1
|
Indelicato E, Delatycki MB, Farmer J, França MC, Perlman S, Rai M, Boesch S. A global perspective on research advances and future challenges in Friedreich ataxia. Nat Rev Neurol 2025:10.1038/s41582-025-01065-y. [PMID: 40032987 DOI: 10.1038/s41582-025-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Friedreich ataxia (FRDA) is a rare multisystem, life-limiting disease and is the most common early-onset inherited ataxia in populations of European, Arab and Indian descent. In recent years, substantial progress has been made in dissecting the pathogenesis and natural history of FRDA, and several clinical trials have been initiated. A particularly notable recent achievement was the approval of the nuclear factor erythroid 2-related factor 2 activator omaveloxolone as the first disease-specific therapy for FRDA. In light of these developments, we review milestones in FRDA translational and clinical research over the past 10 years, as well as the various therapeutic strategies currently in the pipeline. We also consider the lessons that have been learned from failed trials and other setbacks. We conclude by presenting a global roadmap for future research, as outlined by the recently established Friedreich's Ataxia Global Clinical Consortium, which covers North and South America, Europe, India, Australia and New Zealand.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | | | | | | - Myriam Rai
- Friedreich's Ataxia Research Alliance, Downingtown, PA, USA
- Laboratory of Experimental Neurology, Brussels, Belgium
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Tiet MY, Scoffings D, Blanchard C, Dineen RA, Horvath R, Hensiek A. Novel observation for adult ataxia-telangiectasia: evaluating the lack of hypointensity of the dentate nuclei. J Neurol Neurosurg Psychiatry 2025; 96:202-204. [PMID: 39358010 DOI: 10.1136/jnnp-2024-334398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024]
Affiliation(s)
- May Yung Tiet
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Caroline Blanchard
- Mental Health and Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Robert A Dineen
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anke Hensiek
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Scott V, Delatycki MB, Tai G, Corben LA. New and Emerging Drug and Gene Therapies for Friedreich Ataxia. CNS Drugs 2024; 38:791-805. [PMID: 39115603 PMCID: PMC11377510 DOI: 10.1007/s40263-024-01113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/06/2024]
Abstract
The life shortening nature of Friedreich Ataxia (FRDA) demands the search for therapies that can delay, stop or reverse its relentless trajectory. This review provides a contemporary position of drug and gene therapies for FRDA currently in phase 1 clinical trials and beyond. Despite significant scientific advances in the specificity of both compounds and targets developed and investigated, challenges remain for the advancement of treatments in a limited recruitment population. Currently therapies focus on reducing oxidative stress and improving mitochondrial function, modulating frataxin controlled metabolic pathways and gene replacement and editing. Approval of omaveloxolone, the first treatment for individuals with FRDA aged 16 years and over, has created much excitement for both those living with FRDA and those that care for them. The process of approval of omaveloxolone by the US Food and Drug Administration highlighted the importance of sensitive outcome measures and the significant role of data from natural history studies.
Collapse
Affiliation(s)
- Varlli Scott
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Victorian Clinical Genetics Service, Parkville, VIC, Australia
| | - Geneieve Tai
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia.
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
4
|
Beaudin M, Dupre N, Manto M. The importance of synthetic pharmacotherapy for recessive cerebellar ataxias. Expert Rev Neurother 2024; 24:897-912. [PMID: 38980086 DOI: 10.1080/14737175.2024.2376840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION The last decade has witnessed major breakthroughs in identifying novel genetic causes of hereditary ataxias, deepening our understanding of disease mechanisms, and developing therapies for these debilitating disorders. AREAS COVERED This article reviews the currently approved and most promising candidate pharmacotherapies in relation to the known disease mechanisms of the most prevalent autosomal recessive ataxias. Omaveloxolone is an Nrf2 activator that increases antioxidant defense and was recently approved for treatment of Friedreich ataxia. Its therapeutic effect is modest, and further research is needed to find synergistic treatments that would halt or reverse disease progression. Promising approaches include upregulation of frataxin expression by epigenetic mechanisms, direct protein replacement, and gene replacement therapy. For ataxia-telangiectasia, promising approaches include splice-switching antisense oligonucleotides and small molecules targeting oxidative stress, inflammation, and mitochondrial function. Rare recessive ataxias for which disease-modifying therapies exist are also reviewed, emphasizing recently approved therapies. Evidence supporting the use of riluzole and acetyl-leucine in recessive ataxias is discussed. EXPERT OPINION Advances in genetic therapies for other neurogenetic conditions have paved the way to implement feasible approaches with potential dramatic benefits. Particularly, as we develop effective treatments for these conditions, we may need to combine therapies, consider newborn testing for pre-symptomatic treatment, and optimize non-pharmacological approaches.
Collapse
Affiliation(s)
- Marie Beaudin
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Nicolas Dupre
- Neuroscience axis, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Mario Manto
- Service des Neurosciences, Université de Mons, Mons, Belgique
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgique
| |
Collapse
|
5
|
Benarroch E. What Is the Role of the Dentate Nucleus in Normal and Abnormal Cerebellar Function? Neurology 2024; 103:e209636. [PMID: 38954796 DOI: 10.1212/wnl.0000000000209636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
|
6
|
Harding IH, Nur Karim MI, Selvadurai LP, Corben LA, Delatycki MB, Monti S, Saccà F, Georgiou-Karistianis N, Cocozza S, Egan GF. Localized Changes in Dentate Nucleus Shape and Magnetic Susceptibility in Friedreich Ataxia. Mov Disord 2024; 39:1109-1118. [PMID: 38644761 DOI: 10.1002/mds.29816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND The dentate nuclei of the cerebellum are key sites of neuropathology in Friedreich ataxia (FRDA). Reduced dentate nucleus volume and increased mean magnetic susceptibility, a proxy of iron concentration, have been reported by magnetic resonance imaging studies in people with FRDA. Here, we investigate whether these changes are regionally heterogeneous. METHODS Quantitative susceptibility mapping data were acquired from 49 people with FRDA and 46 healthy controls. The dentate nuclei were manually segmented and analyzed using three dimensional vertex-based shape modeling and voxel-based assessments to identify regional changes in morphometry and susceptibility, respectively. RESULTS Individuals with FRDA, relative to healthy controls, showed significant bilateral surface contraction most strongly at the rostral and caudal boundaries of the dentate nuclei. The magnitude of this surface contraction correlated with disease duration, and to a lesser extent, ataxia severity. Significantly greater susceptibility was also evident in the FRDA cohort relative to controls, but was instead localized to bilateral dorsomedial areas, and also correlated with disease duration and ataxia severity. CONCLUSIONS Changes in the structure of the dentate nuclei in FRDA are not spatially uniform. Atrophy is greatest in areas with high gray matter density, whereas increases in susceptibility-reflecting iron concentration, demyelination, and/or gliosis-predominate in the medial white matter. These findings converge with established histological reports and indicate that regional measures of dentate nucleus substructure are more sensitive measures of disease expression than full-structure averages. Biomarker development and therapeutic strategies that directly target the dentate nuclei, such as gene therapies, may be optimized by targeting these areas of maximal pathology. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Muhammad Ikhsan Nur Karim
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Louisa P Selvadurai
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Australia
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Australia
| | - Serena Monti
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Francesco Saccà
- Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Nellie Georgiou-Karistianis
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Cocozza S, Bosticardo S, Battocchio M, Corben L, Delatycki M, Egan G, Georgiou‐Karistianis N, Monti S, Palma G, Pane C, Saccà F, Schiavi S, Selvadurai L, Tranfa M, Daducci A, Brunetti A, Harding IH. Gradient of microstructural damage along the dentato-thalamo-cortical tract in Friedreich ataxia. Ann Clin Transl Neurol 2024; 11:1691-1702. [PMID: 38952134 PMCID: PMC11251475 DOI: 10.1002/acn3.52048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVE The dentato-thalamo-cortical tract (DTT) is the main cerebellar efferent pathway. Degeneration of the DTT is a core feature of Friedreich ataxia (FRDA). However, it remains unclear whether DTT disruption is spatially specific, with some segments being more impacted than others. This study aimed to investigate microstructural integrity along the DTT in FRDA using a profilometry diffusion MRI (dMRI) approach. METHODS MRI data from 45 individuals with FRDA (mean age: 33.2 ± 13.2, Male/Female: 26/19) and 37 healthy controls (mean age: 36.5 ± 12.7, Male/Female:18/19) were included in this cross-sectional multicenter study. A profilometry analysis was performed on dMRI data by first using tractography to define the DTT as the white matter pathway connecting the dentate nucleus to the contralateral motor cortex. The tract was then divided into 100 segments, and dMRI metrics of microstructural integrity (fractional anisotropy, mean diffusivity and radial diffusivity) at each segment were compared between groups. The process was replicated on the arcuate fasciculus for comparison. RESULTS Across all diffusion metrics, the region of the DTT connecting the dentate nucleus and thalamus was more impacted in FRDA than downstream cerebral sections from the thalamus to the cortex. The arcuate fasciculus was minimally impacted. INTERPRETATION Our study further expands the current knowledge about brain involvement in FRDA, showing that microstructural abnormalities within the DTT are weighted to early segments of the tract (i.e., the superior cerebellar peduncle). These findings are consistent with the hypothesis of DTT undergoing anterograde degeneration arising from the dentate nuclei and progressing to the primary motor cortex.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Sara Bosticardo
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) LabUniversity of VeronaVeronaItaly
| | - Matteo Battocchio
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) LabUniversity of VeronaVeronaItaly
| | - Louise Corben
- Bruce Lefroy Centre for Genetic Health ResearchMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- School of Psychological Sciences, The Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| | - Martin Delatycki
- Bruce Lefroy Centre for Genetic Health ResearchMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- School of Psychological Sciences, The Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| | - Gary Egan
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityClaytonVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityClaytonVictoriaAustralia
| | - Nellie Georgiou‐Karistianis
- School of Psychological Sciences, The Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| | - Serena Monti
- Institute of Biostructures and BioimagingNational Research CouncilNapoliItaly
| | - Giuseppe Palma
- Institute of NanotechnologyNational Research CouncilLecceItaly
| | - Chiara Pane
- Department of Neurosciences Reproductive and Odontostomatological SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Francesco Saccà
- Department of Neurosciences Reproductive and Odontostomatological SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Simona Schiavi
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) LabUniversity of VeronaVeronaItaly
- ASG Superconductors SpAGenoaItaly
| | - Louisa Selvadurai
- School of Psychological Sciences, The Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| | - Mario Tranfa
- Department of Advanced Biomedical SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Alessandro Daducci
- Department of Computer Science, Diffusion Imaging and Connectivity Estimation (DICE) LabUniversity of VeronaVeronaItaly
| | - Arturo Brunetti
- Department of Advanced Biomedical SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Ian H. Harding
- Monash Biomedical ImagingMonash UniversityClaytonVictoriaAustralia
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
8
|
Öz G, Cocozza S, Henry PG, Lenglet C, Deistung A, Faber J, Schwarz AJ, Timmann D, Van Dijk KRA, Harding IH. MR Imaging in Ataxias: Consensus Recommendations by the Ataxia Global Initiative Working Group on MRI Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:931-945. [PMID: 37280482 PMCID: PMC11102392 DOI: 10.1007/s12311-023-01572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
With many viable strategies in the therapeutic pipeline, upcoming clinical trials in hereditary and sporadic degenerative ataxias will benefit from non-invasive MRI biomarkers for patient stratification and the evaluation of therapies. The MRI Biomarkers Working Group of the Ataxia Global Initiative therefore devised guidelines to facilitate harmonized MRI data acquisition in clinical research and trials in ataxias. Recommendations are provided for a basic structural MRI protocol that can be used for clinical care and for an advanced multi-modal MRI protocol relevant for research and trial settings. The advanced protocol consists of modalities with demonstrated utility for tracking brain changes in degenerative ataxias and includes structural MRI, magnetic resonance spectroscopy, diffusion MRI, quantitative susceptibility mapping, and resting-state functional MRI. Acceptable ranges of acquisition parameters are provided to accommodate diverse scanner hardware in research and clinical contexts while maintaining a minimum standard of data quality. Important technical considerations in setting up an advanced multi-modal protocol are outlined, including the order of pulse sequences, and example software packages commonly used for data analysis are provided. Outcome measures most relevant for ataxias are highlighted with use cases from recent ataxia literature. Finally, to facilitate access to the recommendations by the ataxia clinical and research community, examples of datasets collected with the recommended parameters are provided and platform-specific protocols are shared via the Open Science Framework.
Collapse
Affiliation(s)
- Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 Sixth Street Southeast, Minneapolis, MN, 55455, USA.
| | - Sirio Cocozza
- UNINA Department of Advanced Biomedical Sciences, University of Naples Federico II , Naples, Italy
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 Sixth Street Southeast, Minneapolis, MN, 55455, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 Sixth Street Southeast, Minneapolis, MN, 55455, USA
| | - Andreas Deistung
- Department for Radiation Medicine, University Clinic and Outpatient Clinic for Radiology, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | | | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Koene R A Van Dijk
- Digital Sciences and Translational Imaging, Early Clinical Development, Pfizer, Inc., Cambridge, MA, USA
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| |
Collapse
|
9
|
Smith FM, Kosman DJ. Loss of filamentous actin, tight junction protein expression, and paracellular barrier integrity in frataxin-deficient human brain microvascular endothelial cells-implications for blood-brain barrier physiology in Friedreich's ataxia. Front Mol Biosci 2024; 10:1299201. [PMID: 38274097 PMCID: PMC10808331 DOI: 10.3389/fmolb.2023.1299201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Friedreich's Ataxia (FRDA) is the most prevalent inherited ataxia. FRDA results from loss of Frataxin (FXN), an essential mitochondrial iron trafficking protein. FRDA starts with an early burst of neurodegeneration of the dorsal root ganglion and cerebellar dentate nuclei, followed by progressive brain iron accumulation in the latter. End stage disease includes cardiac fibrosis that contributes to hypertrophic cardiomyopathy. The microvasculature plays an essential barrier role in both brain and heart homeostasis, thus an investigation of this tissue system in FRDA is essential to the delineation of the cellular dysfunction in this genetic disorder. Previous reports have identified cytoskeletal alterations in non-barrier forming FRDA cell models, but physiological consequences are limited. Methods: We investigated brain microvascular endothelial cell integrity in FRDA in a model of the blood-brain barrier (BBB). We have knocked down FXN in immortalized human brain microvascular endothelial cells (hBMVEC), which compose the microcapillaries of the BBB, by using shRNA. We confirmed known cellular pathophysiologies of FXN-knockdown including decreased energy metabolism, markers of oxidative stress, and increased cell size. Results: We investigated cytoskeletal architecture, identifying decreased filamentous actin and Occludin and Claudin-5 tight junction protein expression in shFXN hBMVECs. This was consistent with decreased transendothelial electrical resistance (TEER) and increased paracellular tracer flux during early barrier formation. shFXN hBMVEC start with only 67% barrier integrity of the controls, and flux a paracellular tracer at 800% of physiological levels. Discussion: We identified that insufficient FXN levels in the hBMVEC BBB model causes changes in cytoskeletal architecture and tight junction protein abundance, co-incident with increased barrier permeability. Changes in the integrity of the BBB may be related to patient brain iron accumulation, neuroinflammation, neurodegeneration, and stroke. Furthermore, our findings implicate other barrier cells, e.g., the cardiac microvasculature, loci of disease pathology in FRDA.
Collapse
Affiliation(s)
- Frances M. Smith
- Jacobs School of Medicine and Biomedical Sciences, Department of Biochemistry, The State University of New York at Buffalo, Buffalo, NY, United States
| | | |
Collapse
|
10
|
Gitaí LLG, Sobreira-Neto MA, Diniz PRB, Éckeli AL, Fernandes RMF, Marques W, Santos AC. Voxel-Based Morphometry and Relaxometry Demonstrate Macro- and Microstructural Damages in Spinocerebellar Ataxia Type 3. CEREBELLUM (LONDON, ENGLAND) 2023; 22:818-824. [PMID: 35982369 DOI: 10.1007/s12311-022-01452-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is the most common SCA worldwide and comprises about 70% of SCA patients in Brazil. Magnetic resonance imaging (MRI) sequences have been used to describe microstructural abnormalities in many neurodegenerative diseases and helped to reveal the excessive iron accumulation in many of these conditions. This study aimed to characterize brain changes in gray matter (GM) and white matter (WM), detected by voxel-based morphometry (VBM) and relaxometry in patients with SCA3/MJD. A group of consecutive individuals, older than 18 years of age, with symptomatic and genetically proven SCA3/MJD diagnosed, and a control group, were submitted to clinical evaluation and MRI. The images were analyzed using VBM technique and relaxometry. The global assessment of brain volume by region of interest showed a significant difference in GM between SCA3/MJD and normal controls. VBM was used to locate these volumetric changes and it revealed a noticeable difference in the GM of the cerebellum and the brainstem. The global assessment of the brain by relaxometry also showed a significant difference in the comparison of GM between SCA3/MJD and normal controls, detecting noticeable prolongation of T2 time in the medulla oblongata (p < 0.001) and in the pontine tegmentum (p = 0.009) in SCA3/MJD compared to control group. Our study suggests that SCA3/MJD affects the macrostructure of the cerebellum and brainstem and microstructure of pons and medulla oblongata GM, as already demonstrated in the pathological study.
Collapse
Affiliation(s)
- Lívia Leite Góes Gitaí
- Division of Neurology, School of Medicine, Federal University of Alagoas, Maceió, Brazil.
| | | | - Paula Rejane Beserra Diniz
- Department of Internal Medicine, Center of Medical Sciences, Medicine School of Recife, Federal University of Pernambuco, Recife, Brazil
| | - Alan Luiz Éckeli
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Regina Maria França Fernandes
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Wilson Marques
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Antonio Carlos Santos
- Department of Radiology, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Adanyeguh IM, Joers JM, Deelchand DK, Hutter DH, Eberly LE, Guo B, Iltis I, Bushara KO, Henry PG, Lenglet C. Brain MRI detects early-stage alterations and disease progression in Friedreich ataxia. Brain Commun 2023; 5:fcad196. [PMID: 37483529 PMCID: PMC10360047 DOI: 10.1093/braincomms/fcad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/23/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Friedreich ataxia is a progressive neurodegenerative disorder characterized by cerebellar and spinal atrophy. However, studies to elucidate the longitudinal progression of the pathology in the brain are somewhat inconsistent and limited, especially for early-stage Friedreich ataxia. Using a multimodal neuroimaging protocol, combined with advanced analysis methods, we sought to identify macrostructural and microstructural alterations in the brain of patients with early-stage Friedreich ataxia to better understand its distribution patterns and progression. We enrolled 28 patients with Friedreich ataxia and 20 age- and gender-matched controls. Longitudinal clinical and imaging data were collected in the patients at baseline, 12, 24 and 36 months. Macrostructural differences were observed in patients with Friedreich ataxia, compared to controls, including lower volume of the cerebellar white matter (but not cerebellar grey matter), superior cerebellar peduncle, thalamus and brainstem structures, and higher volume of the fourth ventricle. Diffusion tensor imaging and fixel-based analysis metrics also showed microstructural differences in several brain regions, especially in the cerebellum and corticospinal tract. Over time, many of these macrostructural and microstructural alterations progressed, especially cerebellar grey and white matter volumes, and microstructure of the superior cerebellar peduncle, posterior limb of the internal capsule and superior corona radiata. In addition, linear regressions showed significant associations between many of those imaging metrics and clinical scales. This study provides evidence of early-stage macrostructural and microstructural alterations and of progression over time in the brain in Friedreich ataxia. Moreover, it allows to non-invasively map such brain alterations over a longer period (3 years) than any previous study, and identifies several brain regions with significant involvement in the disease progression besides the cerebellum. We show that fixel-based analysis of diffusion MRI data is particularly sensitive to longitudinal change in the cerebellar peduncles, as well as motor and sensory white matter tracts. In combination with other morphometric measures, they may therefore provide sensitive imaging biomarkers of disease progression for clinical trials.
Collapse
Affiliation(s)
- Isaac M Adanyeguh
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - James M Joers
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Diane H Hutter
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bin Guo
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Isabelle Iltis
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Khalaf O Bushara
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Burgetova A, Dusek P, Uher T, Vaneckova M, Vejrazka M, Burgetova R, Horakova D, Srpova B, Kalousova M, Noskova L, Levova K, Krasensky J, Lambert L. CSF Markers of Oxidative Stress Are Associated with Brain Atrophy and Iron Accumulation in a 2-Year Longitudinal Cohort of Early MS. Int J Mol Sci 2023; 24:10048. [PMID: 37373196 DOI: 10.3390/ijms241210048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In this prospective longitudinal study, we quantified regional brain volume and susceptibility changes during the first two years after the diagnosis of multiple sclerosis (MS) and identified their association with cerebrospinal fluid (CSF) markers at baseline. Seventy patients underwent MRI (T1 and susceptibility weighted images processed to quantitative susceptibility maps, QSM) with neurological examination at the diagnosis and after two years. In CSF obtained at baseline, the levels of oxidative stress, products of lipid peroxidation, and neurofilaments light chain (NfL) were determined. Brain volumetry and QSM were compared with a group of 58 healthy controls. In MS patients, regional atrophy was identified in the striatum, thalamus, and substantia nigra. Magnetic susceptibility increased in the striatum, globus pallidus, and dentate and decreased in the thalamus. Compared to controls, MS patients developed greater atrophy of the thalamus, and a greater increase in susceptibility in the caudate, putamen, globus pallidus and a decrease in the thalamus. Of the multiple calculated correlations, only the decrease in brain parenchymal fraction, total white matter, and thalamic volume in MS patients negatively correlated with increased NfL in CSF. Additionally, negative correlation was found between QSM value in the substantia nigra and peroxiredoxin-2, and QSM value in the dentate and lipid peroxidation levels.
Collapse
Affiliation(s)
- Andrea Burgetova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Petr Dusek
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Tomas Uher
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Martin Vejrazka
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Romana Burgetova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
- Department of Radiology, Third Faculty of Medicine, Charles University, 100 34 Prague, Czech Republic
| | - Dana Horakova
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Barbora Srpova
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Marta Kalousova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Libuse Noskova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Katerina Levova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Jan Krasensky
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Lukas Lambert
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| |
Collapse
|
13
|
Jäschke D, Steiner KM, Chang DI, Claaßen J, Uslar E, Thieme A, Gerwig M, Pfaffenrot V, Hulst T, Gussew A, Maderwald S, Göricke SL, Minnerop M, Ladd ME, Reichenbach JR, Timmann D, Deistung A. Age-related differences of cerebellar cortex and nuclei: MRI findings in healthy controls and its application to spinocerebellar ataxia (SCA6) patients. Neuroimage 2023; 270:119950. [PMID: 36822250 DOI: 10.1016/j.neuroimage.2023.119950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Understanding cerebellar alterations due to healthy aging provides a reference point against which pathological findings in late-onset disease, for example spinocerebellar ataxia type 6 (SCA6), can be contrasted. In the present study, we investigated the impact of aging on the cerebellar nuclei and cerebellar cortex in 109 healthy controls (age range: 16 - 78 years) using 3 Tesla magnetic resonance imaging (MRI). Findings were compared with 25 SCA6 patients (age range: 38 - 78 years). A subset of 16 SCA6 (included: 14) patients and 50 controls (included: 45) received an additional MRI scan at 7 Tesla and were re-scanned after one year. MRI included T1-weighted, T2-weighted FLAIR, and multi-echo T2*-weighted imaging. The T2*-weighted phase images were converted to quantitative susceptibility maps (QSM). Since the cerebellar nuclei are characterized by elevated iron content with respect to their surroundings, two independent raters manually outlined them on the susceptibility maps. T1-weighted images acquired at 3T were utilized to automatically identify the cerebellar gray matter (GM) volume. Linear correlations revealed significant atrophy of the cerebellum due to tissue loss of cerebellar cortical GM in healthy controls with increasing age. Reduction of the cerebellar GM was substantially stronger in SCA6 patients. The volume of the dentate nuclei did not exhibit a significant relationship with age, at least in the age range between 18 and 78 years, whereas mean susceptibilities of the dentate nuclei increased with age. As previously shown, the dentate nuclei volumes were smaller and magnetic susceptibilities were lower in SCA6 patients compared to age- and sex-matched controls. The significant dentate volume loss in SCA6 patients could also be confirmed with 7T MRI. Linear mixed effects models and individual paired t-tests accounting for multiple comparisons revealed no statistical significant change in volume and susceptibility of the dentate nuclei after one year in neither patients nor controls. Importantly, dentate volumes were more sensitive to differentiate between SCA6 (Cohen's d = 3.02) and matched controls than the cerebellar cortex volume (d = 2.04). In addition to age-related decline of the cerebellar cortex and atrophy in SCA6 patients, age-related increase of susceptibility of the dentate nuclei was found in controls, whereas dentate volume and susceptibility was significantly decreased in SCA6 patients. Because no significant changes of any of these parameters was found at follow-up, these measures do not allow to monitor disease progression at short intervals.
Collapse
Affiliation(s)
- Dominik Jäschke
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Department of Radiology and Nuclear Medicine, University Hospital Basel, Basel 4031, Switzerland
| | - Katharina M Steiner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen 45147, Germany
| | - Dae-In Chang
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Clinic for Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital of the Ruhr-University Bochum, Bochum 44791, Germany
| | - Jens Claaßen
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Fachklinik für Neurologie, MEDICLIN Klinik Reichshof, Reichshof-Eckenhagen 51580, Germany
| | - Ellen Uslar
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany
| | - Marcus Gerwig
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany
| | - Viktor Pfaffenrot
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany
| | - Thomas Hulst
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Erasmus University College, Rotterdam 3011 HP, the Netherlands
| | - Alexander Gussew
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Ernst-Grube-Str. 40, Halle (Saale) 06120, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany
| | - Sophia L Göricke
- Institute of Diagnostic and Interventional Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Essen 45141, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich 52425, Germany; Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Faculty of Physics and Astronomy and Faculty of Medicine, Heidelberg University, Heidelberg 69120, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena 07743, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany
| | - Andreas Deistung
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Ernst-Grube-Str. 40, Halle (Saale) 06120, Germany; Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena 07743, Germany.
| |
Collapse
|
14
|
Kerestes R, Cummins H, Georgiou-Karistianis N, Selvadurai LP, Corben LA, Delatycki MB, Egan GF, Harding IH. Reduced cerebello-cerebral functional connectivity correlates with disease severity and impaired white matter integrity in Friedreich ataxia. J Neurol 2023; 270:2360-2369. [PMID: 36859626 PMCID: PMC10130106 DOI: 10.1007/s00415-023-11637-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/19/2023] [Indexed: 03/03/2023]
Abstract
Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease characterised in most cases by progressive and debilitating motor dysfunction. Degeneration of cerebellar white matter pathways have been previously reported, alongside indications of cerebello-cerebral functional alterations. In this work, we examine resting-state functional connectivity changes within cerebello-cerebral circuits, and their associations with disease severity (Scale for the Assessment and Rating of Ataxia [SARA]), psychomotor function (speeded and paced finger tapping), and white matter integrity (diffusion tensor imaging) in 35 adults with FRDA and 45 age and sex-matched controls. Voxel-wise seed-based functional connectivity was assessed for three cerebellar cortical regions (anterior lobe, lobules I-V; superior posterior lobe, lobules VI-VIIB; inferior posterior lobe, lobules VIIIA-IX) and two dentate nucleus seeds (dorsal and ventral). Compared to controls, people with FRDA showed significantly reduced connectivity between the anterior cerebellum and bilateral pre/postcentral gyri, and between the superior posterior cerebellum and left dorsolateral PFC. Greater disease severity correlated with lower connectivity in these circuits. Lower anterior cerebellum-motor cortex functional connectivity also correlated with slower speeded finger tapping and less fractional anisotropy in the superior cerebellar peduncles, internal capsule, and precentral white matter in the FRDA cohort. There were no significant between-group differences in inferior posterior cerebellar or dentate nucleus connectivity. This study indicates that altered cerebello-cerebral functional connectivity is associated with functional status and white matter damage in cerebellar efferent pathways in people with FRDA, particularly in motor circuits.
Collapse
Affiliation(s)
- Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Hannah Cummins
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Nellie Georgiou-Karistianis
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Louisa P Selvadurai
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Gary F Egan
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3800, Australia
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia. .,Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
15
|
Zhang Y, Huang P, Wang X, Xu Q, Liu Y, Jin Z, Li Y, Cheng Z, Tang R, Chen S, He N, Yan F, Haacke EM. Visualizing the deep cerebellar nuclei using quantitative susceptibility mapping: An application in healthy controls, Parkinson's disease patients and essential tremor patients. Hum Brain Mapp 2023; 44:1810-1824. [PMID: 36502376 PMCID: PMC9921226 DOI: 10.1002/hbm.26178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 12/14/2022] Open
Abstract
The visualization and identification of the deep cerebellar nuclei (DCN) (dentate [DN], interposed [IN] and fastigial nuclei [FN]) are particularly challenging. We aimed to visualize the DCN using quantitative susceptibility mapping (QSM), predict the contrast differences between QSM and T2* weighted imaging, and compare the DCN volume and susceptibility in movement disorder populations and healthy controls (HCs). Seventy-one Parkinson's disease (PD) patients, 39 essential tremor patients, and 80 HCs were enrolled. The PD patients were subdivided into tremor dominant (TD) and postural instability/gait difficulty (PIGD) groups. A 3D strategically acquired gradient echo MR imaging protocol was used for each subject to obtain the QSM data. Regions of interest were drawn manually on the QSM data to calculate the volume and susceptibility. Correlation analysis between the susceptibility and either age or volume was performed and the intergroup differences of the volume and magnetic susceptibility in all the DCN structures were evaluated. For the most part, all the DCN structures were clearly visualized on the QSM data. The susceptibility increased as a function of volume for both the HC group and disease groups in the DN and IN (p < .001) but not the FN (p = .74). Only the volume of the FN in the TD-PD group was higher than that in the HCs (p = .012), otherwise, the volume and susceptibility among these four groups did not differ significantly. In conclusion, QSM provides clear visualization of the DCN structures. The results for the volume and susceptibility of the DCN can be used as baseline references in future studies of movement disorders.
Collapse
Affiliation(s)
- Youmin Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Huang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhui Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyun Xu
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Yu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijia Jin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zenghui Cheng
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongbiao Tang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA.,Department of Radiology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
16
|
Pan X, Dutta D, Lu S, Bellen HJ. Sphingolipids in neurodegenerative diseases. Front Neurosci 2023; 17:1137893. [PMID: 36875645 PMCID: PMC9978793 DOI: 10.3389/fnins.2023.1137893] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
Smith FM, Kosman DJ. Frataxin-deficient human brain microvascular endothelial cells lose polymerized actin and are paracellularly permeable -implications for blood-brain barrier integrity in Friedreich's Ataxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527936. [PMID: 36798283 PMCID: PMC9934603 DOI: 10.1101/2023.02.09.527936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Background Friedreich's Ataxia (FRDA) is the most prevalent inherited ataxia; the disease results from loss of Frataxin, an essential mitochondrial iron trafficking protein. FRDA presents as neurodegeneration of the dorsal root ganglion and cerebellar dentate nuclei, followed by brain iron accumulation in the latter. End stage disease includes cardiac fibrosis that contributes to hypertrophic cardiomyopathy. The microvasculature plays an essential barrier role in both the brain and heart, thus an investigation of this tissue system in FRDA is essential to the delineation of the cellular dysfunction in this genetic disorder. Here, we investigate brain microvascular endothelial cell integrity in FRDA in a model of the blood-brain barrier (BBB). Methods We used lentiviral mediated shRNA delivery to generate a novel FRDA model in immortalized human brain microvascular endothelial cells (hBMVEC) that compose the microcapillaries of the BBB. We verified known cellular pathophysiologies of FXN knockdown including increased oxidative stress, loss of energy metabolism, and increased cell size. Furthermore, we investigated cytoskeletal architecture including the abundance and organization of filamentous actin, and barrier physiology via transendothelial electrical resistance and fluorescent tracer flux. Results shFXN hBMVEC display the known FRDA cell morbidity including increased oxidative stress, decreased energy metabolism, and an increase in cell size. We demonstrate that shFXN hBMVEC have less overall filamentous actin, and that filamentous actin is lost at the cell membrane and cortical actin ring. Consistent with loss of cytoskeletal structure and anchorage, we found decreased barrier strength and increased paracellular tracer flux in the shFXN hBMVEC transwell model. Conclusion We identified that insufficient FXN levels in the hBMVEC BBB model causes changes in cytoskeletal architecture and increased barrier permeability, cell pathologies that may be related to patient brain iron accumulation, neuroinflammation, neurodegeneration, and stroke. Our findings implicate other barrier cells, e.g., the cardiac microvasculature, likely contributory also to disease pathology in FRDA.
Collapse
Affiliation(s)
- Frances M Smith
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University of New York at Buffalo
| | - Daniel J Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University of New York at Buffalo
| |
Collapse
|
18
|
Pizcueta P, Vergara C, Emanuele M, Vilalta A, Rodríguez-Pascau L, Martinell M. Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate. Int J Mol Sci 2023; 24:ijms24043201. [PMID: 36834611 PMCID: PMC9961553 DOI: 10.3390/ijms24043201] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence suggests that the peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, plays an important role in physiological processes in the central nervous system (CNS) and is involved in cellular metabolism and repair. Cellular damage caused by acute brain injury and long-term neurodegenerative disorders is associated with alterations of these metabolic processes leading to mitochondrial dysfunction, oxidative stress, and neuroinflammation. PPARγ agonists have demonstrated the potential to be effective treatments for CNS diseases in preclinical models, but to date, most drugs have failed to show efficacy in clinical trials of neurodegenerative diseases including amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. The most likely explanation for this lack of efficacy is the insufficient brain exposure of these PPARγ agonists. Leriglitazone is a novel, blood-brain barrier (BBB)-penetrant PPARγ agonist that is being developed to treat CNS diseases. Here, we review the main roles of PPARγ in physiology and pathophysiology in the CNS, describe the mechanism of action of PPARγ agonists, and discuss the evidence supporting the use of leriglitazone to treat CNS diseases.
Collapse
Affiliation(s)
- Pilar Pizcueta
- Minoryx Therapeutics SL, 08302 Barcelona, Spain
- Correspondence:
| | | | - Marco Emanuele
- Minoryx Therapeutics BE, Gosselies, 6041 Charleroi, Belgium
| | | | | | - Marc Martinell
- Minoryx Therapeutics SL, 08302 Barcelona, Spain
- Minoryx Therapeutics BE, Gosselies, 6041 Charleroi, Belgium
| |
Collapse
|
19
|
Weil EL, Nakawah MO, Masdeu JC. Advances in the neuroimaging of motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:359-381. [PMID: 37562878 DOI: 10.1016/b978-0-323-98818-6.00039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Neuroimaging is a valuable adjunct to the history and examination in the evaluation of motor system disorders. Conventional imaging with computed tomography or magnetic resonance imaging depicts important anatomic information and helps to identify imaging patterns which may support diagnosis of a specific motor disorder. Advanced imaging techniques can provide further detail regarding volume, functional, or metabolic changes occurring in nervous system pathology. This chapter is an overview of the advances in neuroimaging with particular emphasis on both standard and less well-known advanced imaging techniques and findings, such as diffusion tensor imaging or volumetric studies, and their application to specific motor disorders. In addition, it provides reference to emerging imaging biomarkers in motor system disorders such as Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease, and briefly reviews the neuroimaging findings in different causes of myelopathy and peripheral nerve disorders.
Collapse
Affiliation(s)
- Erika L Weil
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States; Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States.
| | - Mohammad Obadah Nakawah
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Joseph C Masdeu
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
20
|
Pandolfo M, Reetz K, Darling A, Rodriguez de Rivera FJ, Henry PG, Joers J, Lenglet C, Adanyeguh I, Deelchand D, Mochel F, Pousset F, Pascual S, Van den Eede D, Martin-Ugarte I, Vilà-Brau A, Mantilla A, Pascual M, Martinell M, Meya U, Durr A. Efficacy and Safety of Leriglitazone in Patients With Friedreich Ataxia. Neurol Genet 2022; 8:e200034. [DOI: 10.1212/nxg.0000000000200034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/18/2022] [Indexed: 11/06/2022]
Abstract
Background and ObjectivesFriedreich ataxia (FRDA) is an autosomal recessive ataxia with no approved treatments. Leriglitazone is a selective peroxisome proliferator–activated receptor γ agonist that crosses the blood-brain barrier and, in preclinical models, improved mitochondrial function and energy production. We assessed effects of leriglitazone in patients with FRDA in a proof-of-concept study.MethodsIn this double-blind, randomized controlled trial, eligible participants (age 12–60 years) had genetically confirmed FRDA, a Scale for the Assessment and Rating of Ataxia (SARA) total score <25, and a SARA item 1 score of 2–6, inclusive. Key exclusion criteria were age at FRDA onset ≥25 years and history of cardiac dysfunction. Participants were randomly assigned (2:1) to receive a daily, oral, individualized dose of leriglitazone or placebo for 48 weeks. The primary endpoint was the change from baseline to week 48 in spinal cord area (C2-C3) (measured by MRI). Secondary endpoints included the change from baseline to week 48 in iron accumulation in the dentate nucleus (quantitative susceptibility mapping) and totalN-acetylaspartate to myo-inositol (tNAA/mIns) ratio.ResultsOverall, 39 patients were enrolled (mean age 24 years; 43.6% women; mean time since symptom onset 10.5 years): 26 patients received leriglitazone (20 completed) and 13 received placebo (12 completed). There was no difference between groups in spinal cord area from baseline to week 48 (least-squares [LS] mean change [standard error (SE)]: leriglitazone, −0.39 [0.55] mm2; placebo, 0.08 [0.72] mm2;p= 0.61). Iron accumulation in the dentate nucleus was greater with placebo (LS mean change [SE]: leriglitazone, 0.10 [1.33] ppb; placebo, 4.86 [1.84] ppb;p= 0.05), and a numerical difference was seen in tNAA/mIns ratio (LS mean change [SE]: leriglitazone, 0.03 [0.02]; placebo, −0.02 [0.03];p= 0.25). The most frequent adverse event was peripheral edema (leriglitazone 73.1%, placebo 0%).DiscussionThe primary endpoint of change in spinal cord area was not met. Secondary endpoints provide evidence supporting proof of concept for leriglitazone mode of action and, with acceptable safety data, support larger studies in patients with FRDA.Trial Registration InformationClinicalTrials.gov:NCT03917225; EudraCT: 2018-004405-64; submitted April 17, 2019; first patient enrolled April 2, 2019.clinicaltrials.gov/ct2/show/NCT03917225?term=NCT03917225&draw=2&rank=1.Classification of EvidenceThis study provides Class I evidence that individualized dosing of leriglitazone, compared with placebo, is not associated with changes in spinal cord area in patients with FRDA.
Collapse
|
21
|
Georgiou-Karistianis N, Corben LA, Reetz K, Adanyeguh IM, Corti M, Deelchand DK, Delatycki MB, Dogan I, Evans R, Farmer J, França MC, Gaetz W, Harding IH, Harris KS, Hersch S, Joules R, Joers JJ, Krishnan ML, Lax M, Lock EF, Lynch D, Mareci T, Muthuhetti Gamage S, Pandolfo M, Papoutsi M, Rezende TJR, Roberts TPL, Rosenberg JT, Romanzetti S, Schulz JB, Schilling T, Schwarz AJ, Subramony S, Yao B, Zicha S, Lenglet C, Henry PG. A natural history study to track brain and spinal cord changes in individuals with Friedreich's ataxia: TRACK-FA study protocol. PLoS One 2022; 17:e0269649. [PMID: 36410013 PMCID: PMC9678384 DOI: 10.1371/journal.pone.0269649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Drug development for neurodegenerative diseases such as Friedreich's ataxia (FRDA) is limited by a lack of validated, sensitive biomarkers of pharmacodynamic response in affected tissue and disease progression. Studies employing neuroimaging measures to track FRDA have thus far been limited by their small sample sizes and limited follow up. TRACK-FA, a longitudinal, multi-site, and multi-modal neuroimaging natural history study, aims to address these shortcomings by enabling better understanding of underlying pathology and identifying sensitive, clinical trial ready, neuroimaging biomarkers for FRDA. METHODS 200 individuals with FRDA and 104 control participants will be recruited across seven international study sites. Inclusion criteria for participants with genetically confirmed FRDA involves, age of disease onset ≤ 25 years, Friedreich's Ataxia Rating Scale (FARS) functional staging score of ≤ 5, and a total modified FARS (mFARS) score of ≤ 65 upon enrolment. The control cohort is matched to the FRDA cohort for age, sex, handedness, and years of education. Participants will be evaluated at three study visits over two years. Each visit comprises of a harmonized multimodal Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) scan of the brain and spinal cord; clinical, cognitive, mood and speech assessments and collection of a blood sample. Primary outcome measures, informed by previous neuroimaging studies, include measures of: spinal cord and brain morphometry, spinal cord and brain microstructure (measured using diffusion MRI), brain iron accumulation (using Quantitative Susceptibility Mapping) and spinal cord biochemistry (using MRS). Secondary and exploratory outcome measures include clinical, cognitive assessments and blood biomarkers. DISCUSSION Prioritising immediate areas of need, TRACK-FA aims to deliver a set of sensitive, clinical trial-ready neuroimaging biomarkers to accelerate drug discovery efforts and better understand disease trajectory. Once validated, these potential pharmacodynamic biomarkers can be used to measure the efficacy of new therapeutics in forestalling disease progression. CLINICAL TRIAL REGISTRATION ClinicalTrails.gov Identifier: NCT04349514.
Collapse
Affiliation(s)
- Nellie Georgiou-Karistianis
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Louise A. Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Isaac M. Adanyeguh
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Manuela Corti
- Powell Gene Therapy Centre, University of Florida, Gainesville, Florida, United States of America
| | - Dinesh K. Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Martin B. Delatycki
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Rebecca Evans
- Takeda Pharmaceutical Company Ltd, Cambridge, Massachusetts, United States of America
| | - Jennifer Farmer
- Friedreich’s Ataxia Research Alliance (FARA), Downingtown, Pennsylvania, United States of America
| | - Marcondes C. França
- Department of Neurology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - William Gaetz
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Ian H. Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Karen S. Harris
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Steven Hersch
- Neurology Business Group, Eisai Inc., Nutley, New Jersey, United States of America
| | | | - James J. Joers
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michelle L. Krishnan
- Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | | | - Eric F. Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States of America
| | - David Lynch
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Thomas Mareci
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Sahan Muthuhetti Gamage
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Massimo Pandolfo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | | | - Timothy P. L. Roberts
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jens T. Rosenberg
- McKnight Brain Institute, Department of Neurology, University of Florida, Gainesville, Florida, United States of America
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Jörg B. Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Traci Schilling
- PTC Therapeutics, Inc, South Plainfield, New Jersey, United States of America
| | - Adam J. Schwarz
- Takeda Pharmaceutical Company Ltd, Cambridge, Massachusetts, United States of America
| | - Sub Subramony
- McKnight Brain Institute, Department of Neurology, University of Florida, Gainesville, Florida, United States of America
| | - Bert Yao
- PTC Therapeutics, Inc, South Plainfield, New Jersey, United States of America
| | - Stephen Zicha
- Takeda Pharmaceutical Company Ltd, Cambridge, Massachusetts, United States of America
| | - Christophe Lenglet
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
22
|
Lancione M, Bosco P, Costagli M, Nigri A, Aquino D, Carne I, Ferraro S, Giulietti G, Napolitano A, Palesi F, Pavone L, Pirastru A, Savini G, Tagliavini F, Bruzzone MG, Gandini Wheeler-Kingshott CA, Tosetti M, Biagi L. Multi-centre and multi-vendor reproducibility of a standardized protocol for quantitative susceptibility Mapping of the human brain at 3T. Phys Med 2022; 103:37-45. [DOI: 10.1016/j.ejmp.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
|
23
|
He C, Guan X, Zhang W, Li J, Liu C, Wei H, Xu X, Zhang Y. Quantitative susceptibility atlas construction in Montreal Neurological Institute space: towards histological-consistent iron-rich deep brain nucleus subregion identification. Brain Struct Funct 2022:10.1007/s00429-022-02547-1. [PMID: 36038737 DOI: 10.1007/s00429-022-02547-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/27/2022] [Indexed: 01/25/2023]
Abstract
Iron-rich deep brain nuclei (DBN) of the human brain are involved in various motoric, emotional and cognitive brain functions. The abnormal iron alterations in the DBN are closely associated with multiple neurological and psychiatric diseases. Quantitative susceptibility mapping (QSM) provides the spatial distribution of the magnetic susceptibility of human brain tissues. Compared to traditional structural imaging, QSM provides superiority for imaging the iron-rich DBN owing to the susceptibility difference existing between brain tissues. In this study, we constructed a Montreal Neurological Institute (MNI) space unbiased QSM human brain atlas via group-wise registration from 100 healthy subjects aged 19-29 years. The atlas construction process was guided by hybrid images that were fused from multi-modal magnetic resonance images (MRI). We named it as Multi-modal-fused magnetic Susceptibility (MuSus-100) atlas. The high-quality susceptibility atlas provides extraordinary image contrast between iron-rich DBN with their surroundings. Parcellation maps of DBN and their subregions that are highly related to neurological and psychiatric pathology were then manually labeled based on the atlas set with the assistance of an image border-enhancement process. Especially, the bilateral thalamus was delineated into 64 detailed subregions referring to the Schaltenbrand-Wahren stereotactic atlas. To our best knowledge, the histological-consistent thalamic nucleus parcellation map is well defined for the first time in the MNI space. Compared with existing atlases that emphasizing DBN parcellation, the newly proposed atlas outperforms on the task of atlas-guided individual brain image DBN segmentation both in accuracy and robustness. Moreover, we applied the proposed DBN parcellation map to conduct detailed identification of the pathology-related iron content alterations in subcortical nuclei for Parkinson's Disease (PD) patients. We envision that the MuSus-100 atlas can play a crucial role in improving the accuracy of DBN segmentation for the research of neurological and psychiatric disease progress and also be helpful for target planning in deep brain stimulation surgery.
Collapse
Affiliation(s)
- Chenyu He
- School of Information Science and Technology, ShanghaiTech University, 393 Huaxia Road, Shanghai, 201210, China
| | - Xiaojun Guan
- Department of Radiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Weimin Zhang
- School of Information Science and Technology, ShanghaiTech University, 393 Huaxia Road, Shanghai, 201210, China
| | - Jun Li
- School of Information Science and Technology, ShanghaiTech University, 393 Huaxia Road, Shanghai, 201210, China
| | - Chunlei Liu
- Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, 94720, United States
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200030, China
| | - Xiaojun Xu
- Department of Radiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, 393 Huaxia Road, Shanghai, 201210, China. .,Shanghai Engineering Research Center of Intelligent Vision and Imaging, ShanghaiTech University, 393 Huaxia Road, Shanghai, 201210, China.
| |
Collapse
|
24
|
Marvel CL, Chen L, Joyce MR, Morgan OP, Iannuzzelli KG, LaConte SM, Lisinski JM, Rosenthal LS, Li X. Quantitative susceptibility mapping of basal ganglia iron is associated with cognitive and motor functions that distinguish spinocerebellar ataxia type 6 and type 3. Front Neurosci 2022; 16:919765. [PMID: 36061587 PMCID: PMC9433989 DOI: 10.3389/fnins.2022.919765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background In spinocerebellar ataxia type 3 (SCA3), volume loss has been reported in the basal ganglia, an iron-rich brain region, but iron content has not been examined. Recent studies have reported that patients with SCA6 have markedly decreased iron content in the cerebellar dentate, coupled with severe volume loss. Changing brain iron levels can disrupt cognitive and motor functions, yet this has not been examined in the SCAs, a disease in which iron-rich regions are affected. Methods In the present study, we used quantitative susceptibility mapping (QSM) to measure tissue magnetic susceptibility (indicating iron concentration), structural volume, and normalized susceptibility mass (indicating iron content) in the cerebellar dentate and basal ganglia in people with SCA3 (n = 10) and SCA6 (n = 6) and healthy controls (n = 9). Data were acquired using a 7T Philips MRI scanner. Supplemental measures assessed motor, cognitive, and mood domains. Results Putamen volume was lower in both SCA groups relative to controls, replicating prior findings. Dentate susceptibility mass and volume in SCA6 was lower than in SCA3 or controls, also replicating prior findings. The novel finding was that higher basal ganglia susceptibility mass in SCA6 correlated with lower cognitive performance and greater motor impairment, an association that was not observed in SCA3. Cerebellar dentate susceptibility mass, however, had the opposite relationship with cognition and motor function in SCA6, suggesting that, as dentate iron is depleted, it relocated to the basal ganglia, which contributed to cognitive and motor decline. By contrast, basal ganglia volume loss, rather than iron content, appeared to drive changes in motor function in SCA3. Conclusion The associations of higher basal ganglia iron with lower motor and cognitive function in SCA6 but not in SCA3 suggest the potential for using brain iron deposition profiles beyond the cerebellar dentate to assess disease states within the cerebellar ataxias. Moreover, the role of the basal ganglia deserves greater attention as a contributor to pathologic and phenotypic changes associated with SCA.
Collapse
Affiliation(s)
- Cherie L. Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michelle R. Joyce
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Owen P. Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine G. Iannuzzelli
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stephen M. LaConte
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Jonathan M. Lisinski
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
| | - Liana S. Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
25
|
Hanaford AR, Cho YJ, Nakai H. AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives. Orphanet J Rare Dis 2022; 17:217. [PMID: 35668433 PMCID: PMC9169410 DOI: 10.1186/s13023-022-02324-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial diseases are a group of rare, heterogeneous diseases caused by gene mutations in both nuclear and mitochondrial genomes that result in defects in mitochondrial function. They are responsible for significant morbidity and mortality as they affect multiple organ systems and particularly those with high energy-utilizing tissues, such as the nervous system, skeletal muscle, and cardiac muscle. Virtually no effective treatments exist for these patients, despite the urgent need. As the majority of these conditions are monogenic and caused by mutations in nuclear genes, gene replacement is a highly attractive therapeutic strategy. Adeno-associated virus (AAV) is a well-characterized gene replacement vector, and its safety profile and ability to transduce quiescent cells nominates it as a potential gene therapy vehicle for several mitochondrial diseases. Indeed, AAV vector-based gene replacement is currently being explored in clinical trials for one mitochondrial disease (Leber hereditary optic neuropathy) and preclinical studies have been published investigating this strategy in other mitochondrial diseases. This review summarizes the preclinical findings of AAV vector-based gene replacement therapy for mitochondrial diseases including Leigh syndrome, Barth syndrome, ethylmalonic encephalopathy, and others.
Collapse
Affiliation(s)
- Allison R Hanaford
- Center for Integrative Brain Research, Seattle Children's Reserach Institute, Seattle, WA, 98101, USA.
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Yoon-Jae Cho
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Pediatric Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hiroyuki Nakai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Molecular Immunology and Microbiology, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| |
Collapse
|
26
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|
27
|
Harding IH, Ward PGD. Brain susceptibility imaging provides valuable in vivo insights into cerebellar diseases, but biological interpretations remain elusive. Brain Commun 2022; 4:fcac007. [PMID: 35178517 PMCID: PMC8846579 DOI: 10.1093/braincomms/fcac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/09/2021] [Accepted: 02/03/2022] [Indexed: 11/14/2022] Open
Abstract
This scientific commentary relates to: 'Quantitative susceptibility mapping reveals alterations of dentate nuclei in common types of degenerative cerebellar ataxias' by Deistung et al. (https://doi.org/10.1093/braincomms/fcab306).
Collapse
Affiliation(s)
- Ian H. Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Phillip G. D. Ward
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
28
|
Deistung A, Jäschke D, Draganova R, Pfaffenrot V, Hulst T, Steiner KM, Thieme A, Giordano IA, Klockgether T, Tunc S, Münchau A, Minnerop M, Göricke SL, Reichenbach JR, Timmann D. Quantitative susceptibility mapping reveals alterations of dentate nuclei in common types of degenerative cerebellar ataxias. Brain Commun 2022; 4:fcab306. [PMID: 35291442 PMCID: PMC8914888 DOI: 10.1093/braincomms/fcab306] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 10/28/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellar nuclei are a brain region with high iron content. Surprisingly,
little is known about iron content in the cerebellar nuclei and its possible
contribution to pathology in cerebellar ataxias, with the only exception of
Friedreich’s ataxia. In the present exploratory cross-sectional study,
quantitative susceptibility mapping was used to investigate volume, iron
concentration and total iron content of the dentate nuclei in common types of
hereditary and non-hereditary degenerative ataxias. Seventy-nine patients with
spinocerebellar ataxias of types 1, 2, 3 and 6; 15 patients with
Friedreich’s ataxia; 18 patients with multiple system atrophy, cerebellar
type and 111 healthy controls were also included. All underwent 3 T MRI
and clinical assessments. For each specific ataxia subtype, voxel-based and
volumes-of-interest-based group analyses were performed in comparison with a
corresponding age- and sex-matched control group, both for volume, magnetic
susceptiblity (indicating iron concentration) and susceptibility mass
(indicating total iron content) of the dentate nuclei. Spinocerebellar ataxia of
type 1 and multiple system atrophy, cerebellar type patients showed higher
susceptibilities in large parts of the dentate nucleus but unaltered
susceptibility masses compared with controls. Friedreich’s ataxia
patients and, only on a trend level, spinocerebellar ataxia of type 2 patients
showed higher susceptibilities in more circumscribed parts of the dentate. In
contrast, spinocerebellar ataxia of type 6 patients revealed lower
susceptibilities and susceptibility masses compared with controls throughout the
dentate nucleus. Spinocerebellar ataxia of type 3 patients showed no significant
changes in susceptibility and susceptibility mass. Lower volume of the dentate
nuclei was found to varying degrees in all ataxia types. It was most pronounced
in spinocerebellar ataxia of type 6 patients and least prominent in
spinocerebellar ataxia of type 3 patients. The findings show that alterations in
susceptibility revealed by quantitative susceptibility mapping are common in the
dentate nuclei in different types of cerebellar ataxias. The most striking
changes in susceptibility were found in spinocerebellar ataxia of type 1,
multiple system atrophy, cerebellar type and spinocerebellar ataxia of type 6.
Because iron content is known to be high in glial cells but not in neurons of
the cerebellar nuclei, the higher susceptibility in spinocerebellar ataxia of
type 1 and multiple system atrophy, cerebellar type may be explained by a
reduction of neurons (increase in iron concentration) and/or an increase in
iron-rich glial cells, e.g. microgliosis. Hypomyelination also leads to higher
susceptibility and could also contribute. The lower susceptibility in SCA6
suggests a loss of iron-rich glial cells. Quantitative susceptibility maps
warrant future studies of iron content and iron-rich cells in ataxias to gain a
more comprehensive understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Halle (Saale), Germany
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Dominik Jäschke
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Rossitza Draganova
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Viktor Pfaffenrot
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Thomas Hulst
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
- Erasmus University College, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Katharina M. Steiner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Ilaria A. Giordano
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sinem Tunc
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Sophia L. Göricke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, Essen, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| |
Collapse
|
29
|
Qin Z, Wu W, Liu D, Zheng C, Kang J, Zhou H, Meng X, Haacke EM, Wang L. Quantitative Susceptibility Mapping of Brain Iron Relating to Cognitive Impairment in Hypertension. J Magn Reson Imaging 2022; 56:508-515. [PMID: 34989062 DOI: 10.1002/jmri.28043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hypertension (HTN) might impair cognition. Brain iron deposition correlates with cognitive impairment. The relationship between brain iron and cognition in HTN patients is less clear. PURPOSE To measure brain susceptibility in HTN patients using quantitative susceptibility mapping (QSM) and to explore the relationship between brain iron and cognition. STUDY TYPE Retrospective cross-sectional study. SUBJECTS Sixty HTN patients (35 with mild cognitive impairment [MCI] and 25 without MCI) and 24 age, gender, and education matched controls. FIELD STRENGTH/SEQUENCE 3 T; strategically acquired gradient echo (STAGE) imaging protocol for QSM analysis. ASSESSMENT All subjects underwent Montreal Cognitive Assessment (MoCA) scoring of visuospatial/executive, naming, attention, abstraction, language, delayed memory, and orientation functions. HTN patients were divided into two groups (with and without MCI) depending on the MoCA score. Regions of interest (ROIs) were manually demarcated on the STAGE images by three independent radiologists and susceptibility were determined for bilateral frontal white matter, parietal white matter, occipital white matter, caudate nucleus (CN), putamen (PU), globus pallidus (GP), thalamus (TH), red nucleus (RN), substantia nigra (SN), and dentate nucleus (DN). STATISTICAL TESTS Analysis of variance with post-hoc least significant difference (LSD) tests and Pearson correlation coefficients (r). A P-value <0.05 was considered to be statistically significant. RESULTS The susceptibility was significantly different in CN, PU, and DN among the three groups. The susceptibility of right CN and left PU were correlated with MoCA scores (r = -0.429 and r = -0.389, respectively). The susceptibility of left PU was also correlated with delayed memory scores (r = -0.664). The susceptibility of left and right GP were correlated with naming scores (r = -0.494 and r = -0.446, respectively) and the susceptibility of left DN were correlated with visuospatial/executive scores (r = 0.479). DATA CONCLUSION QSM measured brain iron was significantly higher in CN, PU, and DN in HTN patients. Cognitive impairment was correlated with regional brain iron deposition. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Ziji Qin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenjun Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Dingxi Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jiamin Kang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Hongyan Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xueni Meng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - E Mark Haacke
- Magnetic Resonance Innovations, Bingham Farms, Michigan, USA.,Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Lixia Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
30
|
Shishegar R, Harding IH, Selvadurai LP, Corben LA, Delatycki MB, Egan GF, Georgiou-Karistianis N. Longitudinal investigation of brain activation during motor tasks in Friedreich ataxia: 24-month data from IMAGE-FRDA. Brain Struct Funct 2021; 227:809-819. [PMID: 34687355 DOI: 10.1007/s00429-021-02413-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/08/2021] [Indexed: 11/26/2022]
Abstract
Friedreich ataxia (FRDA) is a progressive autosomal recessive disease. While motor dysfunction is the primary neurological hallmark, little is known about the underlying neurobiological changes associated with motor deficits over the course of disease. We investigated the hypothesis that progressive functional changes in both the cerebellum and cerebrum are related to longitudinal changes in performance on complex motor tasks in individuals with FRDA. Twenty-two individuals with FRDA and 28 controls participated over 24 months. The longitudinal investigation included finger tapping tasks with different levels of complexity (i.e., visually cued, multi-finger; self-paced, single finger), performed in conjunction with fMRI acquisitions, to interrogate changes in the neurobiology of motor and attentional brain networks including the cerebellum and cerebrum. We demonstrated evidence for significant longitudinal decreased cerebral fMRI activity over time in individuals with FRDA, relative to controls, during an attentionally-demanding motor task (visually cued tapping of multiple fingers) in six cerebral regions: right and left superior frontal gyri, right superior temporal gyrus, right primary somatosensory area, right anterior cingulate cortex, and right medial frontal gyrus. Importantly, longitudinal decreased activity was associated with more severe disease status at baseline, higher GAA1 repeat length and earlier age of onset. These findings suggest a dynamic pattern of neuronal activity in motor, attention and executive control networks over time in individuals with FRDA, which is associated with increased disease severity at baseline, increased GAA1 repeat length and earlier age at onset.
Collapse
Affiliation(s)
- Rosita Shishegar
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- The Australian e-Health Research Centre, CSIRO, Melbourne, VIC, Australia
| | - Ian H Harding
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Louisa P Selvadurai
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - Louise A Corben
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Martin B Delatycki
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia
| | - Gary F Egan
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
31
|
Khan W, Corben LA, Bilal H, Vivash L, Delatycki MB, Egan GF, Harding IH. Neuroinflammation in the Cerebellum and Brainstem in Friedreich Ataxia: An [ 18 F]-FEMPA PET Study. Mov Disord 2021; 37:218-224. [PMID: 34643298 DOI: 10.1002/mds.28825] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Neuroinflammation is proposed to accompany, or even contribute to, neuropathology in Friedreich ataxia (FRDA), with implications for disease treatment and tracking. OBJECTIVES To examine brain glial activation and systemic immune dysfunction in people with FRDA and quantify their relationship with symptom severity, duration, and onset age. METHODS Fifteen individuals with FRDA and 13 healthy controls underwent brain positron emission tomography using the translocator protein (TSPO) radioligand [18 F]-FEMPA, a marker of glial activation, together with the quantification of blood plasma inflammatory cytokines. RESULTS [18 F]-FEMPA binding was significantly increased in the dentate nuclei (d = 0.67), superior cerebellar peduncles (d = 0.74), and midbrain (d = 0.87), alongside increased plasma interleukin-6 (IL-6) (d = 0.73), in individuals with FRDA compared to controls. Increased [18 F]-FEMPA binding in the dentate nuclei, brainstem, and cerebellar anterior lobe correlated with earlier age of symptom onset (controlling for the genetic triplet repeat expansion length; all rpart < -0.6), and in the pons and anterior lobe with shorter disease duration (r = -0.66; -0.73). CONCLUSIONS Neuroinflammation is evident in brain regions implicated in FRDA neuropathology. Increased neuroimmune activity may be related to earlier disease onset and attenuate over the course of the illness. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Wasim Khan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Hiba Bilal
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Victorian Clinical Genetics Service, Melbourne, Victoria, Australia
| | - Gary F Egan
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Peng L, Wang S, Chen Z, Peng Y, Wang C, Long Z, Peng H, Shi Y, Hou X, Lei L, Wan L, Liu M, Zou G, Shen L, Xia K, Qiu R, Tang B, Ashizawa T, Klockgether T, Jiang H. Blood Neurofilament Light Chain in Genetic Ataxia: A Meta-Analysis. Mov Disord 2021; 37:171-181. [PMID: 34519102 DOI: 10.1002/mds.28783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND No comprehensive meta-analysis has ever been performed to assess the value of neurofilament light chain (NfL) as a biomarker in genetic ataxia. OBJECTIVE We conducted a meta-analysis to summarize NfL concentration and evaluate its utility as a biomarker in genetic ataxia. METHODS Studies were included if they reported NfL concentration of genetic ataxia. We used log (mean ± SD) NfL to describe mean raw value of NfL. The effect size of NfL between genetic ataxia and healthy controls (HC) was expressed by mean difference. Correlation between NfL and disease severity was calculated. RESULTS We identified 11 studies of 624 HC and 1006 patients, here referred to as spinocerebellar ataxia (SCA1, 2, 3, 6, and 7), Friedreich ataxia (FRDA), and ataxia telangiectasia (A-T). The concentration of blood NfL (bNfL) elevated with proximity to expected onset, and progressively increased from asymptomatic to preclinical to clinical stage in SCA3. Compared with HC, bNfL levels were significantly higher in SCA1, 2, 3, and 7, FRDA, as well as A-T, and the difference increased with the advancing disease in SCA3. bNfL levels correlated with disease severity in SCA3. There was a significant correlation between bNfL and longitudinal progression in SCA3. Additionally, bNfL increased with age in HC, yet this is probably masked by higher disease-related effects on bNfL in genetic ataxia. CONCLUSIONS bNfL can be used as a potential biomarker to predict disease onset, severity, and progression of genetic ataxia. Reference-value setting of bNfL should be divided according to age. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Shang Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Yun Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunrong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhe Long
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huirong Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuting Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lijing Lei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mingjie Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangdong Zou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Tetsuo Ashizawa
- Neuroscience Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Stanley H. Appel Department of Neurology, Weill Cornell Medicine at Houston Methodist Hospital, Houston, Texas, USA
| | - Thomas Klockgether
- Department of Neurology, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
33
|
Harding IH, Lynch DR, Koeppen AH, Pandolfo M. Central Nervous System Therapeutic Targets in Friedreich Ataxia. Hum Gene Ther 2021; 31:1226-1236. [PMID: 33238751 PMCID: PMC7757690 DOI: 10.1089/hum.2020.264] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive inherited multisystem disease, characterized by marked differences in the vulnerability of neuronal systems. In general, the proprioceptive system appears to be affected early, while later in the disease, the dentate nucleus of the cerebellum and, to some degree, the corticospinal tracts degenerate. In the current era of expanding therapeutic discovery in FRDA, including progress toward novel gene therapies, a deeper and more specific consideration of potential treatment targets in the nervous system is necessary. In this work, we have re-examined the neuropathology of FRDA, recognizing new issues superimposed on classical findings, and dissected the peripheral nervous system (PNS) and central nervous system (CNS) aspects of the disease and the affected cell types. Understanding the temporal course of neuropathological changes is needed to identify areas of modifiable disease progression and the CNS and PNS locations that can be targeted at different time points. As most major targets of long-term therapy are in the CNS, this review uses multiple tools for evaluation of the importance of specific CNS locations as targets. In addition to clinical observations, the conceptualizations in this study include physiological, pathological, and imaging approaches, and animal models. We believe that this review, through analysis of a more complete set of data derived from multiple techniques, provides a comprehensive summary of therapeutic targets in FRDA.
Collapse
Affiliation(s)
- Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - David R Lynch
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Arnulf H Koeppen
- Research, Neurology, and Pathology Services, Veterans Affairs Medical Center and Departments of Neurology and Pathology, Albany Medical College, Albany, New York, USA
| | - Massimo Pandolfo
- Laboratory of Experimental Neurology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
34
|
Harding IH, Chopra S, Arrigoni F, Boesch S, Brunetti A, Cocozza S, Corben LA, Deistung A, Delatycki M, Diciotti S, Dogan I, Evangelisti S, França MC, Göricke SL, Georgiou-Karistianis N, Gramegna LL, Henry PG, Hernandez-Castillo CR, Hutter D, Jahanshad N, Joers JM, Lenglet C, Lodi R, Manners DN, Martinez ARM, Martinuzzi A, Marzi C, Mascalchi M, Nachbauer W, Pane C, Peruzzo D, Pisharady PK, Pontillo G, Reetz K, Rezende TJR, Romanzetti S, Saccà F, Scherfler C, Schulz JB, Stefani A, Testa C, Thomopoulos SI, Timmann D, Tirelli S, Tonon C, Vavla M, Egan GF, Thompson PM. Brain Structure and Degeneration Staging in Friedreich Ataxia: Magnetic Resonance Imaging Volumetrics from the ENIGMA-Ataxia Working Group. Ann Neurol 2021; 90:570-583. [PMID: 34435700 PMCID: PMC9292360 DOI: 10.1002/ana.26200] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/24/2023]
Abstract
Objective Friedreich ataxia (FRDA) is an inherited neurological disease defined by progressive movement incoordination. We undertook a comprehensive characterization of the spatial profile and progressive evolution of structural brain abnormalities in people with FRDA. Methods A coordinated international analysis of regional brain volume using magnetic resonance imaging data charted the whole‐brain profile, interindividual variability, and temporal staging of structural brain differences in 248 individuals with FRDA and 262 healthy controls. Results The brainstem, dentate nucleus region, and superior and inferior cerebellar peduncles showed the greatest reductions in volume relative to controls (Cohen d = 1.5–2.6). Cerebellar gray matter alterations were most pronounced in lobules I–VI (d = 0.8), whereas cerebral differences occurred most prominently in precentral gyri (d = 0.6) and corticospinal tracts (d = 1.4). Earlier onset age predicted less volume in the motor cerebellum (rmax = 0.35) and peduncles (rmax = 0.36). Disease duration and severity correlated with volume deficits in the dentate nucleus region, brainstem, and superior/inferior cerebellar peduncles (rmax = −0.49); subgrouping showed these to be robust and early features of FRDA, and strong candidates for further biomarker validation. Cerebral white matter abnormalities, particularly in corticospinal pathways, emerge as intermediate disease features. Cerebellar and cerebral gray matter loss, principally targeting motor and sensory systems, preferentially manifests later in the disease course. Interpretation FRDA is defined by an evolving spatial profile of neuroanatomical changes beyond primary pathology in the cerebellum and spinal cord, in line with its progressive clinical course. The design, interpretation, and generalization of research studies and clinical trials must consider neuroanatomical staging and associated interindividual variability in brain measures. ANN NEUROL 2021;90:570–583
Collapse
Affiliation(s)
- Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Sidhant Chopra
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia.,School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Filippo Arrigoni
- Neuroimaging Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Louise A Corben
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia.,Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, VIC, Australia.,University of Melbourne, Parkville, VIC, Australia
| | - Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Halle (Saale), Germany.,Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martin Delatycki
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi,", University of Bologna, Bologna, Italy
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Jülich, Germany
| | - Stefania Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcondes C França
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Sophia L Göricke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Laura L Gramegna
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Pierre-Gilles Henry
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Carlos R Hernandez-Castillo
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada.,CONACYT-Institute of Neuroethology, University of Veracruz, Xalapa, Mexico
| | - Diane Hutter
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA
| | - James M Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Christophe Lenglet
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - David N Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alberto R M Martinez
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Andrea Martinuzzi
- Scientific Institute, IRCCS Eugenio Medea, Conegliano-Pieve di Soligo Research Center, Conegliano, Italy
| | - Chiara Marzi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi,", University of Bologna, Bologna, Italy
| | - Mario Mascalchi
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio,", University of Florence, Florence, Italy.,Clinical Epidemiology Unit, ISPRO, Oncological Network, Prevention and Research Institute, Florence, Italy
| | | | - Chiara Pane
- NSRO Department, University of Naples Federico II, Naples, Italy
| | - Denis Peruzzo
- Neuroimaging Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Pramod K Pisharady
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.,Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Jülich, Germany
| | - Thiago J R Rezende
- Department of Neurology, School of Medical Sciences, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Jülich, Germany
| | - Francesco Saccà
- NSRO Department, University of Naples Federico II, Naples, Italy
| | - Christoph Scherfler
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute, Molecular Neuroscience and Neuroimaging, Research Center Jülich, Jülich, Germany
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Stefania Tirelli
- Neuroimaging Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Marinela Vavla
- Scientific Institute, IRCCS Eugenio Medea, Conegliano-Pieve di Soligo Research Center, Conegliano, Italy
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia.,School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA
| |
Collapse
|
35
|
Gozt A, Hellewell S, Ward PGD, Bynevelt M, Fitzgerald M. Emerging Applications for Quantitative Susceptibility Mapping in the Detection of Traumatic Brain Injury Pathology. Neuroscience 2021; 467:218-236. [PMID: 34087394 DOI: 10.1016/j.neuroscience.2021.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a common but heterogeneous injury underpinned by numerous complex and interrelated pathophysiological mechanisms. An essential trace element, iron is abundant within the brain and involved in many fundamental neurobiological processes, including oxygen transportation, oxidative phosphorylation, myelin production and maintenance, as well as neurotransmitter synthesis and metabolism. Excessive levels of iron are neurotoxic and thus iron homeostasis is tightly regulated in the brain, however, many details about the mechanisms by which this is achieved are yet to be elucidated. A key mediator of oxidative stress, mitochondrial dysfunction and neuroinflammatory response, iron dysregulation is an important contributor to secondary injury in TBI. Advances in neuroimaging that leverage magnetic susceptibility properties have enabled increasingly comprehensive investigations into the distribution and behaviour of iron in the brain amongst healthy individuals as well as disease states such as TBI. Quantitative Susceptibility Mapping (QSM) is an advanced neuroimaging technique that promises quantitative estimation of local magnetic susceptibility at the voxel level. In this review, we provide an overview of brain iron and its homeostasis, describe recent advances enabling applications of QSM within the context of TBI and summarise the current state of the literature. Although limited, the emergent research suggests that QSM is a promising neuroimaging technique that can be used to investigate a host of pathophysiological changes that are associated with TBI.
Collapse
Affiliation(s)
- Aleksandra Gozt
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA Australia
| | - Sarah Hellewell
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia
| | - Phillip G D Ward
- Australian Research Council Centre of Excellence for Integrative Brain Function, VIC Australia; Turner Institute for Brain and Mental Health, Monash University, VIC Australia
| | - Michael Bynevelt
- Neurological Intervention and Imaging Service of Western Australia, Sir Charles Gairdner Hospital, Nedlands, WA Australia
| | - Melinda Fitzgerald
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA Australia.
| |
Collapse
|
36
|
Mitochondrial and metabolic dysfunction in Friedreich ataxia: update on pathophysiological relevance and clinical interventions. Neuronal Signal 2021; 5:NS20200093. [PMID: 34046211 PMCID: PMC8132591 DOI: 10.1042/ns20200093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Friedreich ataxia (FRDA) is a recessive disorder resulting from relative deficiency of the mitochondrial protein frataxin. Frataxin functions in the process of iron–sulfur (Fe–S) cluster synthesis. In this review, we update some of the processes downstream of frataxin deficiency that may mediate the pathophysiology. Based on cellular models, in vivo models and observations of patients, ferroptosis may play a major role in the pathogenesis of FRDA along with depletion of antioxidant reserves and abnormalities of mitochondrial biogenesis. Ongoing clinical trials with ferroptosis inhibitors and nuclear factor erythroid 2-related factor 2 (Nrf2) activators are now targeting each of the processes. In addition, better understanding of the mitochondrial events in FRDA may allow the development of improved imaging methodology for assessing the disorder. Though not technologically feasible at present, metabolic imaging approaches may provide a direct methodology to understand the mitochondrial changes occurring in FRDA and provide a methodology to monitor upcoming trials of frataxin restoration.
Collapse
|
37
|
Öz G, Harding IH, Krahe J, Reetz K. MR imaging and spectroscopy in degenerative ataxias: toward multimodal, multisite, multistage monitoring of neurodegeneration. Curr Opin Neurol 2021; 33:451-461. [PMID: 32657886 DOI: 10.1097/wco.0000000000000834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Degenerative ataxias are rare and currently untreatable movement disorders, primarily characterized by neurodegeneration in the cerebellum and brainstem. We highlight MRI studies with the most potential for utility in pending ataxia trials and underscore advances in disease characterization and diagnostics in the field. RECENT FINDINGS With availability of advanced MRI acquisition methods and specialized software dedicated to the analysis of MRI of the cerebellum, patterns of cerebellar atrophy in different degenerative ataxias are increasingly well defined. The field further embraced rigorous multimodal investigations to study network-level microstructural and functional brain changes and their neurochemical correlates. MRI and magnetic resonance spectroscopy were shown to be more sensitive to disease progression than clinical scales and to detect abnormalities in premanifest mutation carriers. SUMMARY Magnetic resonance techniques are increasingly well placed for characterizing the expression and progression of degenerative ataxias. The most impactful work has arguably come through multi-institutional studies that monitor relatively large cohorts, multimodal investigations that assess the sensitivity of different measures and their interrelationships, and novel imaging approaches that are targeted to known pathophysiology (e.g., iron and spinal imaging in Friedreich ataxia). These multimodal, multi-institutional studies are paving the way to clinical trial readiness and enhanced understanding of disease in degenerative ataxias.
Collapse
Affiliation(s)
- Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School.,Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Janna Krahe
- Department of Neurology.,JARA Brain Institute Molecular Neuroscience and Neuroimaging, Research Centre Ju[Combining Diaeresis]lich, RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology.,JARA Brain Institute Molecular Neuroscience and Neuroimaging, Research Centre Ju[Combining Diaeresis]lich, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
38
|
Selvadurai LP, Georgiou-Karistianis N, Shishegar R, Sheridan C, Egan GF, Delatycki MB, Harding IH, Corben LA. Longitudinal structural brain changes in Friedreich ataxia depend on disease severity: the IMAGE-FRDA study. J Neurol 2021; 268:4178-4189. [PMID: 33860369 DOI: 10.1007/s00415-021-10512-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Friedreich ataxia is an inherited neurodegenerative disease, with cerebral and cerebellar pathology evident. Despite an increased understanding of its neuropathology, disease progression in this disease remains poorly understood. This study aimed to characterise longitudinal change in brain structure using a multi-modal approach across cerebral and cerebellar grey and white matter. METHODS T1-weighted, diffusion-tensor, and magnetisation transfer magnetic resonance images were obtained from 28 individuals with Friedreich ataxia and 29 age- and gender-matched controls at two time-points, 2 years apart. Region-of-interest and exploratory between-group comparisons assessed changes in brain macrostructure (cerebellar lobule volume, cerebral cortical thickness/gyrification, brain white matter volume) and microstructure (white matter fractional anisotropy, mean/axial/radial diffusivity, magnetisation transfer ratio). Rates of change were correlated against change in neurological severity, Time 1 severity, and onset age. RESULTS Individuals with Friedreich ataxia had a greater rate of white matter volume loss than controls in the superior cerebellar peduncles and right peri-thalamic/posterior cerebral regions, and greater reduction in left primary motor cortex gyrification. Greater cerebellar/brainstem white matter volume loss and right dorsal premotor gyrification loss was observed amongst individuals with less severe neurological symptoms at Time 1. Conversely, cerebral atrophy and changes in axial diffusivity were observed in individuals with more severe Time 1 symptoms. Progression in radial diffusivity was more pronounced amongst individuals with earlier disease onset. Greater right ventral premotor gyrification loss correlated with greater neurological progression. CONCLUSION Heterogeneity in Friedreich ataxia progression is observed at the neurobiological level, with evidence of earlier cerebellar and later cerebral degeneration.
Collapse
Affiliation(s)
- Louisa P Selvadurai
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia.
| | - Rosita Shishegar
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia.,The Australian E-Health Research Centre, CSIRO, Melbourne, Australia
| | - Cathlin Sheridan
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Gary F Egan
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia.,Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia.,Victorian Clinical Genetics Services, Parkville, Australia
| | - Ian H Harding
- Monash Biomedical Imaging, Monash University, Clayton, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Louise A Corben
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia.,Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia
| |
Collapse
|
39
|
Schwarz AJ. The Use, Standardization, and Interpretation of Brain Imaging Data in Clinical Trials of Neurodegenerative Disorders. Neurotherapeutics 2021; 18:686-708. [PMID: 33846962 PMCID: PMC8423963 DOI: 10.1007/s13311-021-01027-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Imaging biomarkers play a wide-ranging role in clinical trials for neurological disorders. This includes selecting the appropriate trial participants, establishing target engagement and mechanism-related pharmacodynamic effect, monitoring safety, and providing evidence of disease modification. In the early stages of clinical drug development, evidence of target engagement and/or downstream pharmacodynamic effect-especially with a clear relationship to dose-can provide confidence that the therapeutic candidate should be advanced to larger and more expensive trials, and can inform the selection of the dose(s) to be further tested, i.e., to "de-risk" the drug development program. In these later-phase trials, evidence that the therapeutic candidate is altering disease-related biomarkers can provide important evidence that the clinical benefit of the compound (if observed) is grounded in meaningful biological changes. The interpretation of disease-related imaging markers, and comparability across different trials and imaging tools, is greatly improved when standardized outcome measures are defined. This standardization should not impinge on scientific advances in the imaging tools per se but provides a common language in which the results generated by these tools are expressed. PET markers of pathological protein aggregates and structural imaging of brain atrophy are common disease-related elements across many neurological disorders. However, PET tracers for pathologies beyond amyloid β and tau are needed, and the interpretability of structural imaging can be enhanced by some simple considerations to guard against the possible confound of pseudo-atrophy. Learnings from much-studied conditions such as Alzheimer's disease and multiple sclerosis will be beneficial as the field embraces rarer diseases.
Collapse
Affiliation(s)
- Adam J Schwarz
- Takeda Pharmaceuticals Ltd., 40 Landsdowne Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
40
|
Ravanfar P, Loi SM, Syeda WT, Van Rheenen TE, Bush AI, Desmond P, Cropley VL, Lane DJR, Opazo CM, Moffat BA, Velakoulis D, Pantelis C. Systematic Review: Quantitative Susceptibility Mapping (QSM) of Brain Iron Profile in Neurodegenerative Diseases. Front Neurosci 2021; 15:618435. [PMID: 33679303 PMCID: PMC7930077 DOI: 10.3389/fnins.2021.618435] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Iron has been increasingly implicated in the pathology of neurodegenerative diseases. In the past decade, development of the new magnetic resonance imaging technique, quantitative susceptibility mapping (QSM), has enabled for the more comprehensive investigation of iron distribution in the brain. The aim of this systematic review was to provide a synthesis of the findings from existing QSM studies in neurodegenerative diseases. We identified 80 records by searching MEDLINE, Embase, Scopus, and PsycInfo databases. The disorders investigated in these studies included Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Wilson's disease, Huntington's disease, Friedreich's ataxia, spinocerebellar ataxia, Fabry disease, myotonic dystrophy, pantothenate-kinase-associated neurodegeneration, and mitochondrial membrane protein-associated neurodegeneration. As a general pattern, QSM revealed increased magnetic susceptibility (suggestive of increased iron content) in the brain regions associated with the pathology of each disorder, such as the amygdala and caudate nucleus in Alzheimer's disease, the substantia nigra in Parkinson's disease, motor cortex in amyotrophic lateral sclerosis, basal ganglia in Huntington's disease, and cerebellar dentate nucleus in Friedreich's ataxia. Furthermore, the increased magnetic susceptibility correlated with disease duration and severity of clinical features in some disorders. Although the number of studies is still limited in most of the neurodegenerative diseases, the existing evidence suggests that QSM can be a promising tool in the investigation of neurodegeneration.
Collapse
Affiliation(s)
- Parsa Ravanfar
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Samantha M Loi
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.,Neuropsychiatry, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Warda T Syeda
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.,Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Patricia Desmond
- Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, The University of Melbourne, Parkville, VIC, Australia.,Department of Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.,Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Carlos M Opazo
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Bradford A Moffat
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.,Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, The University of Melbourne, Parkville, VIC, Australia
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.,Neuropsychiatry, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
41
|
Bhattarai A, Egan GF, Talman P, Chua P, Chen Z. Magnetic Resonance Iron Imaging in Amyotrophic Lateral Sclerosis. J Magn Reson Imaging 2021; 55:1283-1300. [PMID: 33586315 DOI: 10.1002/jmri.27530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) results in progressive impairment of upper and lower motor neurons. Increasing evidence from both in vivo and ex vivo studies suggest that iron accumulation in the motor cortex is a neuropathological hallmark in ALS. An in vivo neuroimaging marker of iron dysregulation in ALS would be useful in disease diagnosis and prognosis. Magnetic resonance imaging (MRI), with its unique capability to generate a variety of soft tissue contrasts, provides opportunities to image iron distribution in the human brain with millimeter to sub-millimeter anatomical resolution. Conventionally, MRI T1-weighted, T2-weighted, and T2*-weighted images have been used to investigate iron dysregulation in the brain in vivo. Susceptibility weighted imaging has enhanced contrast for para-magnetic materials that provides superior sensitivity to iron in vivo. Recently, the development of quantitative susceptibility mapping (QSM) has realized the possibility of using quantitative assessments of magnetic susceptibility measures in brain tissues as a surrogate measurement of in vivo brain iron. In this review, we provide an overview of MRI techniques that have been used to investigate iron dysregulation in ALS in vivo. The potential uses, strengths, and limitations of these techniques in clinical trials, disease diagnosis, and prognosis are presented and discussed. We recommend further longitudinal studies with appropriate cohort characterization to validate the efficacy of these techniques. We conclude that quantitative iron assessment using recent advances in MRI including QSM holds great potential to be a sensitive diagnostic and prognostic marker in ALS. The use of multimodal neuroimaging markers in combination with iron imaging may also offer improved sensitivity in ALS diagnosis and prognosis that could make a major contribution to clinical care and treatment trials. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Anjan Bhattarai
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Paul Talman
- Department of Neuroscience, Barwon Health, Geelong, Victoria, Australia
| | - Phyllis Chua
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.,Statewide Progressive Neurological Services, Calvary Health Care Bethlehem, Melbourne, Victoria, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Shishegar R, Harding IH, Corben LA, Delatycki MB, Storey E, Egan GF, Georgiou-Karistianis N. Longitudinal Increases in Cerebral Brain Activation During Working Memory Performance in Friedreich Ataxia: 24-Month Data from IMAGE-FRDA. THE CEREBELLUM 2020; 19:182-191. [PMID: 31898277 DOI: 10.1007/s12311-019-01094-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Friedreich ataxia (FRDA) has been associated with functional abnormalities in cerebral and cerebellar networks, particularly in the ventral attention network. However, how functional alterations change with disease progression remains largely unknown. Longitudinal changes in brain activation, associated with working memory performance (N-back task), and grey matter volume were assessed over 24 months in 21 individuals with FRDA and 28 healthy controls using functional and structural magnetic resonance imaging, respectively. Participants also completed a neurocognitive battery assessing working memory (digit span), executive function (Stroop, Haylings), and set-shifting (Trail Making Test). Individuals with FRDA displayed significantly increased brain activation over 24 months in ventral attention brain regions, including bilateral insula and inferior frontal gyrus (pars triangularis and pars opercularis), compared with controls, but there was no difference in working memory (N-back) performance between groups. Moreover, there were no significant differences in grey matter volume changes between groups. Significant correlations between brain activations and both clinical severity and age at disease onset were observed in FRDA individuals only at 24 months. There was significant longitudinal decline in Trail Making Test (TMT) difference score (B-A) in individuals with FRDA, compared with controls. These findings provide the first evidence of increased longitudinal activation over time in the cerebral cortex in FRDA, compared with controls, despite comparable working memory performance. This finding represents a possible compensatory response in the ventral attention network to help sustain working memory performance in individuals with FRDA.
Collapse
Affiliation(s)
- Rosita Shishegar
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Australia.,The Australian e-Health Research Centre, CSIRO, Melbourne, Australia
| | - Ian H Harding
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Louise A Corben
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.,Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Martin B Delatycki
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.,Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia.,Clinical Genetics, Austin Health, Melbourne, Australia
| | - Elsdon Storey
- Department of Medicine, Monash University, Melbourne, Australia
| | - Gary F Egan
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
43
|
Smith FM, Kosman DJ. Molecular Defects in Friedreich's Ataxia: Convergence of Oxidative Stress and Cytoskeletal Abnormalities. Front Mol Biosci 2020; 7:569293. [PMID: 33263002 PMCID: PMC7686857 DOI: 10.3389/fmolb.2020.569293] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/10/2020] [Indexed: 01/18/2023] Open
Abstract
Friedreich’s ataxia (FRDA) is a multi-faceted disease characterized by progressive sensory–motor loss, neurodegeneration, brain iron accumulation, and eventual death by hypertrophic cardiomyopathy. FRDA follows loss of frataxin (FXN), a mitochondrial chaperone protein required for incorporation of iron into iron–sulfur cluster and heme precursors. After the discovery of the molecular basis of FRDA in 1996, over two decades of research have been dedicated to understanding the temporal manifestations of disease both at the whole body and molecular level. Early research indicated strong cellular iron dysregulation in both human and yeast models followed by onset of oxidative stress. Since then, the pathophysiology due to dysregulation of intracellular iron chaperoning has become central in FRDA relative to antioxidant defense and run-down in energy metabolism. At the same time, limited consideration has been given to changes in cytoskeletal organization, which was one of the first molecular defects noted. These alterations include both post-translational oxidative glutathionylation of actin monomers and differential DNA processing of a cytoskeletal regulator PIP5K1β. Currently unknown in respect to FRDA but well understood in the context of FXN-deficient cell physiology is the resulting impact on the cytoskeleton; this disassembly of actin filaments has a particularly profound effect on cell–cell junctions characteristic of barrier cells. With respect to a neurodegenerative disorder such as FRDA, this cytoskeletal and tight junction breakdown in the brain microvascular endothelial cells of the blood–brain barrier is likely a component of disease etiology. This review serves to outline a brief history of this research and hones in on pathway dysregulation downstream of iron-related pathology in FRDA related to actin dynamics. The review presented here was not written with the intent of being exhaustive, but to instead urge the reader to consider the essentiality of the cytoskeleton and appreciate the limited knowledge on FRDA-related cytoskeletal dysfunction as a result of oxidative stress. The review examines previous hypotheses of neurodegeneration with brain iron accumulation (NBIA) in FRDA with a specific biochemical focus.
Collapse
Affiliation(s)
- Frances M Smith
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Daniel J Kosman
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
44
|
Belbellaa B, Reutenauer L, Messaddeq N, Monassier L, Puccio H. High Levels of Frataxin Overexpression Lead to Mitochondrial and Cardiac Toxicity in Mouse Models. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:120-138. [PMID: 33209958 PMCID: PMC7648087 DOI: 10.1016/j.omtm.2020.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
Friedreich ataxia (FA) is currently an incurable inherited mitochondrial disease caused by reduced levels of frataxin (FXN). Cardiac dysfunction is the main cause of premature death in FA. Adeno-associated virus (AAV)-mediated gene therapy constitutes a promising approach for FA, as demonstrated in cardiac and neurological mouse models. While the minimal therapeutic level of FXN protein to be restored and biodistribution have recently been defined for the heart, it is unclear if FXN overexpression could be harmful. Indeed, depending on the vector delivery route and dose administered, the resulting FXN protein level could reach very high levels in the heart, cerebellum, or off-target organs such as the liver. The present study demonstrates safety of FXN cardiac overexpression up to 9-fold the normal endogenous level but significant toxicity to the mitochondria and heart above 20-fold. We show gradual severity with increasing FXN overexpression, ranging from subclinical cardiotoxicity to left ventricle dysfunction. This appears to be driven by impairment of the mitochondria respiratory chain and ultrastructure, which leads to cardiomyocyte subcellular disorganization, cell death, and fibrosis. Overall, this study underlines the need, during the development of gene therapy approaches, to consider appropriate vector expression level, long-term safety, and biomarkers to monitor such events.
Collapse
Affiliation(s)
- Brahim Belbellaa
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Laurence Reutenauer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Laurent Monassier
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire EA7296, Faculté de Médecine, Strasbourg 67085, France
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
45
|
Straub S, Mangesius S, Emmerich J, Indelicato E, Nachbauer W, Degenhardt KS, Ladd ME, Boesch S, Gizewski ER. Toward quantitative neuroimaging biomarkers for Friedreich's ataxia at 7 Tesla: Susceptibility mapping, diffusion imaging, R 2 and R 1 relaxometry. J Neurosci Res 2020; 98:2219-2231. [PMID: 32731306 PMCID: PMC7590084 DOI: 10.1002/jnr.24701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/12/2020] [Accepted: 07/08/2020] [Indexed: 01/21/2023]
Abstract
Friedreich's ataxia (FRDA) is a rare genetic disorder leading to degenerative processes. So far, no effective treatment has been found. Therefore, it is important to assist the development of medication with imaging biomarkers reflecting disease status and progress. Ten FRDA patients (mean age 37 ± 14 years; four female) and 10 age- and sex-matched controls were included. Acquisition of magnetic resonance imaging (MRI) data for quantitative susceptibility mapping, R1 , R2 relaxometry and diffusion imaging was performed at 7 Tesla. Results of volume of interest (VOI)-based analyses of the quantitative data were compared with a voxel-based morphometry (VBM) evaluation. Differences between patients and controls were assessed using the analysis of covariance (ANCOVA; p < 0.01) with age and sex as covariates, effect size of group differences, and correlations with disease characteristics with Spearman correlation coefficient. For the VBM analysis, a statistical threshold of 0.001 for uncorrected and 0.05 for corrected p-values was used. Statistically significant differences between FRDA patients and controls were found in five out of twelve investigated structures, and statistically significant correlations with disease characteristics were revealed. Moreover, VBM revealed significant white matter atrophy within regions of the brainstem, and the cerebellum. These regions overlapped partially with brain regions for which significant differences between healthy controls and patients were found in the VOI-based quantitative MRI evaluation. It was shown that two independent analyses provided overlapping results. Moreover, positive results on correlations with disease characteristics were found, indicating that these quantitative MRI parameters could provide more detailed information and assist the search for effective treatments.
Collapse
Affiliation(s)
- Sina Straub
- Division of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Mangesius
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Julian Emmerich
- Division of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | | | - Wolfgang Nachbauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katja S Degenhardt
- Division of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke R Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
46
|
Bhattarai A, Chen Z, Ward PGD, Talman P, Mathers S, Phan TG, Chapman C, Howe J, Lee S, Lie Y, Egan GF, Chua P. Serial assessment of iron in the motor cortex in limb-onset amyotrophic lateral sclerosis using quantitative susceptibility mapping. Quant Imaging Med Surg 2020; 10:1465-1476. [PMID: 32676365 PMCID: PMC7358415 DOI: 10.21037/qims-20-187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dysregulation of iron in the cerebral motor areas has been hypothesized to occur in individuals with amyotrophic lateral sclerosis (ALS). There is still limited knowledge regarding iron dysregulation in the progression of ALS pathology. Our objectives were to use magnetic resonance based quantitative susceptibility mapping (QSM) to investigate the association between iron dysregulation in the motor cortex and clinical manifestations in patients with limb-onset ALS, and to examine changes in the iron concentration in the motor cortex in these patients over a 6-month period. METHODS Iron concentration was investigated using magnetic resonance based QSM in the primary motor cortex and the pre-motor area in 13 limb-onset ALS patients (including five lumbar onset, six cervical onset and two flail arm patients), and 11 age- and sex-matched control subjects. Nine ALS patients underwent follow-up scans at 6 months. RESULTS Significantly increased QSM values were observed in the left posterior primary motor area (P=0.02, Cohen's d =0.9) and right anterior primary motor area (P=0.02, Cohen's d =0.92) in the group of limb-onset ALS patients compared to that of control subjects. Increased QSM was observed in the primary motor and pre-motor area at baseline in patients with lumbar onset ALS patients, but not cervical limb-onset ALS patients, compared to control subjects. No significant change in QSM was observed at the 6-month follow-up scans in the ALS patients. CONCLUSIONS The findings suggest that iron dysregulation can be detected in the motor cortex in limb-onset ALS, which does not appreciably change over a further 6 months. Individuals with lumbar onset ALS appear to be more susceptible to motor cortex iron dysregulation compared to the individuals with cervical onset ALS. Importantly, this study highlights the potential use of QSM as a quantitative radiological indicator in early disease diagnosis in limb-onset ALS and its subtypes. Our serial scans results suggest a longer period than 6 months is needed to detect significant quantitative changes in the motor cortex.
Collapse
Affiliation(s)
- Anjan Bhattarai
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Phillip G. D. Ward
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Paul Talman
- Department of Neuroscience, Barwon Health, Geelong, Victoria, Australia
| | - Susan Mathers
- Statewide Progressive Neurological Services, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australia
- Department of Neurology, Monash Health, and School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Thanh G. Phan
- Department of Neurology, Monash Health, and School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Caron Chapman
- Statewide Progressive Neurological Services, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australia
| | - James Howe
- Statewide Progressive Neurological Services, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australia
| | - Sarah Lee
- Statewide Progressive Neurological Services, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australia
| | - Yennie Lie
- Statewide Progressive Neurological Services, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australia
| | - Gary F. Egan
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Phyllis Chua
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Statewide Progressive Neurological Services, Calvary Health Care Bethlehem, South Caulfield, Victoria, Australia
| |
Collapse
|
47
|
Selvadurai LP, Corben LA, Delatycki MB, Storey E, Egan GF, Georgiou‐Karistianis N, Harding IH. Multiple mechanisms underpin cerebral and cerebellar white matter deficits in Friedreich ataxia: The IMAGE-FRDA study. Hum Brain Mapp 2020; 41:1920-1933. [PMID: 31904895 PMCID: PMC7267947 DOI: 10.1002/hbm.24921] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 01/16/2023] Open
Abstract
Friedreich ataxia is a progressive neurodegenerative disorder with reported abnormalities in cerebellar, brainstem, and cerebral white matter. White matter structure can be measured using in vivo neuroimaging indices sensitive to different white matter features. For the first time, we examined the relative sensitivity and relationship between multiple white matter indices in Friedreich ataxia to more richly characterize disease expression and infer possible mechanisms underlying the observed white matter abnormalities. Diffusion-tensor, magnetization transfer, and T1-weighted structural images were acquired from 31 individuals with Friedreich ataxia and 36 controls. Six white matter indices were extracted: fractional anisotropy, diffusivity (mean, axial, radial), magnetization transfer ratio (microstructure), and volume (macrostructure). For each index, whole-brain voxel-wise between-group comparisons and correlations with disease severity, onset age, and gene triplet-repeat length were undertaken. Correlations between pairs of indices were assessed in the Friedreich ataxia cohort. Spatial similarities in the voxel-level pattern of between-group differences across the indices were also assessed. Microstructural abnormalities were maximal in cerebellar and brainstem regions, but evident throughout the brain, while macroscopic abnormalities were restricted to the brainstem. Poorer microstructure and reduced macrostructural volume correlated with greater disease severity and earlier onset, particularly in peri-dentate nuclei and brainstem regions. Microstructural and macrostructural abnormalities were largely independent. Reduced fractional anisotropy was most strongly associated with axial diffusivity in cerebral tracts, and magnetization transfer in cerebellar tracts. Multiple mechanisms likely underpin white matter abnormalities in Friedreich ataxia, with differential impacts in cerebellar and cerebral pathways.
Collapse
Affiliation(s)
- Louisa P. Selvadurai
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| | - Louise A. Corben
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
- Bruce Lefroy Centre for Genetic Health ResearchMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsThe University of MelbourneParkvilleVictoriaAustralia
| | - Martin B. Delatycki
- Bruce Lefroy Centre for Genetic Health ResearchMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsThe University of MelbourneParkvilleVictoriaAustralia
- Victorian Clinical Genetics ServicesParkvilleVictoriaAustralia
| | - Elsdon Storey
- Department of MedicineMonash UniversityPrahranVictoriaAustralia
| | - Gary F. Egan
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityClaytonVictoriaAustralia
| | - Nellie Georgiou‐Karistianis
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| | - Ian H. Harding
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
48
|
Cerebellum and cognition in Friedreich ataxia: a voxel-based morphometry and volumetric MRI study. J Neurol 2019; 267:350-358. [PMID: 31641877 DOI: 10.1007/s00415-019-09582-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recent studies have suggested the presence of a significant atrophy affecting the cerebellar cortex in Friedreich ataxia (FRDA) patients, an area of the brain long considered to be relatively spared by neurodegenerative phenomena. Cognitive deficits, which occur in FRDA patients, have been associated with cerebellar volume loss in other conditions. The aim of this study was to investigate the correlation between cerebellar volume and cognition in FRDA. METHODS Nineteen FRDA patients and 20 healthy controls (HC) were included in this study and evaluated via a neuropsychological examination. Cerebellar global and lobular volumes were computed using the Spatially Unbiased Infratentorial Toolbox (SUIT). Furthermore, a cerebellar voxel-based morphometry (VBM) analysis was also carried out. Correlations between MRI metrics and clinical data were tested via partial correlation analysis. RESULTS FRDA patients showed a significant reduction of the total cerebellar volume (p = 0.004), significantly affecting the Lobule IX (p = 0.001). At the VBM analysis, we found a cluster of significant reduced GM density encompassing the entire lobule IX (p = 0.003). When correlations were probed, we found a direct correlation between Lobule IX volume and impaired visuo-spatial functions (r = 0.58, p = 0.02), with a similar correlation that was found between the same altered function and results obtained at the VBM (r = 0.52; p = 0.03). CONCLUSIONS With two different image analysis techniques, we confirmed the presence of cerebellar volume loss in FRDA, mainly affecting the posterior lobe. In particular, Lobule IX atrophy correlated with worse visuo-spatial abilities, further expanding our knowledge about the physiopathology of cognitive impairment in FRDA.
Collapse
|
49
|
Sugiyama A, Sato N, Kimura Y, Fujii H, Maikusa N, Shigemoto Y, Suzuki F, Morimoto E, Koide K, Takahashi Y, Matsuda H, Kuwabara S. Quantifying iron deposition in the cerebellar subtype of multiple system atrophy and spinocerebellar ataxia type 6 by quantitative susceptibility mapping. J Neurol Sci 2019; 407:116525. [PMID: 31639532 DOI: 10.1016/j.jns.2019.116525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/14/2019] [Accepted: 10/06/2019] [Indexed: 01/08/2023]
Abstract
We used quantitative susceptibility mapping (QSM) to assess the brain iron deposition in 28 patients with the cerebellar subtype of multiple system atrophy (MSA-C), nine patients with spinocerebellar ataxia type 6 (SCA6), and 23 healthy controls. Two reviewers independently measured the mean QSM values in brain structures including the putamen, globus pallidus, caudate nucleus, red nucleus, substantia nigra, and cerebellar dentate nucleus. A receiver operating characteristics (ROC) analysis was performed to assess the diagnostic usefulness of the QSM measurements. The QSM values in the substantia nigra were significantly higher in the MSA-C group compared to the HC group (p = .007). The QSM values in the cerebellar dentate nucleus were significantly higher in MSA-C than those in the SCA6 and HC groups (p < .001), and significantly lower in the SCA6 patients compared to the HCs (p = .027). The QSM values in the cerebellar dentate nucleus were correlated with disease duration in MSA-C, but inversely correlated with disease duration in SCA6. In the ROC analysis, the QSM values in the cerebellar dentate nucleus showed excellent accuracy for differentiating MSA-C from SCA6 (area under curve [AUC], 0.925), and good accuracy for differentiating MSA-C from healthy controls (AUC 0.834). QSM can identify increased susceptibility of the substantia nigra and cerebellar dentate nucleus in MSA-C patients. These results suggest that an increase in iron accumulation in the cerebellar dentate nucleus may be secondary to the neurodegeneration associated with MSA-C.
Collapse
Affiliation(s)
- Atsuhiko Sugiyama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan; Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroyuki Fujii
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoko Shigemoto
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Fumio Suzuki
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Emiko Morimoto
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kyosuke Koide
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
50
|
Delatycki MB, Bidichandani SI. Friedreich ataxia- pathogenesis and implications for therapies. Neurobiol Dis 2019; 132:104606. [PMID: 31494282 DOI: 10.1016/j.nbd.2019.104606] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/08/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023] Open
Abstract
Friedreich ataxia is the most common of the hereditary ataxias. It is due to homozygous/compound heterozygous mutations in FXN. This gene encodes frataxin, a protein largely localized to mitochondria. In about 96% of affected individuals there is homozygosity for a GAA repeat expansion in intron 1 of the FXN gene. Studies of people with Friedreich ataxia and of animal and cell models, have provided much insight into the pathogenesis of this disorder. The expanded GAA repeat leads to transcriptional deficiency of the FXN gene. The consequent deficiency of frataxin protein leads to reduced iron-sulfur cluster biogenesis and mitochondrial ATP production, elevated mitochondrial iron, and oxidative stress. More recently, a role for inflammation has emerged as being important in the pathogenesis of Friedreich ataxia. These findings have led to a number of potential therapies that have been subjected to clinical trials or are being developed toward human studies. Therapies that have been proposed include pharmaceuticals that increase frataxin levels, protein and gene replacement therapies, antioxidants, iron chelators and modulators of inflammation. Whilst no therapies have yet been approved for Friedreich ataxia, there is much optimism that the advances in the understanding of the pathogenesis of this disorder since the discovery its genetic basis, will result in approved disease modifying therapies in the near future.
Collapse
Affiliation(s)
- Martin B Delatycki
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Victorian Clinical Genetics Services, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.
| | - Sanjay I Bidichandani
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|