy. Furthermore, microglia ablation ameliorated neurodegenerative phenotypes and transcriptional alterations in uN2CpolyG-expressing mice but did not affect polyG inclusions. Together, these results demonstrate that polyG is crucial for the pathogenesis of NIID and highlight the significant role of microglia in polyG-induced neurodegeneration.
Collapse
Affiliation(s)
- Shaoping Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yangye Lian
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Binbin Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ruiqing Ren
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Lewei Duan
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyin Pan
- Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchen Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Puming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Boxun Lu
- Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| |
Collapse
|
2
|
Dias C, Mo A, Cai C, Sun L, Cabral K, Brownstein CA, Rockowitz S, Walsh CA. Cell-type-specific effects of autism-associated 15q duplication syndrome in the human brain. Am J Hum Genet 2024; 111:1544-1558. [PMID: 39079538 PMCID: PMC11339625 DOI: 10.1016/j.ajhg.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/11/2024] Open
Abstract
Recurrent copy-number variation represents one of the most well-established genetic drivers in neurodevelopmental disorders, including autism spectrum disorder. Duplication of 15q11-q13 (dup15q) is a well-described neurodevelopmental syndrome that increases the risk of autism more than 40-fold. However, the effects of this duplication on gene expression and chromatin accessibility in specific cell types in the human brain remain unknown. To identify the cell-type-specific transcriptional and epigenetic effects of dup15q in the human frontal cortex, we conducted single-nucleus RNA sequencing and multi-omic sequencing on dup15q-affected individuals (n = 6) as well as individuals with non-dup15q autism (n = 7) and neurotypical control individuals (n = 7). Cell-type-specific differential expression analysis identified significantly regulated genes, critical biological pathways, and differentially accessible genomic regions. Although there was overall increased gene expression across the duplicated genomic region, cellular identity represented an important factor mediating gene-expression changes. As compared to other cell types, neuronal subtypes showed greater upregulation of gene expression across a critical region within the duplication. Genes that fell within the duplicated region and had high baseline expression in control individuals showed only modest changes in dup15q, regardless of cell type. Of note, dup15q and autism had largely distinct signatures of chromatin accessibility but shared the majority of transcriptional regulatory motifs, suggesting convergent biological pathways. However, the transcriptional binding-factor motifs implicated in each condition implicated distinct biological mechanisms: neuronal JUN and FOS networks in autism vs. an inflammatory transcriptional network in dup15q microglia. This work provides a cell-type-specific analysis of how dup15q changes gene expression and chromatin accessibility in the human brain, and it finds evidence of marked cell-type-specific effects of this genetic driver. These findings have implications for guiding therapeutic development in dup15q syndrome, as well as understanding the functional effects of copy-number variants more broadly in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Caroline Dias
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Alisa Mo
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chunhui Cai
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kristen Cabral
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Shira Rockowitz
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
3
|
D'Antoni S, Spatuzza M, Bonaccorso CM, Catania MV. Role of fragile X messenger ribonucleoprotein 1 in the pathophysiology of brain disorders: a glia perspective. Neurosci Biobehav Rev 2024; 162:105731. [PMID: 38763180 DOI: 10.1016/j.neubiorev.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Fragile X messenger ribonucleoprotein 1 (FMRP) is a widely expressed RNA binding protein involved in several steps of mRNA metabolism. Mutations in the FMR1 gene encoding FMRP are responsible for fragile X syndrome (FXS), a leading genetic cause of intellectual disability and autism spectrum disorder, and fragile X-associated tremor-ataxia syndrome (FXTAS), a neurodegenerative disorder in aging men. Although FMRP is mainly expressed in neurons, it is also present in glial cells and its deficiency or altered expression can affect functions of glial cells with implications for the pathophysiology of brain disorders. The present review focuses on recent advances on the role of glial subtypes, astrocytes, oligodendrocytes and microglia, in the pathophysiology of FXS and FXTAS, and describes how the absence or reduced expression of FMRP in these cells can impact on glial and neuronal functions. We will also briefly address the role of FMRP in radial glial cells and its effects on neural development, and gliomas and will speculate on the role of glial FMRP in other brain disorders.
Collapse
Affiliation(s)
- S D'Antoni
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy
| | - M Spatuzza
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy
| | - C M Bonaccorso
- Oasi Research Institute - IRCCS, via Conte Ruggero 73, Troina 94018, Italy
| | - M V Catania
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, Catania 95126, Italy.
| |
Collapse
|
4
|
Dias C, Mo A, Cai C, Sun L, Cabral K, Brownstein CA, Rockowitz S, Walsh CA. Cell-type-specific effects of autism-associated chromosome 15q11.2-13.1 duplications in human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595175. [PMID: 38826276 PMCID: PMC11142199 DOI: 10.1101/2024.05.22.595175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Recurrent copy number variation represents one of the most well-established genetic drivers in neurodevelopmental disorders, including autism spectrum disorder (ASD). Duplication of 15q11.2-13.1 (dup15q) is a well-described neurodevelopmental syndrome that increases the risk of ASD by over 40-fold. However, the effects of this duplication on gene expression and chromatin accessibility in specific cell types in the human brain remain unknown. To identify the cell-type-specific transcriptional and epigenetic effects of dup15q in the human frontal cortex we conducted single-nucleus RNA-sequencing and multi-omic sequencing on dup15q cases (n=6) as well as non-dup15q ASD (n=7) and neurotypical controls (n=7). Cell-type-specific differential expression analysis identified significantly regulated genes, critical biological pathways, and differentially accessible genomic regions. Although there was overall increased gene expression across the duplicated genomic region, cellular identity represented an important factor mediating gene expression changes. Neuronal subtypes, showed greater upregulation of gene expression across a critical region within the duplication as compared to other cell types. Genes within the duplicated region that had high baseline expression in control individuals showed only modest changes in dup15q, regardless of cell type. Of note, dup15q and ASD had largely distinct signatures of chromatin accessibility, but shared the majority of transcriptional regulatory motifs, suggesting convergent biological pathways. However, the transcriptional binding factor motifs implicated in each condition implicated distinct biological mechanisms; neuronal JUN/FOS networks in ASD vs. an inflammatory transcriptional network in dup15q microglia. This work provides a cell-type-specific analysis of how dup15q changes gene expression and chromatin accessibility in the human brain and finds evidence of marked cell-type-specific effects of this genetic driver. These findings have implications for guiding therapeutic development in dup15q syndrome, as well as understanding the functional effects CNVs more broadly in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Caroline Dias
- Current Address: Department of Pediatrics, Section of Developmental Pediatrics, Section of Genetics and Metabolism, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA 02115
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Alisa Mo
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Chunhui Cai
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115
| | - Kristen Cabral
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Shira Rockowitz
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115
| |
Collapse
|
5
|
Dias CM, Issac B, Sun L, Lukowicz A, Talukdar M, Akula SK, Miller MB, Walsh K, Rockowitz S, Walsh CA. Glial dysregulation in the human brain in fragile X-associated tremor/ataxia syndrome. Proc Natl Acad Sci U S A 2023; 120:e2300052120. [PMID: 37252957 PMCID: PMC10265985 DOI: 10.1073/pnas.2300052120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023] Open
Abstract
Short trinucleotide expansions at the FMR1 locus are associated with the late-onset condition fragile X-associated tremor/ataxia syndrome (FXTAS), which shows very different clinical and pathological features from fragile X syndrome (associated with longer expansions), with no clear molecular explanation for these marked differences. One prevailing theory posits that the shorter, premutation expansion uniquely causes extreme neurotoxic increases in FMR1 mRNA (i.e., four to eightfold increases), but evidence to support this hypothesis is largely derived from analysis of peripheral blood. We applied single-nucleus RNA sequencing to postmortem frontal cortex and cerebellum from 7 individuals with premutation and matched controls (n = 6) to assess cell type-specific molecular neuropathology. We found only modest upregulation (~1.3-fold) of FMR1 in some glial populations associated with premutation expansions. In premutation cases, we also identified decreased astrocyte proportions in the cortex. Differential expression and gene ontology analysis demonstrated altered neuroregulatory roles of glia. Using network analyses, we identified cell type-specific and region-specific patterns of FMR1 protein target gene dysregulation unique to premutation cases, with notable network dysregulation in the cortical oligodendrocyte lineage. We used pseudotime trajectory analysis to determine how oligodendrocyte development was altered and identified differences in early gene expression in oligodendrocyte trajectories in premutation cases specifically, implicating early cortical glial developmental perturbations. These findings challenge dogma regarding extremely elevated FMR1 increases in FXTAS and implicate glial dysregulation as a critical facet of premutation pathophysiology, representing potential unique therapeutic targets directly derived from the human condition.
Collapse
Affiliation(s)
- Caroline M. Dias
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA02115
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- Department of Pediatrics, Section of Developmental Pediatrics, Section of Genetics and Metabolism, and Denver Fragile X Clinic and Research Center, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Biju Issac
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
| | - Abigail Lukowicz
- Department of Pediatrics, Section of Developmental Pediatrics, Section of Genetics and Metabolism, and Denver Fragile X Clinic and Research Center, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Maya Talukdar
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Bioinformatics & Integrative Genomics, Harvard Medical School, Boston, MA02115
| | - Shyam K. Akula
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Program in Neuroscience, Harvard Medical School, Boston, MA02115
| | - Michael B. Miller
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
| | - Katherine Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
| | - Shira Rockowitz
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
- HHMI, Boston Children’s Hospital, Boston, MA02115
- Department of Neurology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
6
|
Expression of FMRpolyG in Peripheral Blood Mononuclear Cells of Women with Fragile X Mental Retardation 1 Gene Premutation. Genes (Basel) 2022; 13:genes13030451. [PMID: 35328005 PMCID: PMC8951797 DOI: 10.3390/genes13030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Fragile X-associated primary ovarian insufficiency (FXPOI) is characterized by oligo/amenorrhea and hypergonadotropic hypogonadism and is caused by the expansion of the CGG repeat in the 5′UTR of Fragile X Mental Retardation 1 (FMR1). Approximately 20% of women carrying an FMR1 premutation (PM) allele (55–200 CGG repeat) develop FXPOI. Repeat Associated Non-AUG (RAN)-translation dependent on the variable CGG-repeat length is thought to cause FXPOI, due to the production of a polyglycine-containing FMR1 protein, FMRpolyG. Peripheral blood monocyte cells (PBMCs) and granulosa cells (GCs) were collected to detect FMRpolyG and its cell type-specific expression in FMR1 PM carriers by immunofluorescence staining (IF), Western blotting (WB), and flow cytometric analysis (FACS). For the first time, FMRpolyG aggregates were detected as ubiquitin-positive inclusions in PBMCs from PM carriers, whereas only a weak signal without inclusions was detected in the controls. The expression pattern of FMRpolyG in GCs was comparable to that in the lymphocytes. We detected FMRpolyG as a 15- to 25-kDa protein in the PBMCs from two FMR1 PM carriers, with 124 and 81 CGG repeats. Flow cytometric analysis revealed that FMRpolyG was significantly higher in the T cells from PM carriers than in those from non-PM carriers. The detection of FMRpolyG aggregates in the peripheral blood and granulosa cells of PM carriers suggests that it may have a toxic potential and an immunological role in ovarian damage in the development of FXPOI.
Collapse
|
7
|
Sanchez K, Darling JS, Kakkar R, Wu SL, Zentay A, Lowry CA, Fonken LK. Mycobacterium vaccae immunization in rats ameliorates features of age-associated microglia activation in the amygdala and hippocampus. Sci Rep 2022; 12:2165. [PMID: 35140249 PMCID: PMC8828872 DOI: 10.1038/s41598-022-05275-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Aging and reduced exposure to environmental microbes can both potentiate neuroinflammatory responses. Prior studies indicate that immunization with the immunoregulatory and anti-inflammatory bacterium, Mycobacterium vaccae (M. vaccae), in aged rats limits neuroimmune activation and cognitive impairments. However, the mechanisms by which M. vaccae immunization ameliorates age-associated neuroinflammatory “priming” and whether microglia are a primary target remain unclear. Here, we investigated whether M. vaccae immunization protects against microglia morphological changes in response to aging. Adult (3 mos) and aged (24 mos) Fisher 344 × Brown Norway rats were immunized with either M. vaccae or vehicle once every week for 3 weeks. Aging led to elevated Iba1 immunoreactivity, microglial density, and deramification of microglia processes in the hippocampus and amygdala but not other brain regions. Additionally, aged rats exhibited larger microglial somas in the dorsal hippocampus, suggestive of a more activated phenotype. Notably, M. vaccae treatment ameliorated indicators of microglia activation in both the amygdala and hippocampus. While changes in morphology appeared to be region-specific, gene markers indicative of microglia activation were upregulated by age and lowered in response to M. vaccae in all brain regions evaluated. Taken together, these data suggest that peripheral immunization with M. vaccae quells markers of age-associated microglia activation.
Collapse
Affiliation(s)
- Kevin Sanchez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St 3.510C, Austin, TX, 78712, USA
| | - Jeffrey S Darling
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St 3.510C, Austin, TX, 78712, USA
| | - Reha Kakkar
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St 3.510C, Austin, TX, 78712, USA
| | - Sienna L Wu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St 3.510C, Austin, TX, 78712, USA
| | - Andrew Zentay
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St 3.510C, Austin, TX, 78712, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St 3.510C, Austin, TX, 78712, USA.
| |
Collapse
|
8
|
Bleuzé L, Triaca V, Borreca A. FMRP-Driven Neuropathology in Autistic Spectrum Disorder and Alzheimer's disease: A Losing Game. Front Mol Biosci 2021; 8:699613. [PMID: 34760921 PMCID: PMC8573832 DOI: 10.3389/fmolb.2021.699613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is an RNA binding protein (RBP) whose absence is essentially associated to Fragile X Syndrome (FXS). As an RNA Binding Protein (RBP), FMRP is able to bind and recognize different RNA structures and the control of specific mRNAs is important for neuronal synaptic plasticity. Perturbations of this pathway have been associated with the autistic spectrum. One of the FMRP partners is the APP mRNA, the main protagonist of Alzheimer’s disease (AD), thereby regulating its protein level and metabolism. Therefore FMRP is associated to two neurodevelopmental and age-related degenerative conditions, respectively FXS and AD. Although these pathologies are characterized by different features, they have been reported to share a number of common molecular and cellular players. The aim of this review is to describe the double-edged sword of FMRP in autism and AD, possibly allowing the elucidation of key shared underlying mechanisms and neuronal circuits. As an RBP, FMRP is able to regulate APP expression promoting the production of amyloid β fragments. Indeed, FXS patients show an increase of amyloid β load, typical of other neurological disorders, such as AD, Down syndrome, Parkinson’s Disease, etc. Beyond APP dysmetabolism, the two neurodegenerative conditions share molecular targets, brain circuits and related cognitive deficits. In this review, we will point out the potential common neuropathological pattern which needs to be addressed and we will hopefully contribute to clarifying the complex phenotype of these two neurorological disorders, in order to pave the way for a novel, common disease-modifying therapy.
Collapse
Affiliation(s)
- Louis Bleuzé
- University de Rennes 1, Rennes, France.,Humanitas Clinical and Research Center-IRCCS, Rozzano (Mi), Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), International Campus A. Buzzati Traverso, Monterotondo, Italy
| | - Antonella Borreca
- Humanitas Clinical and Research Center-IRCCS, Rozzano (Mi), Italy.,Institute of Neuroscience-National Research Council (CNR-IN), Milan, Italy
| |
Collapse
|
9
|
Falcone C, McBride EL, Hopkins WD, Hof PR, Manger PR, Sherwood CC, Noctor SC, Martínez-Cerdeño V. Redefining varicose projection astrocytes in primates. Glia 2021; 70:145-154. [PMID: 34533866 DOI: 10.1002/glia.24093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
Varicose projection astrocytes (VP-As) are found in the cerebral cortex and have been described to be specific to humans and chimpanzees. To further examine the phylogenetic distribution of this cell type, we analyzed cortical tissue from several primates ranging from primitive primates to primates evolutionary closer to human such as apes. We specifically analyzed tissue from four strepsirrhine species, one tarsier, six species of platyrrhine monkeys, ten species of cercopithecoid monkeys, two hylobatid ape species, four to six cases each of chimpanzee, bonobo, gorilla, and orangutan, and thirteen human. We found that VP-As were present only in human and other apes (hominoids) and were absent in all other species. We showed that VP-As are localized to layer VI and the superficial white matter of the cortex. The presence of VP-As co-occured with interlaminar astrocytes that also had varicosities in their processes. Due to their location, their long tangential processes, and their irregular presence within species, we propose that VP-As are astrocytes that develop varicosities under specific conditions and that are not a distinct astrocyte type.
Collapse
Affiliation(s)
- Carmen Falcone
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine and Shriners Hospitals, Sacramento, California, USA
| | - Erin L McBride
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine and Shriners Hospitals, Sacramento, California, USA
| | - William D Hopkins
- Department of Comparative Medicine, Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Stephen C Noctor
- MIND Institute, UC Davis School of Medicine, Sacramento, California, USA.,Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, California, USA
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine and Shriners Hospitals, Sacramento, California, USA.,MIND Institute, UC Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
10
|
Molecular Pathogenesis and Peripheral Monitoring of Adult Fragile X-Associated Syndromes. Int J Mol Sci 2021; 22:ijms22168368. [PMID: 34445074 PMCID: PMC8395059 DOI: 10.3390/ijms22168368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
Abnormal trinucleotide expansions cause rare disorders that compromise quality of life and, in some cases, lifespan. In particular, the expansions of the CGG-repeats stretch at the 5’-UTR of the Fragile X Mental Retardation 1 (FMR1) gene have pleiotropic effects that lead to a variety of Fragile X-associated syndromes: the neurodevelopmental Fragile X syndrome (FXS) in children, the late-onset neurodegenerative disorder Fragile X-associated tremor-ataxia syndrome (FXTAS) that mainly affects adult men, the Fragile X-associated primary ovarian insufficiency (FXPOI) in adult women, and a variety of psychiatric and affective disorders that are under the term of Fragile X-associated neuropsychiatric disorders (FXAND). In this review, we will describe the pathological mechanisms of the adult “gain-of-function” syndromes that are mainly caused by the toxic actions of CGG RNA and FMRpolyG peptide. There have been intensive attempts to identify reliable peripheral biomarkers to assess disease progression and onset of specific pathological traits. Mitochondrial dysfunction, altered miRNA expression, endocrine system failure, and impairment of the GABAergic transmission are some of the affectations that are susceptible to be tracked using peripheral blood for monitoring of the motor, cognitive, psychiatric and reproductive impairment of the CGG-expansion carriers. We provided some illustrative examples from our own cohort. Understanding the association between molecular pathogenesis and biomarkers dynamics will improve effective prognosis and clinical management of CGG-expansion carriers.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The purpose of this paper is to review the prevalence, pathophysiology, and management of fragile X-associated tremor/ataxia syndrome (FXTAS). RECENT FINDINGS The pathophysiology of FXTAS involves ribonucleic acid (RNA) toxicity due to elevated levels of the premutation-expanded CGG (eoxycytidylate-deoxyguanylate-deoxyguanylate)-repeat FMR1 mRNA, which can sequester a variety of proteins important for neuronal function. A recent analysis of the inclusions in FXTAS demonstrates elevated levels of several proteins, including small ubiquitin-related modifiers 1/2 (SUMO1/2), that target molecules for the proteasome, suggesting that some aspect(s) of proteasomal function may be altered in FXTAS. Recent neuropathological studies show that Parkinson disease and Alzheimer disease can sometimes co-occur with FXTAS. Lewy bodies can be found in 10% of the brains of patients with FXTAS. Microbleeds and iron deposition are also common in the neuropathology, in addition to white matter disease (WMD) and atrophy. SUMMARY The premutation occurs in 1:200 females and 1:400 males. Penetrance for FXTAS increases with age, though lower in females (16%) compared to over 60% of males by age 70. To diagnose FXTAS, an MRI is essential to document the presence of WMD, a primary component of the diagnostic criteria. Pain can be a significant feature of FXTAS and is seen in approximately 50% of patients.
Collapse
|
12
|
Tarantal AF, Hartigan-O’Connor DJ, Penna E, Kreutz A, Martinez ML, Noctor SC. Fetal Rhesus Monkey First Trimester Zika Virus Infection Impacts Cortical Development in the Second and Third Trimesters. Cereb Cortex 2021; 31:2309-2321. [PMID: 33341889 PMCID: PMC8023859 DOI: 10.1093/cercor/bhaa336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 12/28/2022] Open
Abstract
Zika virus is a teratogen similar to other neurotropic viruses, notably cytomegalovirus and rubella. The goal of these studies was to address the direct impact of Zika virus on fetal development by inoculating early gestation fetal rhesus monkeys using an ultrasound-guided approach (intraperitoneal vs. intraventricular). Growth and development were monitored across gestation, maternal samples collected, and fetal tissues obtained in the second trimester or near term. Although normal growth and anatomical development were observed, significant morphologic changes were noted in the cerebral cortex at 3-weeks post-Zika virus inoculation including massive alterations in the distribution, density, number, and morphology of microglial cells in proliferative regions of the fetal cerebral cortex; an altered distribution of Tbr2+ neural precursor cells; increased diameter and volume of blood vessels in the cortical proliferative zones; and a thinner cortical plate. At 3-months postinoculation, alterations in morphology, distribution, and density of microglial cells were also observed with an increase in blood vessel volume; and a thinner cortical plate. Only transient maternal viremia was observed but sustained maternal immune activation was detected. Overall, these studies suggest persistent changes in cortical structure result from early gestation Zika virus exposure with durable effects on microglial cells.
Collapse
Affiliation(s)
- Alice F Tarantal
- Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, CA 95616, USA
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Dennis J Hartigan-O’Connor
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Elisa Penna
- Department of Psychiatry and Behavioral Science, School of Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Anna Kreutz
- Department of Psychiatry and Behavioral Science, School of Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Michele L Martinez
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Science, School of Medicine, University of California, Davis, Davis, CA 95817, USA
- MIND Institute, School of Medicine, University of California, Davis, Davis, CA 95817, USA
| |
Collapse
|
13
|
Holm KN, Herren AW, Taylor SL, Randol JL, Kim K, Espinal G, Martiínez-Cerdeño V, Pessah IN, Hagerman RJ, Hagerman PJ. Human Cerebral Cortex Proteome of Fragile X-Associated Tremor/Ataxia Syndrome. Front Mol Biosci 2021; 7:600840. [PMID: 33585555 PMCID: PMC7879451 DOI: 10.3389/fmolb.2020.600840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Background: Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder associated with premutation CGG-repeat expansions (55–200 repeats) in the 5′ non-coding portion of the fragile X mental retardation 1 (FMR1) gene. Core features of FXTAS include progressive tremor/ataxia, cognitive decline, variable brain volume loss, and white matter disease. The principal histopathological feature of FXTAS is the presence of central nervous system (CNS) and non-CNS intranuclear inclusions. Objective: To further elucidate the molecular underpinnings of FXTAS through the proteomic characterization of human FXTAS cortexes. Results: Proteomic analysis of FXTAS brain cortical tissue (n = 8) identified minor differences in protein abundance compared to control brains (n = 6). Significant differences in FXTAS relative to control brain predominantly involved decreased abundance of proteins, with the greatest decreases observed for tenascin-C (TNC), cluster of differentiation 38 (CD38), and phosphoserine aminotransferase 1 (PSAT1); proteins typically increased in other neurodegenerative diseases. Proteins with the greatest increased abundance include potentially novel neurodegeneration-related proteins and small ubiquitin-like modifier 1/2 (SUMO1/2). The FMRpolyG peptide, proposed in models of FXTAS pathogenesis but only identified in trace amounts in the earlier study of FXTAS inclusions, was not identified in any of the FXTAS or control brains in the current study. Discussion: The observed proteomic shifts, while generally relatively modest, do show a bias toward decreased protein abundance with FXTAS. Such shifts in protein abundance also suggest altered RNA binding as well as loss of cell–cell adhesion/structural integrity. Unlike other neurodegenerative diseases, the proteome of end-stage FXTAS does not suggest a strong inflammation-mediated degenerative response.
Collapse
Affiliation(s)
- Katharine Nichole Holm
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, United States
| | - Anthony W Herren
- Mass Spectrometry Research Core, University of California Davis, Davis, CA, United States
| | - Sandra L Taylor
- Department of Public Health Sciences, Division of Biostatistics, University of California Davis School of Medicine, Davis, CA, United States
| | - Jamie L Randol
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, United States
| | - Kyoungmi Kim
- Department of Public Health Sciences, Division of Biostatistics, University of California Davis School of Medicine, Davis, CA, United States.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States
| | - Glenda Espinal
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, United States
| | - Verónica Martiínez-Cerdeño
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States.,Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Davis, CA, United States
| | - Isaac N Pessah
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States.,Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, United States
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States.,Department of Pediatrics, University of California Davis School of Medicine, Davis, CA, United States
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, United States.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States
| |
Collapse
|
14
|
Loesch DZ, Kemp BE, Bui MQ, Fisher PR, Allan CY, Sanislav O, Ngoei KRW, Atkinson A, Tassone F, Annesley SJ, Storey E. Cellular Bioenergetics and AMPK and TORC1 Signalling in Blood Lymphoblasts Are Biomarkers of Clinical Status in FMR1 Premutation Carriers. Front Psychiatry 2021; 12:747268. [PMID: 34880790 PMCID: PMC8645580 DOI: 10.3389/fpsyt.2021.747268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder affecting carriers of premutation alleles (PM) of the X-linked FMR1 gene, which contain CGG repeat expansions of 55-200 range in a non-coding region. This late-onset disorder is characterised by the presence of tremor/ataxia and cognitive decline, associated with the white matter lesions throughout the brain, especially involving the middle cerebellar peduncles. Nearly half of older male and ~ 20% of female PM carriers develop FXTAS. While there is evidence for mitochondrial dysfunction in neural and some peripheral tissues from FXTAS patients (though less obvious in the non-FXTAS PM carriers), the results from peripheral blood mononuclear cells (PBMC) are still controversial. Motor, cognitive, and neuropsychiatric impairments were correlated with measures of mitochondrial and non-mitochondrial respiratory activity, AMPK, and TORC1 cellular stress-sensing protein kinases, and CGG repeat size, in a sample of adult FXTAS male and female carriers. Moreover, the levels of these cellular measures, all derived from Epstein- Barr virus (EBV)- transformed and easily accessible blood lymphoblasts, were compared between the FXTAS (N = 23) and non-FXTAS (n = 30) subgroups, and with baseline data from 33 healthy non-carriers. A significant hyperactivity of cellular bioenergetics components as compared with the baseline data, more marked in the non-FXTAS PMs, was negatively correlated with repeat numbers at the lower end of the CGG-PM distribution. Significant associations of these components with motor impairment measures, including tremor-ataxia and parkinsonism, and neuropsychiatric changes, were prevalent in the FXTAS subgroup. Moreover, a striking elevation of AMPK activity, and a decrease in TORC1 levels, especially in the non-FXTAS carriers, were related to the size of CGG expansion. The bioenergetics changes in blood lymphoblasts are biomarkers of the clinical status of FMR1 carriers. The relationship between these changes and neurological involvement in the affected carriers suggests that brain bioenergetic alterations are reflected in this peripheral tissue. A possible neuroprotective role of stress sensing kinase, AMPK, in PM carriers, should be addressed in future longitudinal studies. A decreased level of TORC1-the mechanistic target of the rapamycin complex, suggests a possible future approach to therapy in FXTAS.
Collapse
Affiliation(s)
- Danuta Z Loesch
- School of Psychology and Public Health, La Trobe University, Bundoora, VA, Australia
| | - Bruce E Kemp
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VA, Australia.,St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, VA, Australia
| | - Minh Q Bui
- Centre for Molecular, Environmental, Genetic and Analytic, Epidemiology, University of Melbourne, Parkville, VA, Australia
| | - Paul R Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Claire Y Allan
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Oana Sanislav
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Kevin R W Ngoei
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, VA, Australia
| | - Anna Atkinson
- School of Psychology and Public Health, La Trobe University, Bundoora, VA, Australia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States.,Department of Biochemistry and Molecular Medicine M.I.N.D. Institute, University of California Davis Medical Center, Davis, Sacramento, CA, United States
| | - Sarah J Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, Alfred Hospital Campus, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Dufour BD, Amina S, Martinez-Cerdeno V. FXTAS presents with upregulation of the cytokines IL12 and TNFα. Parkinsonism Relat Disord 2020; 82:117-120. [PMID: 33285358 DOI: 10.1016/j.parkreldis.2020.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Fragile X Tremor and Ataxia Syndrome is a progressive neurodegenerative disorder that develops in some FMR1 premutation carriers. The objective of this study is to characterize how cytokine levels are altered in the FXTAS brain. METHODS Fresh frozen cerebellar tissue from FXTAS cases and controls was homogenized and analyzed for 12 different cytokines using a commercially available ELISA panel. RESULTS Relative to controls, FXTAS cases showed large and significant increases in the cytokines IL-12 and TNFα. There were large but non-significant increases in the levels of IL-2, IL-8, and IL-10 in FXTAS cases. The cytokines IL-1A, IL-1B, IL-4 IL-6, IL-17A, IFNγ, and GM-CSF were not different between FXTAS and control subjects. CONCLUSIONS For the first time, we demonstrate an increase in the pro-inflammatory cytokines TNFα and IL-12 in the FXTAS brain, both of which are implicated in the pathogenesis of Multiple Sclerosis, another neurodegenerative disorder that predominantly consists of white matter disease.
Collapse
Affiliation(s)
- Brett D Dufour
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA
| | - Sarwat Amina
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Veronica Martinez-Cerdeno
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
16
|
Robinson AC, Bajaj N, Hadjivassiliou M, Minshull J, Mahmood A, Roncaroli F. Neuropathology of a case of fragile X-associated tremor ataxia syndrome without tremor. Neuropathology 2020; 40:611-619. [PMID: 32830366 DOI: 10.1111/neup.12674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/01/2022]
Abstract
Fragile X-associated tremor ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a CGG trinucleotide expansion from 55 to 200 repeats in the non-coding region of the fragile X mental retardation 1 (FMR1) gene (FMR1). Clinical features include cognitive decline, progressive tremor, and gait ataxia. Neuropathologically, FXTAS shows white matter changes, hippocampal and cerebellar involvement, and p62-positive eosinophilic intranuclear inclusions in astrocytes and neurons. Here, we document the neuropathological findings from a subject who developed cognitive impairment but not tremor and was proved to have genetically confirmed FMR1 premutation. Microscopically, typical p62-postive intranuclear inclusions were present in all the regions examined. Neocortical regions demonstrated gliosis of layer I and mild degree of neuronal loss and atrophy across the other layers. The molecular, Purkinje's cell, and granule cell layers of the cerebellar folia demonstrated mild gliosis, and cerebellar white matter was mildly affected. Aside from p62-positive inclusions, the hippocampus was spared. Arteries in the deep white matter often showed changes consistent with moderate small vessel disease (SVD). Reactive gliosis and severe SVD were features of basal ganglia. Florid reactive astrocytosis was found in the white matter of all regions. Axonal loss and features of axonal damage were found in the white matter of the centrum semiovale. Microglial activation was widespread and evenly seen in both the white matter and grey matter, although the grey matter appeared more severely affected. Pathology associated with Alzheimer's disease was limited. Similarly, no abnormal accumulations of α-synuclein were present. We postulate that age at death and disease duration may play a role in the extent of the pathological features associated with FXTAS. The present results suggest that immunohistochemical staining for p62 can help with the diagnosis of cases with atypical phenotype. In addition, it is likely that the cognitive impairment observed was a result of white matter changes.
Collapse
Affiliation(s)
- Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Nin Bajaj
- Department of Neurology, University of Nottingham, Nottingham, UK
| | - Marios Hadjivassiliou
- Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - James Minshull
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Aiza Mahmood
- Neuropathology Unit, Salford Royal Hospital, Manchester, UK
| | - Federico Roncaroli
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK.,Neuropathology Unit, Salford Royal Hospital, Manchester, UK
| |
Collapse
|
17
|
Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): Pathophysiology and Clinical Implications. Int J Mol Sci 2020; 21:ijms21124391. [PMID: 32575683 PMCID: PMC7352421 DOI: 10.3390/ijms21124391] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder seen in older premutation (55-200 CGG repeats) carriers of FMR1. The premutation has excessive levels of FMR1 mRNA that lead to toxicity and mitochondrial dysfunction. The clinical features usually begin in the 60 s with an action or intention tremor followed by cerebellar ataxia, although 20% have only ataxia. MRI features include brain atrophy and white matter disease, especially in the middle cerebellar peduncles, periventricular areas, and splenium of the corpus callosum. Neurocognitive problems include memory and executive function deficits, although 50% of males can develop dementia. Females can be less affected by FXTAS because of a second X chromosome that does not carry the premutation. Approximately 40% of males and 16% of female carriers develop FXTAS. Since the premutation can occur in less than 1 in 200 women and 1 in 400 men, the FXTAS diagnosis should be considered in patients that present with tremor, ataxia, parkinsonian symptoms, neuropathy, and psychiatric problems. If a family history of a fragile X mutation is known, then FMR1 DNA testing is essential in patients with these symptoms.
Collapse
|
18
|
Salcedo-Arellano MJ, Dufour B, McLennan Y, Martinez-Cerdeno V, Hagerman R. Fragile X syndrome and associated disorders: Clinical aspects and pathology. Neurobiol Dis 2020; 136:104740. [PMID: 31927143 PMCID: PMC7027994 DOI: 10.1016/j.nbd.2020.104740] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/23/2022] Open
Abstract
This review aims to assemble many years of research and clinical experience in the fields of neurodevelopment and neuroscience to present an up-to-date understanding of the clinical presentation, molecular and brain pathology associated with Fragile X syndrome, a neurodevelopmental condition that develops with the full mutation of the FMR1 gene, located in the q27.3 loci of the X chromosome, and Fragile X-associated tremor/ataxia syndrome a neurodegenerative disease experienced by aging premutation carriers of the FMR1 gene. It is important to understand that these two syndromes have a very distinct clinical and pathological presentation while sharing the same origin: the mutation of the FMR1 gene; revealing the complexity of expansion genetics.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA.
| | - Brett Dufour
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Yingratana McLennan
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA
| | - Veronica Martinez-Cerdeno
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Randi Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
19
|
Salcedo-Arellano MJ, Hagerman RJ, Martínez-Cerdeño V. [Fragile X associated tremor/ataxia syndrome: its clinical presentation, pathology, and treatment]. Rev Neurol 2019; 68:199-206. [PMID: 30805918 PMCID: PMC7001878 DOI: 10.33588/rn.6805.2018457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fragile X associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disease associated with the repetition of CGG triplets (55-200 CGG repetitions) in the FMR1 gene. The premutation of the FMR1 gene, contrasting with the full mutation (more than 200 CGG repetitions), presents an increased production of messenger and a similar or slightly decreased production of FMRP protein. FXTAS affects 40% of men and 16% of women carriers of the premutation. It presents with a wide constellation of neurological signs such as intention tremor, cerebellar ataxia, parkinsonism, executive function deficits, peripheral neuropathy and cognitive decline leading to dementia among others. In this review, we present what is currently known about the molecular mechanism, the radiological findings and the pathology, as well as the complexity of the diagnosis and management of FXTAS.
Collapse
Affiliation(s)
- María Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis
School of Medicine, Sacramento, CA, USA
- Medical Investigation of Neurodevelopmental Disorders
(MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis
School of Medicine, Sacramento, CA, USA
- Medical Investigation of Neurodevelopmental Disorders
(MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Verónica Martínez-Cerdeño
- Medical Investigation of Neurodevelopmental Disorders
(MIND) Institute, University of California Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine and Shriners
Hospitals for Children Northern California, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, UC Davis
School of Medicine, Sacramento, CA, USA
| |
Collapse
|