1
|
Kim J, Yang GH. Manipulator Control of the Robotized TMS System with Incurved TMS Coil Case. APPLIED SCIENCES 2024; 14:11441. [DOI: 10.3390/app142311441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This paper proposes the force/torque control strategy for the robotized transcranial magnetic stimulation (TMS) system, considering the shape of the TMS coil case. Hybrid position/force control is used to compensate for the error between the current and target position of the coil and to maintain the contact between the coil and the subject’s head. The desired force magnitude of the force control part of the hybrid controller is scheduled by the error between the current and target position of the TMS coil for fast error reduction and the comfort of the subject. Additionally, the torque proportional to the torque acting on the coil’s center is generated to stabilize the contact. Compliance control, which makes the robot adaptive to the environment, stabilizes the coil and head interaction during force/torque control. The experimental results showed that the force controller made the coil generate a relatively large force for a short time (less than 10 s) for the fast error reduction, and a relatively small interaction force was maintained for the contact. They showed that the torque controller made the contact area inside the coil. The experiment also showed that the proposed strategy could be used for tracking a new target point estimated by the neuronavigation system when the head moved slightly.
Collapse
Affiliation(s)
- Jaewoo Kim
- Industrial Technology (Robotics), University of Science and Technology, Daejeon 34113, Republic of Korea
- Human-Centric Robotics R&D Department, Korea Insitute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Gi-Hun Yang
- Industrial Technology (Robotics), University of Science and Technology, Daejeon 34113, Republic of Korea
- Human-Centric Robotics R&D Department, Korea Insitute of Industrial Technology, Ansan 15588, Republic of Korea
| |
Collapse
|
2
|
Bishay AAED, Guo A, Desai R, Mushinski S, Au A, Swenson AJ, Iacoboni M, Bystritsky A, Spivak NM. Limited Potential of Repetitive Transcranial Magnetic Stimulation for Treatment of Essential Tremor: A Systematic Review. NEUROSCI 2024; 5:523-533. [PMID: 39585106 PMCID: PMC11587431 DOI: 10.3390/neurosci5040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Essential tremor (ET) is a prevalent movement disorder characterized by action tremors, predominantly affecting the upper limbs. While various pharmacological and non-pharmacological interventions have shown efficacy in managing ET, the therapeutic role of repetitive transcranial magnetic stimulation (rTMS) remains uncertain. This systematic review synthesizes evidence from clinical trials investigating rTMS as a treatment for ET. Despite some open-label trials reporting reductions in tremor severity, double-blinded studies revealed no significant difference between active and sham rTMS, suggesting a strong placebo effect. The findings indicate that while rTMS can reduce tremor scores, its therapeutic efficacy in ET remains unproven. Future research should focus on improving sham designs and conducting larger, rigorously controlled trials to clarify rTMS's role in ET management. Current evidence supports considering alternative treatments, such as deep brain stimulation, over rTMS for ET.
Collapse
Affiliation(s)
- Andrew A. E. D. Bishay
- Physiological Sciences Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Anton Guo
- Physiological Sciences Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Rhea Desai
- Physiological Sciences Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Samuel Mushinski
- Physiological Sciences Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Andy Au
- Neuroscience Undergraduate Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Andrew J. Swenson
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Alexander Bystritsky
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Norman M. Spivak
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Neurosurgery, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA-Caltech Medical Scientist Training Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Zhu Y, Wang C, Xu Z, Guo F, Chang Y, Liu J, Liu W, Fang P, Zheng M. Individualized rTMS Intervention Targeting Sleep Deprivation-Induced Vigilance Decline: Task fMRI-Guided Approach. CNS Neurosci Ther 2024; 30:e70087. [PMID: 39539093 PMCID: PMC11561304 DOI: 10.1111/cns.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
STUDY OBJECTIVES Sleep deprivation (SD) is prevalent in our increasingly round-the-clock society. Optimal countermeasures such as ample recovery sleep are often unfeasible, and brief naps, while helpful, do not fully restore cognitive performance following SD. Thus, we propose that targeted interventions, such as repetitive transcranial magnetic stimulation (rTMS), may enhance cognitive performance recovery post-SD. METHODS We recruited 50 participants for two SD experiments. In the first experiment, participants performed a psychomotor vigilance task (PVT) under three conditions: normal sleep (resting wakefulness), after 24 h of SD, and following a subsequent 30-min nap. We analyzed dynamic changes in PVT outcomes and cerebral responses across conditions to identify the optimal stimulation target. Experiment 2 adopted the same protocol except that, after the nap, 10-Hz, sham-controlled, individualized rTMS was administrated. Then, an analysis of variance was conducted to investigate the ability of stimulation to improve the PVT reaction times. RESULTS Through task-related functional magnetic resonance imaging, we identified cerebral responses within the right middle frontal gyrus (MFG) as the optimal stimulation target. Subsequent application of individualized 10-Hz rTMS over the right MFG attenuated SD-induced deterioration of vigilance. CONCLUSION Our findings suggest that combining a brief nap with individualized rTMS can significantly aid the recovery of vigilance following SD. This approach, through modulating neural activity within functional brain networks, is a promising strategy to counteract the cognitive effects of SD.
Collapse
Affiliation(s)
- Yuanqiang Zhu
- Department of Radiology, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Chen Wang
- Department of Radiology, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Ziliang Xu
- Department of Radiology, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Fan Guo
- Department of Radiology, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Yingjuan Chang
- Department of Radiology, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Jiali Liu
- Department of Radiology, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - WenMing Liu
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| | - Peng Fang
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anShaanxiChina
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent PerceptionXi'anShaanxiChina
- Military Medical Innovation Center, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Minwen Zheng
- Department of Radiology, Xijing HospitalAir Force Medical UniversityXi'anShaanxiChina
| |
Collapse
|
4
|
Bai J, Bai Y, Li X, Mu Y, Sun X, Wang B, Shang L, Di Z, Zhang W, Qiao J, Li R, Guo X, Liu X, Shi Y, Li R, Liu X. A multi-center, randomized, double-blind, sham-stimulation controlled study of transcranial magnetic stimulation with precision navigation for the treatment of multiple system atrophy. Trials 2024; 25:640. [PMID: 39350274 PMCID: PMC11440687 DOI: 10.1186/s13063-024-08458-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is recognized as an atypical Parkinsonian syndrome, distinguished by a more rapid progression than that observed in Parkinson's disease. Unfortunately, the prognosis for MSA remains poor, with a notable absence of globally recognized effective treatments. Although preliminary studies suggest that transcranial magnetic stimulation (TMS) could potentially alleviate clinical symptoms in MSA patients, there is a significant gap in the literature regarding the optimal stimulation parameters. Furthermore, the field lacks consensus due to the paucity of robust, large-scale, multicenter trials. METHODS This investigation is a multi-center, randomized, double-blind, sham-controlled trial. We aim to enroll 96 individuals diagnosed with MSA, categorized into Parkinsonian type (MSA-P) and cerebellar type (MSA-C) according to their predominant clinical features. Participants will be randomly allocated in a 1:1 ratio to either the TMS or sham stimulation group. Utilizing advanced navigation techniques, we will ensure precise targeting for the intervention, applying theta burst stimulation (TBS). To assess the efficacy of TBS on both motor and non-motor functions, a comprehensive evaluation will be conducted using internationally recognized clinical scales and gait analysis. To objectively assess changes in brain connectivity, functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) will be employed as sensitive indicators before and after the intervention. DISCUSSION The primary aim of this study is to ascertain whether TBS can alleviate both motor and non-motor symptoms in patients with MSA. Additionally, a critical component of our research involves elucidating the underlying mechanisms through which TBS exerts its potential therapeutic effects. ETHICS AND DISSEMINATION All study protocols have been reviewed and approved by the First Affiliated Medical Ethics Committee of the Air Force Military Medical University (KY20232118-F-1). TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2300072658. Registered on 20 June 2023.
Collapse
Affiliation(s)
- Jing Bai
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xian, Shaanxi, China
| | - Ya Bai
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xian, Shaanxi, China
| | - Xiaobing Li
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xian, Shaanxi, China
| | - Yaqian Mu
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xian, Shaanxi, China
| | - Xiaolong Sun
- Department of Rehabilitation Medicine, Xijing Hospital, Xian, Shaanxi, China
| | - Bo Wang
- Department of Epidemiology, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Lei Shang
- Department of Health Statistics, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhengli Di
- Department of Neurology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Wei Zhang
- Department of Neurology, Tangdu Hospital, Xi'an, Shaanxi, China
| | - Jin Qiao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rui Li
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xin Guo
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xian, Shaanxi, China
| | - Xinyao Liu
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xian, Shaanxi, China
| | - Yan Shi
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xian, Shaanxi, China
| | - Rui Li
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xian, Shaanxi, China
| | - Xuedong Liu
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xian, Shaanxi, China.
| |
Collapse
|
5
|
Lefaucheur JP, Moro E, Shirota Y, Ugawa Y, Grippe T, Chen R, Benninger DH, Jabbari B, Attaripour S, Hallett M, Paulus W. Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter. Clin Neurophysiol 2024; 164:57-99. [PMID: 38852434 PMCID: PMC11418354 DOI: 10.1016/j.clinph.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; EA 4391, ENT Team, Paris-Est Créteil University, Créteil, France.
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of Neuroscience, Grenoble, France
| | - Yuichiro Shirota
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Talyta Grippe
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Sanaz Attaripour
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
6
|
Birreci D, De Riggi M, Costa D, Angelini L, Cannavacciuolo A, Passaretti M, Paparella G, Guerra A, Bologna M. The Role of Non-Invasive Brain Modulation in Identifying Disease Biomarkers for Diagnostic and Therapeutic Purposes in Parkinsonism. Brain Sci 2024; 14:695. [PMID: 39061435 PMCID: PMC11274666 DOI: 10.3390/brainsci14070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past three decades, substantial advancements have occurred in non-invasive brain stimulation (NIBS). These developments encompass various non-invasive techniques aimed at modulating brain function. Among the most widely utilized methods today are transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES), which include direct- or alternating-current transcranial stimulation (tDCS/tACS). In addition to these established techniques, newer modalities have emerged, broadening the scope of non-invasive neuromodulation approaches available for research and clinical applications in movement disorders, particularly for Parkinson's disease (PD) and, to a lesser extent, atypical Parkinsonism (AP). All NIBS techniques offer the opportunity to explore a wide range of neurophysiological mechanisms and exert influence over distinct brain regions implicated in the pathophysiology of Parkinsonism. This paper's first aim is to provide a brief overview of the historical background and underlying physiological principles of primary NIBS techniques, focusing on their translational relevance. It aims to shed light on the potential identification of biomarkers for diagnostic and therapeutic purposes, by summarising available experimental data on individuals with Parkinsonism. To date, despite promising findings indicating the potential utility of NIBS techniques in Parkinsonism, their integration into clinical routine for diagnostic or therapeutic protocols remains a subject of ongoing investigation and scientific debate. In this context, this paper addresses current unsolved issues and methodological challenges concerning the use of NIBS, focusing on the importance of future research endeavours for maximizing the efficacy and relevance of NIBS strategies for individuals with Parkinsonism.
Collapse
Affiliation(s)
- Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
| | - Davide Costa
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | - Luca Angelini
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | | | - Massimiliano Passaretti
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Giulia Paparella
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, 35121 Padua, Italy;
- Padova Neuroscience Centre (PNC), University of Padua, 35121 Padua, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| |
Collapse
|
7
|
Lyu Z, Xiao G, Xie D, Huang D, Chen Y, Wu C, Lai Y, Song Z, Huang L, Ming H, Jiang Y, Wang J, Chen R, Luo W. The protective effects of repetitive transcranial magnetic stimulation with different high frequencies on motor functions in MPTP/probenecid induced Parkinsonism mouse models. Brain Behav 2024; 14:e3605. [PMID: 38956819 PMCID: PMC11219284 DOI: 10.1002/brb3.3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND High-frequency repeated transcranial magnetic stimulation (rTMS) stimulating the primary motor cortex (M1) is an alternative, adjunctive therapy for improving the motor symptoms of Parkinson's disease (PD). However, whether the high frequency of rTMS positively correlates to the improvement of motor symptoms of PD is still undecided. By controlling for other parameters, a disease animal model may be useful to compare the neuroprotective effects of different high frequencies of rTMS. OBJECTIVE The current exploratory study was designed to compare the protective effects of four common high frequencies of rTMS (5, 10, 15, and 20 Hz) and iTBS (a special form of high-frequency rTMS) and explore the optimal high-frequency rTMS on an animal PD model. METHODS Following high frequencies of rTMS application (twice a week for 5 weeks) in a MPTP/probenecid-induced chronic PD model, the effects of the five protocols on motor behavior as well as dopaminergic neuron degeneration levels were identified. The underlying molecular mechanisms were further explored. RESULTS We found that all the high frequencies of rTMS had protective effects on the motor functions of PD models to varying degrees. Among them, the 10, 15, and 20 Hz rTMS interventions induced comparable preservation of motor function through the protection of nigrostriatal dopamine neurons. The enhancement of brain-derived neurotrophic factor (BDNF), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT-2) and the suppression of TNF-α and IL-1β in the nigrostriatum were involved in the process. The efficacy of iTBS was inferior to that of the above three protocols. The effect of 5 Hz rTMS protocol was weakest. CONCLUSIONS Combined with the results of the present study and the possible side effects induced by rTMS, we concluded that 10 Hz might be the optimal stimulation frequency for preserving the motor functions of PD models using rTMS treatment.
Collapse
Affiliation(s)
- Zhimai Lyu
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
- Department of Acupuncture and MoxibustionAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Guodong Xiao
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Dingyi Xie
- Department of Acupuncture and MoxibustionAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Dandan Huang
- Department of Basic Medical SciencesGannan Medical UniversityGanzhouChina
| | - Yanjun Chen
- Department of International Exchange and CooperationJiangxi University of Chinese MedicineNanchangChina
| | - Chunmei Wu
- Department of Health Statistics, School of Public Health & Health ManagementGannan Medical UniversityGanzhouChina
| | - Yanwei Lai
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Zitan Song
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Lijuan Huang
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Hui Ming
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Yichen Jiang
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Jinwei Wang
- Department of NeurologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- The Ganzhou Key Laboratory of Noninvasive NeuromodulationGanzhouChina
| | - Rixin Chen
- Department of Acupuncture and MoxibustionAffiliated Hospital of Jiangxi University of Chinese MedicineNanchangChina
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
8
|
Sveva V, Cruciani A, Mancuso M, Santoro F, Latorre A, Monticone M, Rocchi L. Cerebellar Non-Invasive Brain Stimulation: A Frontier in Chronic Pain Therapy. J Pers Med 2024; 14:675. [PMID: 39063929 PMCID: PMC11277881 DOI: 10.3390/jpm14070675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic pain poses a widespread and distressing challenge; it can be resistant to conventional therapies, often having significant side effects. Non-invasive brain stimulation (NIBS) techniques offer promising avenues for the safe and swift modulation of brain excitability. NIBS approaches for chronic pain management targeting the primary motor area have yielded variable outcomes. Recently, the cerebellum has emerged as a pivotal hub in human pain processing; however, the clinical application of cerebellar NIBS in chronic pain treatment remains limited. This review delineates the cerebellum's role in pain modulation, recent advancements in NIBS for cerebellar activity modulation, and novel biomarkers for assessing cerebellar function in humans. Despite notable progress in NIBS techniques and cerebellar activity assessment, studies targeting cerebellar NIBS for chronic pain treatment are limited in number. Nevertheless, positive outcomes in pain alleviation have been reported with cerebellar anodal transcranial direct current stimulation. Our review underscores the potential for further integration between cerebellar NIBS and non-invasive assessments of cerebellar function to advance chronic pain treatment strategies.
Collapse
Affiliation(s)
- Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Alessandro Cruciani
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Marco Mancuso
- Department of Human Neuroscience, University of Rome “Sapienza”, Viale dell’Università 30, 00185 Rome, Italy;
| | - Francesca Santoro
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Marco Monticone
- Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
9
|
Alkadhi KA. Synaptic Plasticity and Cognitive Ability in Experimental Adult-Onset Hypothyroidism. J Pharmacol Exp Ther 2024; 389:150-162. [PMID: 38508752 DOI: 10.1124/jpet.123.001887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Adult-onset hypothyroidism impairs normal brain function. Research on animal models of hypothyroidism has revealed critical information on how deficiency of thyroid hormones impacts the electrophysiological and molecular functions of the brain, which leads to the well known cognitive impairment in untreated hypothyroid patients. Currently, such information can only be obtained from experiments on animal models of hypothyroidism. This review summarizes important research findings that pertain to understanding the clinical cognitive consequences of hypothyroidism, which will provide a better guiding path for therapy of hypothyroidism. SIGNIFICANCE STATEMENT: Cognitive impairment occurs during adult-onset hypothyroidism in both humans and animal models. Findings from animal studies validate clinical findings showing impaired long-term potentiation, decreased CaMKII, and increased calcineurin. Such findings can only be gleaned from animal experiments to show how hypothyroidism produces clinical symptoms.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
10
|
Chen H, Wang X, Zhang J, Xie D. Effect of high-frequency repetitive transcranial magnetic stimulation on cognitive impairment in WD patients based on inverse probability weighting of propensity scores. Front Neurosci 2024; 18:1375234. [PMID: 38660222 PMCID: PMC11039870 DOI: 10.3389/fnins.2024.1375234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Background Hepatolenticular degeneration [Wilson disease (WD)] is an autosomal recessive metabolic disease characterized by copper metabolism disorder. Cognitive impairment is a key neuropsychiatric symptom of WD. At present, there is no effective treatment for WD-related cognitive impairment. Methods In this study, high-frequency repetitive transcranial magnetic stimulation (rTMS) was used to treat WD-related cognitive impairment, and inverse probability weighting of propensity scores was used to correct for confounding factors. The Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Auditory Verbal Learning Test (AVLT), Boston Naming Test (BNT), Clock Drawing Test (CDT) and Trail Making Test (TMT) were used to evaluate overall cognition and specific cognitive domains. Results The MMSE, MoCA and CDT scores after treatment were significantly different from those before treatment (MMSE: before adjustment: OR = 1.404, 95% CI: 1.271-1.537; after adjustment: OR = 1.381, 95% CI: 1.265-1.497, p < 0.001; MoCA: before adjustment: OR = 1.306, 95% CI: 1.122-1.490; after adjustment: OR = 1.286, 95% CI: 1.104; AVLT: OR = 1.161, 95% CI: 1.074-1.248; after adjustment: OR = 1.145, 95% CI: 1.068-1.222, p < 0.05; CDT: OR = 1.524, 95% CI: 1.303-1.745; after adjustment: OR = 1.518, 95% CI: 1.294-1.742, p < 0.001). The BNT and TMT scores after adjustment were not significantly different from those before adjustment (BNT: before adjustment: OR = 1.048, 95% CI: 0.877-1.219; after adjustment: OR = 1.026, 95% CI: 0.863-1.189, p > 0.05; TMT: before adjustment: OR = 0.816, 95% CI: 1.122-1.490; after adjustment: OR = 0.791, 95% CI: 0.406-1.176, p > 0.05). Conclusion High-frequency rTMS can effectively improve cognitive impairment, especially memory and visuospatial ability, in WD patients. The incidence of side effects is low, and the safety is good.
Collapse
Affiliation(s)
- Hong Chen
- The First Clinical Mdical College of Anhui University of Chinese Medicine, Hefei, China
| | - Xie Wang
- The First Clinical Mdical College of Anhui University of Chinese Medicine, Hefei, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Daojun Xie
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
11
|
Song W, Zhang Z, Lv B, Li J, Chen H, Zhang S, Zu J, Dong L, Xu C, Zhou M, Zhang T, Xu R, Zhu J, Shen T, Zhou S, Cui C, Huang S, Wang X, Nie Y, Aftab K, Xiao Q, Zhang X, Cui G, Zhang W. High-frequency rTMS over bilateral primary motor cortex improves freezing of gait and emotion regulation in patients with Parkinson's disease: a randomized controlled trial. Front Aging Neurosci 2024; 16:1354455. [PMID: 38327498 PMCID: PMC10847258 DOI: 10.3389/fnagi.2024.1354455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Background Freezing of gait (FOG) is a common and disabling phenomenon in patients with Parkinson's disease (PD), but effective treatment approach remains inconclusive. Dysfunctional emotional factors play a key role in FOG. Since primary motor cortex (M1) connects with prefrontal areas via the frontal longitudinal system, where are responsible for emotional regulation, we hypothesized M1 may be a potential neuromodulation target for FOG therapy. The purpose of this study is to explore whether high-frequency rTMS over bilateral M1 could relieve FOG and emotional dysregulation in patients with PD. Methods This study is a single-center, randomized double-blind clinical trial. Forty-eight patients with PD and FOG from the Affiliated Hospital of Xuzhou Medical University were randomly assigned to receive 10 sessions of either active (N = 24) or sham (N = 24) 10 Hz rTMS over the bilateral M1. Patients were evaluated at baseline (T0), after the last session of treatment (T1) and 30 days after the last session (T2). The primary outcomes were Freezing of Gait Questionnaire (FOGQ) scores, with Timed Up and Go Test (TUG) time, Standing-Start 180° Turn (SS-180) time, SS-180 steps, United Parkinson Disease Rating Scales (UPDRS) III, Hamilton Depression scale (HAMD)-24 and Hamilton Anxiety scale (HAMA)-14 as secondary outcomes. Results Two patients in each group dropped out at T2 and no serious adverse events were reported by any subject. Two-way repeated ANOVAs revealed significant group × time interactions in FOGQ, TUG, SS-180 turn time, SS-180 turning steps, UPDRS III, HAMD-24 and HAMA-14. Post-hoc analyses showed that compared to T0, the active group exhibited remarkable improvements in FOGQ, TUG, SS-180 turn time, SS-180 turning steps, UPDRS III, HAMD-24 and HAMA-14 at T1 and T2. No significant improvement was found in the sham group. The Spearman correlation analysis revealed a significantly positive association between the changes in HAMD-24 and HAMA-14 scores and FOGQ scores at T1. Conclusion High-frequency rTMS over bilateral M1 can improve FOG and reduce depression and anxiety in patients with PD.
Collapse
Affiliation(s)
- Wenjing Song
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zixuan Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bingchen Lv
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinyu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shenyang Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liguo Dong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Manli Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ran Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jienan Zhu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tong Shen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Su Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenchen Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuming Huang
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xi Wang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yujing Nie
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kainat Aftab
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qihua Xiao
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xueling Zhang
- Department of Neurology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, Suining County People’s Hospital, Xuzhou, Jiangsu, China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurology, Suining County People’s Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
12
|
Shi Y, Zou G, Chen Z, Wan L, Peng L, Peng H, Shen L, Xia K, Qiu R, Tang B, Jiang H. Efficacy of cerebellar transcranial magnetic stimulation in spinocerebellar ataxia type 3: a randomized, single-blinded, controlled trial. J Neurol 2023; 270:5372-5379. [PMID: 37433893 DOI: 10.1007/s00415-023-11848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Spinocerebellar ataxia type 3 (SCA3) is the most common subtype of SCA without effective treatment. This study aimed to evaluate the comparative efficacy of low-frequency repetitive transcranial magnetic stimulation (rTMS) and intermittent Theta Burst Stimulation (iTBS) in a larger cohort of SCA3 patients. METHODS One hundred and twenty patients with SCA3 were randomly assigned to the 3 groups: 40 patients in the 1 Hz rTMS, 40 in the iTBS and 40 in the sham group. Patients underwent 10 sessions of rTMS targeting the cerebellum delivering for 5 consecutive days per week for 2 weeks (a total of 1200 pulses per session). Primary outcomes included the Scale for the Assessment and Rating of Ataxia (SARA) and the International Cooperative Ataxia Rating Scale (ICARS). Secondary outcomes included 10-m walking test (10MWT), nine-hole peg test (9-HPT), and PATA Rate Test (PRT). Outcome assessments were performed at baseline and on the last day of rTMS intervention. RESULTS This study revealed that active rTMS outperformed sham in reducing the SARA and ICARS scores in SCA3 patients, but with no difference between the 1 Hz rTMS and iTBS protocol. Moreover, no significant differences were observed in SARA and ICARS scores between the mild and moderate to severe groups after the 1 Hz rTMS/iTBS therapy. Additionally, no severe adverse events were recorded in this study. CONCLUSIONS The study concluded that both 1 Hz rTMS and iTBS interventions targeting the cerebellum are effective to improve the symptoms of ataxia in patients with SCA3.
Collapse
Affiliation(s)
- Yuting Shi
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
| | - Guangdong Zou
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
| | - Linlin Wan
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
| | - Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
| | - Huirong Peng
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Cruciani A, Mancuso M, Sveva V, Maccarrone D, Todisco A, Motolese F, Santoro F, Pilato F, Spampinato DA, Rocchi L, Di Lazzaro V, Capone F. Using TMS-EEG to assess the effects of neuromodulation techniques: a narrative review. Front Hum Neurosci 2023; 17:1247104. [PMID: 37645690 PMCID: PMC10461063 DOI: 10.3389/fnhum.2023.1247104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Over the past decades, among all the non-invasive brain stimulation (NIBS) techniques, those aiming for neuromodulatory protocols have gained special attention. The traditional neurophysiological outcome to estimate the neuromodulatory effect is the motor evoked potential (MEP), the impact of NIBS techniques is commonly estimated as the change in MEP amplitude. This approach has several limitations: first, the use of MEP limits the evaluation of stimulation to the motor cortex excluding all the other brain areas. Second, MEP is an indirect measure of brain activity and is influenced by several factors. To overcome these limitations several studies have used new outcomes to measure brain changes after neuromodulation techniques with the concurrent use of transcranial magnetic stimulation (TMS) and electroencephalogram (EEG). In the present review, we examine studies that use TMS-EEG before and after a single session of neuromodulatory TMS. Then, we focused our literature research on the description of the different metrics derived from TMS-EEG to measure the effect of neuromodulation.
Collapse
Affiliation(s)
- Alessandro Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Davide Maccarrone
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Todisco
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesca Santoro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
14
|
Olivier C, Lamy JC, Kosutzka Z, Van Hamme A, Cherif S, Lau B, Vidailhet M, Karachi C, Welter ML. Cerebellar Transcranial Alternating Current Stimulation in Essential Tremor Patients with Thalamic Stimulation: A Proof-of-Concept Study. Neurotherapeutics 2023; 20:1109-1119. [PMID: 37097344 PMCID: PMC10457262 DOI: 10.1007/s13311-023-01372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 04/26/2023] Open
Abstract
Essential tremor (ET) is a disabling condition resulting from a dysfunction of cerebello-thalamo-cortical circuitry. Deep brain stimulation (DBS) or lesion of the ventral-intermediate thalamic nucleus (VIM) is an effective treatment for severe ET. Transcranial cerebellar brain stimulation has recently emerged as a non-invasive potential therapeutic option. Here, we aim to investigate the effects of high-frequency non-invasive cerebellar transcranial alternating current stimulation (tACS) in severe ET patients already operated for VIM-DBS. Eleven ET patients with VIM-DBS, and 10 ET patients without VIM-DBS and matched for tremor severity, were included in this double-blind proof-of-concept controlled study. All patients received unilateral cerebellar sham-tACS and active-tACS for 10 min. Tremor severity was blindly assessed at baseline, without VIM-DBS, during sham-tACS, during and at 0, 20, 40 min after active-tACS, using kinetic recordings during holding posture and action ('nose-to-target') task and videorecorded Fahn-Tolosa-Marin (FTM) clinical scales. In the VIM-DBS group, active-tACS significantly improved both postural and action tremor amplitude and clinical (FTM scales) severity, relative to baseline, whereas sham-tACS did not, with a predominant effect for the ipsilateral arm. Tremor amplitude and clinical severity were also not significantly different between ON VIM-DBS and active-tACS conditions. In the non-VIM-DBS group, we also observed significant improvements in ipsilateral action tremor amplitude, and clinical severity after cerebellar active-tACS, with a trend for improved postural tremor amplitude. In non-VIM-DBS group, sham- active-tACS also decreased clinical scores. These data support the safety and potential efficacy of high-frequency cerebellar-tACS to reduce ET amplitude and severity.
Collapse
Affiliation(s)
- Claire Olivier
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- PANAM Core Facility, Institut du Cerveau - Paris Brain Institute, Paris, France
| | - Jean-Charles Lamy
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- PANAM Core Facility, Institut du Cerveau - Paris Brain Institute, Paris, France
- Department of Neurology, AP-HP, Hôpital Salpetriere, DMU Neuroscience 6, Paris, France
| | - Zuzana Kosutzka
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- Department of Neurology, AP-HP, Hôpital Salpetriere, DMU Neuroscience 6, Paris, France
| | - Angèle Van Hamme
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- PANAM Core Facility, Institut du Cerveau - Paris Brain Institute, Paris, France
| | - Saoussen Cherif
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
| | - Brian Lau
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
| | - Marie Vidailhet
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- Department of Neurology, AP-HP, Hôpital Salpetriere, DMU Neuroscience 6, Paris, France
| | - Carine Karachi
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France
- Department of Neurosurgery, AP-HP, Hôpital Salpetriere, Paris, France
| | - Marie-Laure Welter
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, 47 Bd de L'Hôpital, 75013, Paris, France.
- PANAM Core Facility, Institut du Cerveau - Paris Brain Institute, Paris, France.
- Clinical Investigation Center, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France.
- Department of Neurophysiology, Rouen University Hospital, University of Rouen, Rouen, France.
| |
Collapse
|
15
|
Yang CY, Meng Z, Yang K, He Z, Hou Z, Yang J, Lu J, Cao Z, Yang S, Chai Y, Zhao H, Zhao L, Sun X, Wang G, Wang X. External magnetic field non-invasively stimulates spinal cord regeneration in rat via a magnetic-responsive aligned fibrin hydrogel. Biofabrication 2023; 15:035022. [PMID: 37279745 DOI: 10.1088/1758-5090/acdbec] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
Magnetic stimulation is becoming an attractive approach to promote neuroprotection, neurogenesis, axonal regeneration, and functional recovery in both the central nervous system and peripheral nervous system disorders owing to its painless, non-invasive, and deep penetration characteristics. Here, a magnetic-responsive aligned fibrin hydrogel (MAFG) was developed to import and amplify the extrinsic magnetic field (MF) locally to stimulate spinal cord regeneration in combination with the beneficial topographical and biochemical cues of aligned fibrin hydrogel (AFG). Magnetic nanoparticles (MNPs) were embedded uniformly in AFG during electrospinning to endow it magnetic-responsive feature, with saturation magnetization of 21.79 emu g-1. It is found that the MNPs under the MF could enhance cell proliferation and neurotrophin secretion of PC12 cellsin vitro. The MAFG that was implanted into a rat with 2 mm complete transected spinal cord injury (SCI) effectively enhanced neural regeneration and angiogenesis in the lesion area, thus leading to significant recovery of motor function under the MF (MAFG@MF). This study suggests a new multimodal tissue engineering strategy based on multifunctional biomaterials that deliver multimodal regulatory signals with the integration of aligned topography, biochemical cues, and extrinsic MF stimulation for spinal cord regeneration following severe SCI.
Collapse
Affiliation(s)
- Chun-Yi Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhe Meng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Kaiyuan Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Zhijun He
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Zhaohui Hou
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jia Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jingsong Lu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zheng Cao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shuhui Yang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yi Chai
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - He Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Guihuai Wang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
16
|
Pathophysiology and Treatment of Functional Paralysis: Insight from Transcranial Magnetic Stimulation. Brain Sci 2023; 13:brainsci13020352. [PMID: 36831895 PMCID: PMC9954472 DOI: 10.3390/brainsci13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Functional paralysis (FP) or limb weakness is a common presentation of functional movement disorders (FMD), accounting for 18.1% of the clinical manifestations of FMD. The pathophysiology of FP is not known, but imaging studies have identified changes in structural and functional connectivity in multiple brain networks. It has been proposed that noninvasive brain stimulation techniques may be used to understand the pathophysiology of FP and may represent a possible therapeutic option. In this paper, we reviewed transcranial magnetic stimulation studies on functional paralysis, focusing on their pathophysiological and therapeutical implications. Overall, there is general agreement on the integrity of corticospinal pathways in FP, while conflicting results have been found about the net excitability of the primary motor cortex and its excitatory/inhibitory circuitry in resting conditions. The possible involvement of spinal cord circuits remains an under-investigated area. Repetitive transcranial magnetic stimulation appears to have a potential role as a safe and viable option for the treatment of functional paralysis, but more studies are needed to investigate optimal stimulation parameters and clarify its role in the context of other therapeutical options.
Collapse
|
17
|
Wang T, Liu Z, Gu J, Tan J, Hu T. Effectiveness of soft robotic glove versus repetitive transcranial magnetic stimulation in post-stroke patients with severe upper limb dysfunction: A randomised controlled trial. Front Neurol 2023; 13:887205. [PMID: 36712422 PMCID: PMC9874667 DOI: 10.3389/fneur.2022.887205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose To explore the difference in rehabilitation effect between soft robot gloves and repetitive transcranial magnetic stimulation (rTMS) in patients with severe upper limb motor dysfunction after a stroke. Methods A total of 69 post-stroke patients with severe upper limb dysfunction were randomly assigned to a repetitive transcranial magnetic group, a soft robotic glove group, and a conventional treatment group. The primary outcomes were the Fugl-Meyer Upper Extremity Assessment (FMA-UE) and the Modified Barthel Index (MBI). The secondary endpoints were the amplitude surface electromyogram of the extensor wrist muscle (sEMG) and the cerebral hemispheric resting motor threshold (RMT). Results The change of FMA-UE score in the soft robotic glove group was significantly better than that in the conventional treatment group (median difference: 2 points; 95% confidence interval [1, 3]; P < 0.05), but there was no significant difference compared with the repetitive transcranial magnetic stimulation group (median difference: 0 points; 95% confidence interval [-1, 2]; P [0.547] > 0.05). There was no significant difference in the change of MBI score between the soft robotic glove group and the conventional treatment and repetitive transcranial magnetic treatment groups [F = 2.458, P [0.093] > 0.05]. There was no significant difference in the change of sEMG score between the soft robotic glove group and the conventional treatment and repetitive transcranial magnetic treatment groups [H = 0.042, P [0.980] > 0.05]. Additionally, the change of RMT score in the soft robotic glove group was significantly inferior to that in the repetitive transcranial magnetic treatment group [difference: -1.09; 95% confidence interval [-2.048, 0.048]; P < 0.05], but there was no significant difference compared with the conventional treatment group [difference: 0.31 points; 95% confidence interval [-0.879, 0.358]; P [0.495] > 0.05]. Conclusion For patients with severe dyskinesia after a stroke, soft robotic gloves are as effective as repetitive transcranial magnetic stimulation and may be a good choice for home rehabilitation. In addition, conventional treatment combined with repetitive transcranial magnetic stimulation (rTMS) or a soft robotic glove produced better rehabilitation outcomes than conventional treatment alone.
Collapse
Affiliation(s)
- Taotao Wang
- Zhongshan People's Hospital, Zhongshan, China,*Correspondence: Taotao Wang ✉
| | | | - Jianxiong Gu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China,Jianxiong Gu ✉
| | - Jizhi Tan
- Guangdong Medical University, Zhanjiang, China
| | - Tian Hu
- Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
18
|
Killian O, Hutchinson M, Reilly R. Neuromodulation in Dystonia - Harnessing the Network. ADVANCES IN NEUROBIOLOGY 2023; 31:177-194. [PMID: 37338702 DOI: 10.1007/978-3-031-26220-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Adult-onset isolated focal dystonia (AOIFD) is a network disorder characterised by abnormalities of sensory processing and motor control. These network abnormalities give rise to both the phenomenology of dystonia and the epiphenomena of altered plasticity and loss of intracortical inhibition. Existing modalities of deep brain stimulation effectively modulate parts of this network but are limited both in terms of targets and invasiveness. Novel approaches using a variety of non-invasive neuromodulation techniques including transcranial stimulation and peripheral stimulation present an interesting alternative approach and may, in conjunction with rehabilitative strategies, have a role in tailored therapies targeting the underlying network abnormality behind AOIFD.
Collapse
Affiliation(s)
- Owen Killian
- The Dublin Neurological Institute, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michael Hutchinson
- Department of Neurology, St Vincent's University Hospital, Dublin, Ireland
| | - Richard Reilly
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
19
|
Lin X, Zhang Y, Chen X, Wen L, Duan L, Yang L. Effects of noninvasive brain stimulation on dual-task performance in different populations: A systematic review. Front Neurosci 2023; 17:1157920. [PMID: 37113144 PMCID: PMC10128879 DOI: 10.3389/fnins.2023.1157920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Background Increasing research has investigated the use of noninvasive brain stimulation (NIBS) on augmenting dual-task (DT) performance. Objective To investigate the effects of NIBS on DT performance in different populations. Methods Extensive electronic database search (from inception to November 20, 2022) was conducted in PubMed, Medline, Cochrane Library, Web of Science and CINAHL to identify randomized controlled trials (RCTs) that investigated the effects of NIBS on DT performance. Main outcomes were balance/mobility and cognitive function under both single-task (ST) and DT conditions. Results Fifteen RCTs were included, involving two types of intervention techniques: transcranial direct current stimulation (tDCS) (twelve RCTs) and repetitive transcranial magnetic stimulation (rTMS) (three RCTs); and four different population groups: healthy young adults, older adults, Parkinson's disease (PD), and stroke. For tDCS, under DT condition, significant improvement in speed was only observed in one PD and one stroke RCT, and stride time variability in one older adults RCT. Reduction in DTC in some gait parameters was demonstrated in one RCT. Only one RCT showed significant reduction in postural sway speed and area during standing under DT condition in young adults. For rTMS, significant improvements in fastest walking speed and time taken to Timed-up-and-go test under both ST and DT conditions were observed at follow-up in one PD RCT only. No significant effect on cognitive function in any RCT was observed. Conclusion Both tDCS and rTMS showed promising effects in improving DT walking and balance performance in different populations, however, due to the large heterogeneity of included studies and insufficient data, any firm conclusion cannot be drawn at present.
Collapse
Affiliation(s)
- Xiaoying Lin
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Yunnan Province, China
| | - Yanming Zhang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Yunnan Province, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Yunnan Province, China
| | - Lifen Wen
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Yunnan Province, China
| | - Lian Duan
- School of Rehabilitation, Kunming Medical University, Yunnan Province, China
- *Correspondence: Lian Duan, ; Lei Yang,
| | - Lei Yang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Yunnan Province, China
- *Correspondence: Lian Duan, ; Lei Yang,
| |
Collapse
|
20
|
He RH, Fan JZ, Qian FF, He YH, Du XH, Lu HX. Repetitive transcranial magnetic stimulation promotes neurological functional recovery in rats with traumatic brain injury by upregulating synaptic plasticity-related proteins. Neural Regen Res 2023; 18:368-374. [PMID: 35900432 PMCID: PMC9396518 DOI: 10.4103/1673-5374.346548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies have shown that repetitive transcranial magnetic stimulation (rTMS) can enhance synaptic plasticity and improve neurological dysfunction. However, the mechanism through which rTMS can improve moderate traumatic brain injury remains poorly understood. In this study, we established rat models of moderate traumatic brain injury using Feeney’s weight-dropping method and treated them using rTMS. To help determine the mechanism of action, we measured levels of several important brain activity-related proteins and their mRNA. On the injured side of the brain, we found that rTMS increased the protein levels and mRNA expression of brain-derived neurotrophic factor, tropomyosin receptor kinase B, N-methyl-D-aspartic acid receptor 1, and phosphorylated cAMP response element binding protein, which are closely associated with the occurrence of long-term potentiation. rTMS also partially reversed the loss of synaptophysin after injury and promoted the remodeling of synaptic ultrastructure. These findings suggest that upregulation of synaptic plasticity-related protein expression is the mechanism through which rTMS promotes neurological function recovery after moderate traumatic brain injury.
Collapse
|
21
|
Grippe T, Desai N, Arora T, Chen R. Use of non-invasive neurostimulation for rehabilitation in functional movement disorders. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:1031272. [PMID: 36466938 PMCID: PMC9709439 DOI: 10.3389/fresc.2022.1031272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 01/19/2024]
Abstract
Functional movement disorders (FMD) are a subtype of functional neurological disorders which involve abnormal movements and include multiple phenomenologies. There is a growing interest in the mechanism, diagnosis, and treatment of these disorders. Most of the current therapeutic approaches rely on psychotherapy and physiotherapy conducted by a multidisciplinary team. Although this approach has shown good results in some cases, FMD cause a great burden on the health system and other treatment strategies are urgently needed. In this review, we summarize past studies that have applied non-invasive neurostimulation techniques, such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS) and peripheral nerve stimulation as a treatment for FMD. There is an increasing number of studies related to TMS including randomized controlled trials; however, the protocols amongst studies are not standardized. There is only preliminary evidence for the efficacy of non-invasive neuromodulation in reducing FMD symptoms, and further studies are needed. There is insufficient evidence to allow implementation of these techniques in clinical practice.
Collapse
Affiliation(s)
- Talyta Grippe
- Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada
- Division of Neurology, University of Toronto, Toronto, ON, Canada
- Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Naaz Desai
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Tarun Arora
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Robert Chen
- Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada
- Division of Neurology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
22
|
Ozturk H, Venugopal S. Transcranial Magnetic Stimulation as a Therapeutic Option for Neurologic Diseases and Psychiatric Disorders: A Systematic Review. Cureus 2022; 14:e28259. [PMID: 36158376 PMCID: PMC9491149 DOI: 10.7759/cureus.28259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/05/2022] Open
Abstract
In the last two decades, transcranial magnetic stimulation (TMS) has attracted considerable interest in the research field and clinical applications because of its capacity to induce adequate electric current non-invasively for depolarizing cortex networks and superficial axons. Notably, the interest in TMS has been due to its ability to be utilized in exploring brain functioning. Indeed, reports have pointed out that TMS may effectively be used as a diagnostic and therapeutic approach for many neuropsychiatric diseases. However, they have not been sufficiently conclusive on the topic, with evidence showing mixed results. Against this backdrop, this systematic review explores TMS as a therapy option for neurologic diseases and psychiatric disorders. It summarizes and illustrates the current therapeutic uses of TMS in adults and children for detecting and treating neuropsychiatric conditions and prospective future applications. Using Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines, findings show that TMS is viable and has neuro-modulatory potential that can be employed successfully as a therapy alternative for neuropsychiatric disorders. Conversely, it is essential to more deeply understand the underlying mechanisms, alongside stimulation protocol optimization, of TMS for more practical applications.
Collapse
|
23
|
Gilbert LA, Fehlings DL, Gross P, Kruer MC, Kwan W, Mink JW, Shusterman M, Aravamuthan BR. Top 10 Research Themes for Dystonia in Cerebral Palsy: A Community-Driven Research Agenda. Neurology 2022; 99:237-245. [PMID: 35715199 PMCID: PMC9442618 DOI: 10.1212/wnl.0000000000200911] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
Dystonia in cerebral palsy (DCP) is a common, debilitating, but understudied condition. The CP community (people with CP and caregivers) is uniquely equipped to help determine the research questions that best address their needs. We developed a community-driven DCP research agenda using the well-established James Lind Alliance methodology. CP community members, researchers, and clinicians were recruited through multiple advocacy, research, and professional organizations. To ensure shared baseline knowledge, participants watched webinars outlining our current knowledge on DCP prepared by a Steering Group of field experts (cprn.org/research-cp-dystonia-edition). Participants next submitted their remaining uncertainties about DCP. These were vetted by the Steering Group and consolidated to eliminate redundancy to generate a list of unique uncertainties, which were then prioritized by the participants. The top-prioritized uncertainties were aggregated into themes through iterative consensus-building discussions within the Steering Group. 166 webinar viewers generated 67 unique uncertainties. 29 uncertainties (17 generated by community members) were prioritized higher than their randomly matched pairs. These were coalesced into the following top 10 DCP research themes: (1) develop new treatments; (2) assess rehabilitation, psychological, and environmental management approaches; (3) compare effectiveness of current treatments; (4) improve diagnosis and severity assessments; (5) assess the effect of mixed tone (spasticity and dystonia) in outcomes and approaches; (6) assess predictors of treatment responsiveness; (7) identify pathophysiologic mechanisms; (8) characterize the natural history; (9) determine the best treatments for pain; and (10) increase family awareness. This community-driven research agenda reflects the concerns most important to the community, both in perception and in practice. We therefore encourage future DCP research to center around these themes. Furthermore, noting that community members (not clinicians or researchers) generated the majority of top-prioritized uncertainties, our results highlight the important contributions community members can make to research agendas, even beyond DCP.
Collapse
Affiliation(s)
- Laura A Gilbert
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT
| | - Darcy L Fehlings
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT
| | - Paul Gross
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT
| | - Michael C Kruer
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT
| | - Wendy Kwan
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT
| | - Jonathan W Mink
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT
| | - Michele Shusterman
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT
| | - Bhooma R Aravamuthan
- From the Department of Neurology (L.A.G., B.R.A.), Washington University School of Medicine and St. Louis Children's Hospital, MO; Department of Pediatrics (D.L.F.), University of Toronto and Holland Bloorview Kids Rehabilitation Hospital, Ontario, Canada; Department of Population Health Sciences (P.G., W.K.), University of Utah, Salt Lake City; Departments of Child Health, Neurology, Genetics, and Cellular and Molecular Medicine (M.C.K.), College of Medicine-Phoenix, University of Arizona and Cerebral Palsy and Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital; Department of Neurology (J.W.M.), University of Rochester School of Medicine and Dentistry, NY; and The Cerebral Palsy Research Network (P.G., M.S.), Salt Lake City, UT.
| |
Collapse
|
24
|
Montemurro N, Aliaga N, Graff P, Escribano A, Lizana J. New Targets and New Technologies in the Treatment of Parkinson's Disease: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8799. [PMID: 35886651 PMCID: PMC9321220 DOI: 10.3390/ijerph19148799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease, whose main neuropathological finding is pars compacta degeneration due to the accumulation of Lewy bodies and Lewy neurites, and subsequent dopamine depletion. This leads to an increase in the activity of the subthalamic nucleus (STN) and the internal globus pallidus (GPi). Understanding functional anatomy is the key to understanding and developing new targets and new technologies that could potentially improve motor and non-motor symptoms in PD. Currently, the classical targets are insufficient to improve the entire wide spectrum of symptoms in PD (especially non-dopaminergic ones) and none are free of the side effects which are not only associated with the procedure, but with the targets themselves. The objective of this narrative review is to show new targets in DBS surgery as well as new technologies that are under study and have shown promising results to date. The aim is to give an overview of these new targets, as well as their limitations, and describe the current studies in this research field in order to review ongoing research that will probably become effective and routine treatments for PD in the near future.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| | - Nelida Aliaga
- Medicine Faculty, Austral University, Buenos Aires B1406, Argentina; (N.A.); (A.E.)
| | - Pablo Graff
- Functional Neurosurgery Program, Department of Neurosurgery, San Miguel Arcángel Hospital, Buenos Aires B1406, Argentina;
| | - Amanda Escribano
- Medicine Faculty, Austral University, Buenos Aires B1406, Argentina; (N.A.); (A.E.)
| | - Jafeth Lizana
- Department of Neurosurgery, Hospital Nacional Guillermo Almenara Irigoyen, Lima 07035, Peru;
- Medicine Faculty, Universidad Nacional Mayor de San Marcos, Lima 07035, Peru
| |
Collapse
|
25
|
Li R, He Y, Qin W, Zhang Z, Su J, Guan Q, Chen Y, Jin L. Effects of Repetitive Transcranial Magnetic Stimulation on Motor Symptoms in Parkinson's Disease: A Meta-Analysis. Neurorehabil Neural Repair 2022; 36:395-404. [PMID: 35616427 DOI: 10.1177/15459683221095034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique that has been closely examined as a possible treatment for Parkinson's disease (PD). Owing to various rTMS protocols and results, the optimal mode and suitable PD symptoms have yet to be established. OBJECTIVES This study intends to systematically evaluate the efficacy of rTMS intervention and identify optimal stimulation protocol of rTMS for specific motor symptoms. METHODS PubMed and web of Science databases were searched before January 2022. Eligible studies included sham-controlled and randomized clinical trials of rTMS intervention for motor dysfunction in patients with PD. Standard mean difference (SMD) was calculated with random-effects models. The effects of rTMS on motor symptoms were mainly estimated by the UPDRS-III. RESULTS A total of 1172 articles were identified, of which 32 articles met the inclusion criteria for meta-analysis. The pooled evidence suggested that rTMS relieves motor symptoms of patients with PD (SMD 0.64, 95%CI [0.47, 0.80]). High frequency stimulation on M1 is the most effective mode of intervention (SMD 0.79, 95%CI [0.52, 1.07]). HF rTMS has significant therapeutic effects on limbs motor function (SMD 1.93, 95%CI [0.73, 3.12] for upper limb function and SMD 0.88, 95%CI [0.43, 1.33] for lower limb function), akinesia (SMD 1.17, 95%CI [0.43, 1.92), rigidity (SMD 1.02, 95%CI [0.12, 1.92]) and tremor(SMD 0.91, 95%CI [0.15, 1.67]). CONCLUSION rTMS therapy is an effective treatment for motor symptoms of PD and the individualized stimulation protocols for different symptoms would further improve its clinical efficacy.
Collapse
Affiliation(s)
- Ruoyu Li
- Neurotoxin research center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Yijing He
- Neurotoxin research center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Wenting Qin
- Neurotoxin research center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Zhuoyu Zhang
- Neurotoxin research center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Junhui Su
- Neurotoxin research center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Qiang Guan
- Neurotoxin research center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Yuhui Chen
- Neurotoxin research center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Lingjing Jin
- Neurotoxin research center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China.,Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
26
|
Somaa FA, de Graaf TA, Sack AT. Transcranial Magnetic Stimulation in the Treatment of Neurological Diseases. Front Neurol 2022; 13:793253. [PMID: 35669870 PMCID: PMC9163300 DOI: 10.3389/fneur.2022.793253] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Transcranial Magnetic Stimulation (TMS) has widespread use in research and clinical application. For psychiatric applications, such as depression or OCD, repetitive TMS protocols (rTMS) are an established and globally applied treatment option. While promising, rTMS is not yet as common in treating neurological diseases, except for neurorehabilitation after (motor) stroke and neuropathic pain treatment. This may soon change. New clinical studies testing the potential of rTMS in various other neurological conditions appear at a rapid pace. This can prove challenging for both practitioners and clinical researchers. Although most of these neurological applications have not yet received the same level of scientific/empirical scrutiny as motor stroke and neuropathic pain, the results are encouraging, opening new doors for TMS in neurology. We here review the latest clinical evidence for rTMS in pioneering neurological applications including movement disorders, Alzheimer's disease/mild cognitive impairment, epilepsy, multiple sclerosis, and disorders of consciousness.
Collapse
Affiliation(s)
- Fahad A. Somaa
- Department of Occupational Therapy, Faculty of Medical Rehabilitation, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tom A. de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Center of Integrative Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Center of Integrative Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Brain + Nerve Centre, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
27
|
Guerra A, Bologna M. Low-Intensity Transcranial Ultrasound Stimulation: Mechanisms of Action and Rationale for Future Applications in Movement Disorders. Brain Sci 2022; 12:brainsci12050611. [PMID: 35624998 PMCID: PMC9139935 DOI: 10.3390/brainsci12050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) is a novel non-invasive brain stimulation technique that uses acoustic energy to induce changes in neuronal activity. However, although low-intensity TUS is a promising neuromodulation tool, it has been poorly studied as compared to other methods, i.e., transcranial magnetic and electrical stimulation. In this article, we first focus on experimental studies in animals and humans aimed at explaining its mechanisms of action. We then highlight possible applications of TUS in movement disorders, particularly in patients with parkinsonism, dystonia, and tremor. Finally, we highlight the knowledge gaps and possible limitations that currently limit potential TUS applications in movement disorders. Clarifying the potential role of TUS in movement disorders may further promote studies with therapeutic perspectives in this field.
Collapse
Affiliation(s)
| | - Matteo Bologna
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
28
|
Sarica C, Nankoo JF, Fomenko A, Grippe TC, Yamamoto K, Samuel N, Milano V, Vetkas A, Darmani G, Cizmeci MN, Lozano AM, Chen R. Human Studies of Transcranial Ultrasound neuromodulation: A systematic review of effectiveness and safety. Brain Stimul 2022; 15:737-746. [DOI: 10.1016/j.brs.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 01/11/2023] Open
|
29
|
Hao W, Wei T, Yang W, Yang Y, Cheng T, Li X, Dong W, Jiang H, Qian N, Wang H, Wang M. Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation on Upper Limb Dystonia in Patients With Wilson's Disease: A Randomized Controlled Trial. Front Neurol 2022; 12:783365. [PMID: 34970214 PMCID: PMC8712768 DOI: 10.3389/fneur.2021.783365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Upper limb dystonia is a frequent complication of Wilson's disease (WD). It can lead to poor quality of life and disability. Currently, no effective treatment for it exists. Therefore, we carried out a clinical trial to determine whether high frequency repetitive transcranial magnetic stimulation (rTMS) on the primary motor cortex alleviates upper limb dystonia in WD patients. Methods: This study was a single-center, double-blind, randomized clinical study, included 60 WD patients with upper limb dystonia from a research base of WD in Hefei, China. Participants were randomly divided into a treatment group (TG) and a control group (CG). The TG received rTMS at 10 Hz, while the CG received sham stimulation for 7 consecutive days. Participants were assessed at baseline, after the seventh treatment session, and at 2 and 4 weeks after the seventh treatment session. The primary outcomes included patients' objective muscle tension and stiffness as measured with the MyotonPRO device. The secondary results were scores on clinical scales assessing muscle spasm and motor symptoms, which included the Modified Ashworth Scale (MAS), Unified Wilson's Disease Rating Scale (UWDRS), Burke Fahn Marsden Scale (BFM), and the Activities of Daily Living (ADL) scale. Results: The analysis revealed that after 10 Hz rTMS, muscle tension (P < 0.01) and stiffness (P < 0.01) as measured by the MyotonPRO device decreased significantly in the TG compared to the CG. Moreover, clinically relevant scale scores, including the MAS (P < 0.01), UWDRS (P < 0.01), BFM (P < 0.01), and ADL (P < 0.01) were also significantly reduced. Conclusion: High-frequency rTMS over the primary motor cortex may be an effective complementary and alternative therapy to alleviating upper limb dystonia in WD patients. Clinical Trial Registration:http://www.chictr.org.cn/, identifier: ChiCTR2100046258.
Collapse
Affiliation(s)
- Wenjie Hao
- Department of Graduate, Anhui University of Chinese Medicine, Hefei, China
| | - Taohua Wei
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yue Yang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Ting Cheng
- Department of Clinical Medicine, Clinical Medicine College of Anhui Medical University, Hefei, China
| | - Xiang Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wei Dong
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hailin Jiang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Nannan Qian
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Han Wang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meixia Wang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
30
|
Repetitive Transcranial Magnetic Stimulation for Major Depressive Disorder Comorbid with Huntington’s Disease: A Case Report. NEUROSCI 2021. [DOI: 10.3390/neurosci2040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Huntington’s disease (HD) is a rare genetic disorder resulting in progressive neurodegeneration leading to motor, cognitive and psychiatric symptoms. A high percentage of HD patients suffer from comorbid major depressive disorder (MDD). We are not aware of any literature on the use of repetitive transcranial magnetic stimulation (rTMS) for treating comorbid MDD in HD. We present the case of a 57-year-old man suffering from HD in which comorbid MDD was successfully treated with rTMS. Further work is required to better characterize the safety, tolerability and effectiveness of rTMS to treat comorbid MDD in HD.
Collapse
|
31
|
Song CG, Shi XJ, Jiang B, Shi R, Guo X, Qi S, Li L. Successful treatment of the Meige's syndrome with navigated repetitive transcranial magnetic stimulation: A case report. Brain Stimul 2021; 15:96-98. [PMID: 34800698 DOI: 10.1016/j.brs.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Chang-Geng Song
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiao-Jing Shi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | - Rui Shi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin Guo
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shun Qi
- Neural Regulation Lab of Brain Science and Humanoid Intelligence Research Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Shaanxi Brain-Control Brain Science Research Center, Xi'an, Shaanxi, China
| | - Li Li
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Vis Clinic, Xi'an, Shaanxi, China.
| |
Collapse
|
32
|
Godeiro C, França C, Carra RB, Saba F, Saba R, Maia D, Brandão P, Allam N, Rieder CRM, Freitas FC, Capato T, Spitz M, Faria DDD, Cordellini M, Veiga BAAG, Rocha MSG, Maciel R, Melo LBD, Möller PDS, R R Júnior M, Fornari LHT, Mantese CE, Barbosa ER, Munhoz RP, Coletta MVD, Cury RG. Use of non-invasive stimulation in movement disorders: a critical review. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:630-646. [PMID: 34468499 DOI: 10.1590/0004-282x-anp-2020-0381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noninvasive stimulation has been widely used in the past 30 years to study and treat a large number of neurological diseases, including movement disorders. OBJECTIVE In this critical review, we illustrate the rationale for use of these techniques in movement disorders and summarize the best medical evidence based on the main clinical trials performed to date. METHODS A nationally representative group of experts performed a comprehensive review of the literature in order to analyze the key clinical decision-making factors driving transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in movement disorders. Classes of evidence and recommendations were described for each disease. RESULTS Despite unavoidable heterogeneities and low effect size, TMS is likely to be effective for treating motor symptoms and depression in Parkinson's disease (PD). The efficacy in other movement disorders is unclear. TMS is possibly effective for focal hand dystonia, essential tremor and cerebellar ataxia. Additionally, it is likely to be ineffective in reducing tics in Tourette syndrome. Lastly, tDCS is likely to be effective in improving gait in PD. CONCLUSIONS There is encouraging evidence for the use of noninvasive stimulation on a subset of symptoms in selected movement disorders, although the means to optimize protocols for improving positive outcomes in routine clinical practice remain undetermined. Similarly, the best stimulation paradigms and responder profile need to be investigated in large clinical trials with established therapeutic and assessment paradigms that could also allow genuine long-term benefits to be determined.
Collapse
Affiliation(s)
- Clecio Godeiro
- Universidade Federal do Rio Grande do Norte, Departamento de Medicina Integrada, Natal RN, Brazil
| | - Carina França
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Rafael Bernhart Carra
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Felipe Saba
- Universidade Estadual de Campinas, São Paulo SP, Brazil
| | - Roberta Saba
- Hospital do Servidor Público Estadual, São Paulo SP, Brazil.,Universidade Federal de São Paulo, São Paulo SP, Brazil
| | - Débora Maia
- Universidade Federal de Minas Gerais, Departamento de Medicina Interna, Unidade de Distúrbios do Movimento, Belo Horizonte MG, Brazil
| | - Pedro Brandão
- Universidade de Brasília, Laboratório de Neurociências e Comportamento, Brasília DF, Brazil
| | - Nasser Allam
- Universidade de Brasília, Laboratório de Neurociências e Comportamento, Brasília DF, Brazil
| | - Carlos R M Rieder
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre RS, Brazil
| | | | - Tamine Capato
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil.,Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Nijmegen, Netherlands
| | - Mariana Spitz
- Universidade do Estado do Rio de Janeiro, Unidade de Distúrbios do Movimento, Rio de Janeiro RJ, Brazil
| | - Danilo Donizete de Faria
- Hospital do Servidor Público Estadual, São Paulo SP, Brazil.,Universidade Federal de São Paulo, São Paulo SP, Brazil
| | | | | | - Maria Sheila G Rocha
- Hospital Santa Marcelina, Departamento de Neurologia e Neurocirurgia Funcional, São Paulo SP, Brazil
| | - Ricardo Maciel
- Universidade Federal de Minas Gerais, Departamento de Medicina Interna, Unidade de Distúrbios do Movimento, Belo Horizonte MG, Brazil
| | - Lucio B De Melo
- Universidade Estadual de Londrina, Serviço de Neurologia, Londrina PR, Brazil
| | - Patricia D S Möller
- Hospital da Criança de Brasília José Alencar, Unidade Pediátrica de Distúrbios do Movimento, Brasília DF, Brazil
| | - Magno R R Júnior
- Universidade Federal do Maranhão, Hospital Universitário, São Luís MA, Brazil
| | - Luís H T Fornari
- Santa Casa de Misericórdia de Porto Alegre, Departamento de Neurologia, Porto Alegre RS, Brazil
| | - Carlos E Mantese
- Hospital Mãe de Deus, Serviço de Neurologia, Porto Alegre RS, Brazil
| | - Egberto Reis Barbosa
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| | - Renato P Munhoz
- University of Toronto, Toronto Western Hospital - UHN, Division of Neurology, Morton and Gloria Shulman Movement Disorders Centre and Edmond J. Safra Program in Parkinson's Disease, Toronto ON, Canada.,Krembil Brain Institute, Toronto ON, Canada
| | | | - Rubens Gisbert Cury
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil
| |
Collapse
|
33
|
Hot Topics in Recent Parkinson's Disease Research: Where We are and Where We Should Go. Neurosci Bull 2021; 37:1735-1744. [PMID: 34313916 DOI: 10.1007/s12264-021-00749-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease, is clinically characterized by both motor and non-motor symptoms. Although overall great achievements have been made in elucidating the etiology and pathogenesis of PD, the exact mechanisms of this complicated systemic disease are still far from being clearly understood. Consequently, most of the currently-used diagnostic tools and therapeutic options for PD are symptomatic. In this perspective review, we highlight the hot topics in recent PD research for both clinicians and researchers. Some of these hot topics, such as sleep disorders and gut symptoms, have been neglected but are currently emphasized due to their close association with PD. Following these research directions in future PD research may help understand the nature of the disease and facilitate the discovery of new strategies for the diagnosis and therapy of PD.
Collapse
|
34
|
Shukla S, Thirugnanasambandam N. Deriving mechanistic insights from machine learning and its possible implications in non-invasive brain stimulation research. Brain Stimul 2021; 14:1035-1037. [PMID: 34186249 DOI: 10.1016/j.brs.2021.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Sakshi Shukla
- Human Motor Neurophysiology and Neuromodulation Lab, National Brain Research Centre (NBRC), Manesar, Haryana, India
| | - Nivethida Thirugnanasambandam
- Human Motor Neurophysiology and Neuromodulation Lab, National Brain Research Centre (NBRC), Manesar, Haryana, India.
| |
Collapse
|
35
|
Mohammad Mahdi Alavi S, Goetz SM, Saif M. Input-output slope curve estimation in neural stimulation based on optimal sampling principles . J Neural Eng 2021; 18:10.1088/1741-2552/abffe5. [PMID: 33975287 PMCID: PMC8384062 DOI: 10.1088/1741-2552/abffe5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/11/2021] [Indexed: 11/11/2022]
Abstract
This paper discusses some of the practical limitations and issues, which exist for the input-output (IO) slope curve estimation (SCE) in neural, brain and spinal, stimulation techniques. The drawbacks of the SCE techniques by using existing uniform sampling and Fisher-information-based optimal IO curve estimation (FO-IOCE) methods are elaborated. A novel IO SCE technique is proposed with a modified sampling strategy and stopping rule which improve the SCE performance compared to these methods. The effectiveness of the proposed IO SCE is tested on 1000 simulation runs in transcranial magnetic stimulation (TMS), with a realistic model of motor evoked potentials. The results show that the proposed IO SCE method successfully satisfies the stopping rule, before reaching the maximum number of TMS pulses in 79.5% of runs, while the estimation based on the uniform sampling technique never converges and satisfies the stopping rule. At the time of successful termination, the proposed IO SCE method decreases the 95th percentile (mean value in the parentheses) of the absolute relative estimation errors (AREs) of the slope curve parameters up to 7.45% (2.2%), with only 18 additional pulses on average compared to that of the FO-IOCE technique. It also decreases the 95th percentile (mean value in the parentheses) of the AREs of the IO slope curve parameters up to 59.33% (16.71%), compared to that of the uniform sampling method. The proposed IO SCE also identifies the peak slope with higher accuracy, with the 95th percentile (mean value in the parentheses) of AREs reduced by up to 9.96% (2.01%) compared to that of the FO-IOCE method, and by up to 46.29% (13.13%) compared to that of the uniform sampling method.
Collapse
Affiliation(s)
- Seyed Mohammad Mahdi Alavi
- Department of Applied Computing and Engineering, School of Technologies, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - Stefan M Goetz
- Departments of Psychiatry and Behavioral Sciences, Electrical and Computer Engineering, and Neurosurgery as well as the Duke Brain Initiative, Duke University, Durham, NC 27708, United States of America
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Mehrdad Saif
- Department of Electrical Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
36
|
Latorre A, Rocchi L, Sadnicka A. The Expanding Horizon of Neural Stimulation for Hyperkinetic Movement Disorders. Front Neurol 2021; 12:669690. [PMID: 34054710 PMCID: PMC8160223 DOI: 10.3389/fneur.2021.669690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Novel methods of neural stimulation are transforming the management of hyperkinetic movement disorders. In this review the diversity of approach available is showcased. We first describe the most commonly used features that can be extracted from oscillatory activity of the central nervous system, and how these can be combined with an expanding range of non-invasive and invasive brain stimulation techniques. We then shift our focus to the periphery using tremor and Tourette's syndrome to illustrate the utility of peripheral biomarkers and interventions. Finally, we discuss current innovations which are changing the landscape of stimulation strategy by integrating technological advances and the use of machine learning to drive optimization.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom.,Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Anna Sadnicka
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom.,Motor Control and Neuromodulation Group, St George's University of London, London, United Kingdom
| |
Collapse
|
37
|
Louis ED. The Essential Tremors: Evolving Concepts of a Family of Diseases. Front Neurol 2021; 12:650601. [PMID: 33841316 PMCID: PMC8032967 DOI: 10.3389/fneur.2021.650601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 12/31/2022] Open
Abstract
The past 10 years has seen a remarkable advance in our understanding of the disease traditionally referred to as “essential tremor” (ET). First, the clinical phenotype of ET has been expanded from that of a bland, unidimensional, and monosymptomatic entity to one with a host of heterogeneous features. These features include a broader and more nuanced collection of tremors, non-tremor motor features (e.g., gait abnormalities) and a range of non-motor features, including cognitive, psychiatric, sleep, and other abnormalities. The natural history of these features, as well as their relationships with one another and with disease duration and severity, are better appreciated than they were previously. Studies of disease etiology have identified a number of candidate genes as well as explored several environmental determinants of disease. In addition, the decade has seen the beginnings and expansion of rigorous postmortem studies that have identified and described the postmortem changes in the brains of patients with ET. This emerging science has given rise to a new notion that the disease, in many cases, is one of cerebellar system degeneration. Across all of these studies (clinical, etiological, and pathophysiological) is the observation that there is heterogeneity across patients and that “essential tremor” is likely not a single disease but, rather, a family of diseases. The time has come to use the more appropriate terminology, “the essential tremors,” to fully describe and encapsulate what is now apparent. In this paper, the author will review the clinical, etiological, and pathophysiological findings, referred to above, and make the argument that the terminology should evolve to reflect advances in science and that “the essential tremors” is a more scientifically appropriate term.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology, University of Texas Southwestern, Dallas, TX, United States
| |
Collapse
|
38
|
Systematic review of biological markers of therapeutic repetitive transcranial magnetic stimulation in neurological and psychiatric disorders. Clin Neurophysiol 2021; 132:429-448. [DOI: 10.1016/j.clinph.2020.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/16/2020] [Accepted: 11/08/2020] [Indexed: 01/05/2023]
|
39
|
Bocci T, Baloscio D, Ferrucci R, Sartucci F, Priori A. Cerebellar Direct Current Stimulation (ctDCS) in the Treatment of Huntington's Disease: A Pilot Study and a Short Review of the Literature. Front Neurol 2020; 11:614717. [PMID: 33343504 PMCID: PMC7744723 DOI: 10.3389/fneur.2020.614717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: In recent years, a growing body of literature has investigated the use of non-invasive brain stimulation (NIBS) techniques as a putative treatment in Huntington's Disease (HD). Our aim was to evaluate the effects of cerebellar transcranial Direct Current Simulation (ctDCS) on the motor outcome in patients affected by HD, encompassing at the same time the current knowledge about the effects of NIBS both on motor and non-motor dysfunctions in HD. Materials and Methods: Four patients (two females) were enrolled and underwent ctDCS (both anodal or sham, elapsed by at least 3 months: 2.0 mA, 20 min per day, 5 days a week). Clinical scores were assessed by using the Unified Huntington's Disease Rating Scale - part I (UHDRS-I), immediately before ctDCS (T0), at the end of the 5-days treatment (T1) and 4 weeks later (T2). Results: Anodal ctDCS improved motor scores compared to baseline (p = 0.0046), whereas sham stimulation left them unchanged (p = 0.33, Friedman test). In particular, following anodal ctDCS, UHDRS-I score significantly improved, especially regarding the subitem "dystonia," both at T1 and T2 compared to sham condition (p < 0.05; Wilcoxon matched-pairs signed test). Conclusions: ctDCS improved motor scores in HD, with effects lasting for about 4 weeks after tDCS completion. This is the first study discussing the putative role of cerebellar non-invasive simulation for the treatment of HD.
Collapse
Affiliation(s)
- Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan & Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Davide Baloscio
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberta Ferrucci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan & Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Ferdinando Sartucci
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan & Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
40
|
Liu YL, Gong SY, Xia ST, Wang YL, Peng H, Shen Y, Liu CF. Light therapy: a new option for neurodegenerative diseases. Chin Med J (Engl) 2020; 134:634-645. [PMID: 33507006 PMCID: PMC7990011 DOI: 10.1097/cm9.0000000000001301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT Given the increasing incidence of neurodegenerative disease (ND), recent research efforts have intensified the search for curative treatments. Despite significant research, however, existing therapeutic options for ND can only slow down the progression of the disease, but not provide a cure. Light therapy (LT) has been used to treat some mental and sleep disorders. This review illustrates recent studies of the use of LT in patients with ND and highlights its potential for clinical applications. The literature was collected from PubMed through June 2020. Selected studies were primarily English articles or articles that could be obtained with English abstracts and Chinese main text. Articles were not limited by type. Additional potential publications were also identified from the bibliographies of identified articles and the authors' reference libraries. The identified literature suggests that LT is a safe and convenient physical method of treatment. It may alleviate sleep disorders, depression, cognitive function, and other clinical symptoms. However, some studies have reported limited or no effects. Therefore, LT represents an attractive therapeutic approach for further investigation in ND. LT is an effective physical form of therapy and a new direction for research into treatments for ND. However, it requires further animal experiments to elucidate mechanisms of action and large, double-blind, randomized, and controlled trials to explore true efficacy in patients with ND.
Collapse
Affiliation(s)
- Yu-Lu Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Si-Yi Gong
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shu-Ting Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ya-Li Wang
- Department of Neurology, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu 215008, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215006 China
| | - Yun Shen
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Neurology, Suqian First Hospital, Suqian, Jiangsu 223800, China
| |
Collapse
|
41
|
He PK, Wang LM, Chen JN, Zhang YH, Gao YY, Xu QH, Qiu YH, Cai HM, Li Y, Huang ZH, Feng SJ, Zhao JH, Ma GX, Nie K, Wang LJ. Repetitive transcranial magnetic stimulation (rTMS) fails to improve cognition in patients with parkinson's disease: a Meta-analysis of randomized controlled trials. Int J Neurosci 2020; 132:269-282. [PMID: 33208009 DOI: 10.1080/00207454.2020.1809394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cognitive decline is one of the greatest concerns for patients with Parkinson's disease (PD) and their care partners. Repetitive transcranial magnetic stimulation (rTMS) is a nonpharmacological treatment option used to improve cognitive function in PD, but its efficacy is unclear. We performed a meta-analysis to determine whether rTMS improves cognition in PD patients. METHODS Eligibility criteria (PICOS) were as follows: (1) 'P': The patients participating were diagnosed with idiopathic PD; (2) 'I': Intervention using rTMS; (3) 'C': Sham stimulation as control; (4) 'O': The outcome of the study included cognitive evaluations; (5) 'S': The study adopted randomized controlled design. The standardized mean difference (SMD) of change of score was applied to measure efficacy, and we used Version 2 of the Cochrane tool to assess risk of bias. RESULTS Twelve studies met the inclusion criteria. Compared with sham-controlled group, the pooled result showed a non-significant short-term effect of rTMS on global cognition (SMD: -0.15, 95% CI: -0.59 to 0.29, I2 = 36.7%), executive function (SMD: 0.03, 95% CI: -0.21 to 0.26, I2 = 0.0%), and attention and working memory (SMD: 0.05, 95% CI: -0.25 to 0.35, I2 = 0.0%). Long-term outcomes were either shown to be statistically nonsignificant. CONCLUSIONS Based on a limited number of studies, rTMS fails to improve cognition in PD. We call for additional high-quality randomized controlled trials with adequate sample sizes to determine the efficacy of rTMS.
Collapse
Affiliation(s)
- Pei Kun He
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Li Min Wang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Jia Ning Chen
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Yu Hu Zhang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Yu Yuan Gao
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Qi Huan Xu
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Yi Hui Qiu
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Hui Min Cai
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - You Li
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Zhi Heng Huang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Shu Jun Feng
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Jie Hao Zhao
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Gui Xian Ma
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| | - Li Juan Wang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute, Guangzhou, China
| |
Collapse
|
42
|
Ibrahim MF, Beevis JC, Empson RM. Essential Tremor - A Cerebellar Driven Disorder? Neuroscience 2020; 462:262-273. [PMID: 33212218 DOI: 10.1016/j.neuroscience.2020.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Abnormal tremors are the most common of all movement disorders. In this review we focus on the role of the cerebellum in Essential Tremor, a highly debilitating but poorly treated movement disorder. We propose a variety of mechanisms driving abnormal burst firing of deep cerebellar nuclei neurons as a key initiator of tremorgenesis in Essential Tremor. Targetting these mechanisms may generate more effective treatments for Essential Tremor.
Collapse
Affiliation(s)
- Mohamed Fasil Ibrahim
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand.
| | - Jessica C Beevis
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Ruth M Empson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
43
|
Low-Frequency Repetitive Transcranial Magnetic Stimulation over Right Dorsolateral Prefrontal Cortex in Parkinson's Disease. PARKINSONS DISEASE 2020; 2020:7295414. [PMID: 33005318 PMCID: PMC7509565 DOI: 10.1155/2020/7295414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/01/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022]
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) is a promising therapeutic tool for Parkinson's disease (PD), and many stimulation targets have been implicated. We aim to explore whether low-frequency rTMS over the right dorsolateral prefrontal cortex (DLPFC) improves motor and nonmotor symptoms of individuals with PD. Methods We conducted a randomized, single-blind, sham-controlled parallel trial to compare the effect of 10 consecutive daily sessions of 1 Hz rTMS over right DLPFC on individuals with idiopathic PD between active and sham rTMS group. Primary outcomes were changes in Unified Parkinson's Disease Rating Scale (UPDRS) part III and Nonmotor Symptom Questionnaire (NMSQ). Secondary outcomes were changes in UPDRS total score, Hamilton Rating Scale for Depression (HRSD), Pittsburgh Sleep Quality Index (PSQI), and Montreal Cognitive Assessment (MoCA). Assessments were completed at baseline, after treatment, and at 1 month, 3 months, and 6 months after treatment. Results A total of 33 participants with PD were randomized. All participants completed the study and no severe adverse effect was noticed. Compared to baseline, active rTMS showed significant improvements in UPDRS part III and NMSQ at 1 month. Change of scores on UPDRS part III, HRSD, and PSQI persisted for 3 months after rTMS intervention. The beneficial effect on cognitive performance assessed by MoCA was maintained for at least 6 months in the follow-up. No significant changes were observed in the group with sham rTMS. Conclusions Low-frequency rTMS of right DLPFC could be a potential selection in managing motor and nonmotor symptoms in PD.
Collapse
|
44
|
Transcranial magnetic stimulation and gait disturbances in Parkinson's disease: A systematic review. Neurophysiol Clin 2020; 50:213-225. [DOI: 10.1016/j.neucli.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
|
45
|
Ganguly J, Murgai A, Sharma S, Aur D, Jog M. Non-invasive Transcranial Electrical Stimulation in Movement Disorders. Front Neurosci 2020; 14:522. [PMID: 32581682 PMCID: PMC7290124 DOI: 10.3389/fnins.2020.00522] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
Dysfunction within large-scale brain networks as the basis for movement disorders is an accepted hypothesis. The treatment options for restoring network function are limited. Non-invasive brain stimulation techniques such as repetitive transcranial magnetic stimulation are now being studied to modify the network. Transcranial electrical stimulation (tES) is also a portable, cost-effective, and non-invasive way of network modulation. Transcranial direct current stimulation and transcranial alternating current stimulation have been studied in Parkinson’s disease, dystonia, tremor, and ataxia. Transcranial pulsed current stimulation and transcranial random noise stimulation are not yet studied enough. The literature in the use of these techniques is intriguing, yet many unanswered questions remain. In this review, we highlight the studies using these four potential tES techniques and their electrophysiological basis and consider the therapeutic implication in the field of movement disorders. The objectives are to consolidate the current literature, demonstrate that these methods are feasible, and encourage the application of such techniques in the near future.
Collapse
Affiliation(s)
- Jacky Ganguly
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Aditya Murgai
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Soumya Sharma
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Dorian Aur
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Mandar Jog
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
46
|
Ugawa Y, Shimo Y, Terao Y. Future of Tanscranial Magnetic Stimulation in Movement Disorders: Introduction of Novel Methods. J Mov Disord 2020; 13:115-117. [PMID: 32241077 PMCID: PMC7280939 DOI: 10.14802/jmd.19083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/31/2019] [Indexed: 01/15/2023] Open
Affiliation(s)
- Yoshikazu Ugawa
- Department of Neuro-Regeneration, Fukushima Medical University, Fukushima, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Faculty of Medicine, Kyorin University, Mitaka, Japan
| |
Collapse
|
47
|
Cury RG, Carra R, Reis J, Barbosa ER. Optimizing Noninvasive Stimulation to Treat Gait Problems in Parkinson Disease. Arch Phys Med Rehabil 2020; 101:1097-1098. [PMID: 32044041 DOI: 10.1016/j.apmr.2019.10.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Affiliation(s)
| | - Rafael Carra
- Movement Disorders Unit, University of São Paulo, São Paulo, Brazil
| | - Janaína Reis
- Movement Disorders Unit, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
48
|
Sanna A, Follesa P, Puligheddu M, Cannas A, Serra M, Pisu MG, Dagostino S, Solla P, Tacconi P, Marrosu F. Cerebellar continuous theta burst stimulation reduces levodopa-induced dyskinesias and decreases serum BDNF levels. Neurosci Lett 2020; 716:134653. [DOI: 10.1016/j.neulet.2019.134653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/15/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
|
49
|
Bamford NS, McVicar K. Localising movement disorders in childhood. THE LANCET CHILD & ADOLESCENT HEALTH 2019; 3:917-928. [PMID: 31653548 DOI: 10.1016/s2352-4642(19)30330-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022]
Abstract
The diagnosis and management of movement disorders in children can be improved by understanding the pathways, neurons, ion channels, and receptors involved in motor learning and control. In this Review, we use a localisation approach to examine the anatomy, physiology, and circuitry of the basal ganglia and highlight the mechanisms that underlie some of the major movement disorders in children. We review the connections between the basal ganglia and the thalamus and cortex, address the basic clinical definitions of movement disorders, and then place diseases within an anatomical or physiological framework that highlights basal ganglia function. We discuss how new pharmacological, behavioural, and electrophysiological approaches might benefit children with movement disorders by modifying synaptic function. A better understanding of the mechanisms underlying movement disorders allows improved diagnostic and treatment decisions.
Collapse
Affiliation(s)
- Nigel S Bamford
- Departments of Pediatrics and Neurology, Yale University, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Department of Neurology, University of Washington, Seattle, WA, USA.
| | - Kathryn McVicar
- Departments of Pediatrics and Neurology, Yale University, New Haven, CT, USA
| |
Collapse
|