1
|
Zhang Y, Mo C, Ai P, He X, Xiao Q, Yang X. Pharmacomicrobiomics: a new field contributing to optimizing drug therapy in Parkinson's disease. Gut Microbes 2025; 17:2454937. [PMID: 39875349 PMCID: PMC11776486 DOI: 10.1080/19490976.2025.2454937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/19/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Gut microbiota, which act as a determinant of pharmacokinetics, have long been overlooked. In recent years, a growing body of evidence indicates that the gut microbiota influence drug metabolism and efficacy. Conversely, drugs also exert a substantial influence on the function and composition of the gut microbiota. Pharmacomicrobiomics, an emerging field focusing on the interplay of drugs and gut microbiota, provides a potential foundation for making certain advances in personalized medicine. Understanding the communication between gut microbiota and antiparkinsonian drugs is critical for precise treatment of Parkinson's disease. Here, we provide a historical overview of the interplay between gut microbiota and antiparkinsonian drugs. Moreover, we discuss potential mechanistic insights into the complex associations between gut microbiota and drug metabolism. In addition, we also draw attention to microbiota-based biomarkers for predicting antiparkinsonian drug efficacy and examine current state-of-the-art knowledge of microbiota-based strategies to optimize drug therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Ai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqin He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Gros P, Garcia LA, Fox SH. Experimental Therapeutics in Parkinson's Disease: A Review. Neurol Clin 2025; 43:399-426. [PMID: 40185528 DOI: 10.1016/j.ncl.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
The prevalence and burden of Parkinson's disease (PD) is rising. Motor symptoms are primarily treated with dopamine replacement, although with limitations and complications over time. Advances in PD research include new drug candidates and innovative repurposing of existing drugs targeting various molecular mechanisms. Several agents are under Food and Drug Administration review, highlighting the dynamic progress in the field. This review summarizes the latest experimental therapies for PD, including both motor and nonmotor symptom treatments. A total of 147 studies were included, examining new dopaminergic and nondopaminergic therapies, innovative drug formulations, and approaches to managing motor complications and nonmotor symptoms.
Collapse
Affiliation(s)
- Priti Gros
- Edmond J. Safra Program in Parkinson's Disease, Movement Disorders Clinic, Krembil Brain Institute, UHN Toronto Western Hospital, 399 Bathurst Street MC7 421, Toronto, Ontario M5T 2S8, Canada; Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
| | - Laura Armengou Garcia
- Edmond J. Safra Program in Parkinson's Disease, Movement Disorders Clinic, Krembil Brain Institute, UHN Toronto Western Hospital, 399 Bathurst Street MC7 421, Toronto, Ontario M5T 2S8, Canada
| | - Susan H Fox
- Edmond J. Safra Program in Parkinson's Disease, Movement Disorders Clinic, Krembil Brain Institute, UHN Toronto Western Hospital, 399 Bathurst Street MC7 421, Toronto, Ontario M5T 2S8, Canada
| |
Collapse
|
3
|
Wang L, Cui Y, Han B, Du Y, Salewala KS, Wang S, Zhao W, Zhang H, Wang S, Xu X, Ma J, Zhu Y, Tuo H. Gut microbiota and Parkinson's disease. Chin Med J (Engl) 2025; 138:289-297. [PMID: 39501822 PMCID: PMC11771718 DOI: 10.1097/cm9.0000000000003318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 01/29/2025] Open
Abstract
ABSTRACT Emerging evidence suggests that dysbiosis of the gut microbiota is associated with the pathogenesis of Parkinson's disease (PD), a prevalent neurodegenerative disorder. The microbiota-gut-brain axis plays a crucial role in the development and progression of PD, and numerous studies have demonstrated the potential therapeutic benefits of modulations in the intestinal microbiota. This review provides insights into the characterization of the gut microbiota in patients with PD and highlights associations with clinical symptoms and underlying mechanisms. The discussion underscores the increased influence of the gut microbiota in the pathogenesis of PD. While the relationship is not fully elucidated, existing research demonstrates a strong correlation between changes in the composition of gut microbiota and disease development, and further investigation is warranted to explain the specific underlying mechanisms.
Collapse
Affiliation(s)
- Lin Wang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ying Cui
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bingyu Han
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yitong Du
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | | | - Shiya Wang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wenlu Zhao
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Hongxin Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Sichen Wang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xinran Xu
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianpeng Ma
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yan Zhu
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Houzhen Tuo
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
4
|
Boziki M, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Tzitiridou-Chatzopoulou M, Doulberis M, Kazakos E, Deretzi G, Grigoriadis N, Kountouras J. Impact of Mast Cell Activation on Neurodegeneration: A Potential Role for Gut-Brain Axis and Helicobacter pylori Infection. Neurol Int 2024; 16:1750-1778. [PMID: 39728753 DOI: 10.3390/neurolint16060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND The innate immune response aims to prevent pathogens from entering the organism and/or to facilitate pathogen clearance. Innate immune cells, such as macrophages, mast cells (MCs), natural killer cells and neutrophils, bear pattern recognition receptors and are thus able to recognize common molecular patterns, such as pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs), the later occurring in the context of neuroinflammation. An inflammatory component in the pathology of otherwise "primary cerebrovascular and neurodegenerative" disease has recently been recognized and targeted as a means of therapeutic intervention. Activated MCs are multifunctional effector cells generated from hematopoietic stem cells that, together with dendritic cells, represent first-line immune defense mechanisms against pathogens and/or tissue destruction. METHODS This review aims to summarize evidence of MC implication in the pathogenesis of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. RESULTS In view of recent evidence that the gut-brain axis may be implicated in the pathogenesis of neurodegenerative diseases and the characterization of the neuroinflammatory component in the pathology of these diseases, this review also focuses on MCs as potential mediators in the gut-brain axis bi-directional communication and the possible role of Helicobacter pylori, a gastric pathogen known to alter the gut-brain axis homeostasis towards local and systemic pro-inflammatory responses. CONCLUSION As MCs and Helicobacter pylori infection may offer targets of intervention with potential therapeutic implications for neurodegenerative disease, more clinical and translational evidence is needed to elucidate this field.
Collapse
Affiliation(s)
- Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Midwifery Department, School of Healthcare Sciences, University of West Macedonia, Koila, 50100 Kozani, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Gastroklinik, Private Gastroenterological Practice, 8810 Horgen, Switzerland
- Division of Gastroenterology and Hepatology, Medical University Department, 5001 Aarau, Switzerland
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Department of Neurology, Papageorgiou General Hospital, 54629 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
5
|
Yao L, Yang Y, Yang X, Rezaei MJ. The Interaction Between Nutraceuticals and Gut Microbiota: a Novel Therapeutic Approach to Prevent and Treatment Parkinson's Disease. Mol Neurobiol 2024; 61:9078-9109. [PMID: 38587699 DOI: 10.1007/s12035-024-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons, leading to motor and non-motor symptoms. Emerging research has shed light on the role of gut microbiota in the pathogenesis and progression of PD. Nutraceuticals such as curcumin, berberine, phytoestrogens, polyphenols (e.g., resveratrol, EGCG, and fisetin), dietary fibers have been shown to influence gut microbiota composition and function, restoring microbial balance and enhancing the gut-brain axis. The mechanisms underlying these benefits involve microbial metabolite production, restoration of gut barrier integrity, and modulation of neuroinflammatory pathways. Additionally, probiotics and prebiotics have shown potential in promoting gut health, influencing the gut microbiome, and alleviating PD symptoms. They can enhance the gut's antioxidant capacity of the gut, reduce inflammation, and maintain immune homeostasis, contributing to a neuroprotective environment. This paper provides an overview of the current state of knowledge regarding the potential of nutraceuticals and gut microbiota modulation in the prevention and management of Parkinson's disease, emphasizing the need for further research and clinical trials to validate their effectiveness and safety. The findings suggest that a multifaceted approach involving nutraceuticals and gut microbiota may open new avenues for addressing the challenges of PD and improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Liyan Yao
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yong Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaowei Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Mohammad J Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zhao Q, Xu B, Mao W, Ren Z, Chi T, Chan P. Helicobacter pylori infection is a risk factor for constipation in patients with Parkinson's disease: A multicenter prospective cohort study. Parkinsonism Relat Disord 2024; 126:107053. [PMID: 39008918 DOI: 10.1016/j.parkreldis.2024.107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/24/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND AND AIMS Constipation is one of the most common nonmotor symptoms (NMSs) of Parkinson's disease (PD). The infection rate of Helicobacter pylori (HP) is greater in PD patients. This study was a multicenter prospective cohort study in which propensity score matching (PSM) was used to determine whether HP infection was a risk factor for constipation in patients with PD. METHODS A total of 932 PD patients with 13C-urea breath test for HP were included in the study. The PSM was estimated with the use of a nonparsimonious multivariate logistic regression model, with HP infection as the dependent variable and all the baseline characteristics as covariates. A total of 697 patients composed the study cohort, including 252 (36.2 %) patients in the HP-positive (HPP) group and 445 (63.8 %) patients in the HP-negative (HPN) group. Before PSM, there were differences in several of the baseline variables between the two groups. After PSM, 250 HPP patients were matched with 250 HPN patients and the standardized differences were less than 0.1 for all variables. RESULTS The present results demonstrate that HP infection is a risk factor for constipation in patients with PD [RR (95 % CI) 1.412 (1.155-1.727), P < 0.001]. Subgroup analyses revealed that HP infection was both a risk factor for constipation in Hoehn-Yahr scale (1,1.5) group and Hoehn-Yahr scale (2-5) group [OR (95 % CI) 1.811 (1.079-3.038), P < 0.025; OR (95 % CI) 2.041 (1.177-3.541), P < 0.011]. CONCLUSIONS The results of our prospective cohort study suggest that Helicobacter pylori infection is a risk factor for constipation in patients with PD. TRIAL REGISTRATION ChiCTR2300071631.
Collapse
Affiliation(s)
- Quchuan Zhao
- Department of Gastroenterology, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, Beijing, China
| | - Baolei Xu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, Beijing, China; National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wei Mao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, Beijing, China
| | - Zhili Ren
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tianyu Chi
- Department of Gastroenterology, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, Beijing, China
| | - Piu Chan
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Clinical Center for Parkinson's Disease, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Beijing, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Wang X, Jiang D, Zhang X, Wang R, Yang F, Xie C. Causal associations between Helicobacter Pylori infection and the risk and symptoms of Parkinson's disease: a Mendelian randomization study. Front Immunol 2024; 15:1412157. [PMID: 39165356 PMCID: PMC11333313 DOI: 10.3389/fimmu.2024.1412157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Background Increasing evidence suggests an association between Helicobacter pylori (HP) infection and Parkinson's disease (PD) and its clinical manifestations, but the causal relationship remain largely unknown. Objective To investigate the causal relationship between HP infection and PD risk, PD symptoms, and secondary parkinsonism, we conducted two-sample Mendelian randomization (MR). Methods We obtained summary data from genome-wide association studies for seven different antibodies specific to HP proteins and five PD-related phenotypes. The inverse-variance weighted (IVW), weighted median, weighted mode, and MR-Egger methods were used to assess the causal relationships. Sensitivity analyses were performed to examine the stability of the MR results and reverse MR analysis was conducted to evaluate the presence of reverse causality. Results Genetically predicted HP antibodies were not causally associated with an increased risk of PD. However, HP cytotoxin-associated gene-A (CagA) and outer membrane protein (OMP) antibody level were causally associated with PD motor subtype (tremor to postural instability/gait difficulty score ratio; β = -0.16 and 0.46, P = 0.002 and 0.048, respectively). HP vacuolating cytotoxin-A (VacA) antibody level was causally associated with an increased risk of PD dementia [odds ratio (OR) = 1.93, P = 0.040]. Additionally, HP OMP antibody level was identified as a risk factor for drug-induced secondary parkinsonism (OR = 2.08, P = 0.033). These results were stable, showed no evidence of heterogeneity or directional pleiotropy, and no evidence of a reverse causal relationship. Conclusions Our findings indicate that HP infection does not increase the risk of PD, but contributes to PD motor and cognitive symptoms. Different types of HP antibodies affect different symptoms of PD. Eradication of HP infection may help modulate and improve symptoms in PD patients.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiao Zhang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ran Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Fengyi Yang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chunrong Xie
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Safarpour D, Stover N, Shprecher DR, Hamedani AG, Pfeiffer RF, Parkman HP, Quigley EM, Cloud LJ. Consensus practice recommendations for management of gastrointestinal dysfunction in Parkinson disease. Parkinsonism Relat Disord 2024; 124:106982. [PMID: 38729797 DOI: 10.1016/j.parkreldis.2024.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Gastrointestinal (GI) dysfunction is a common non-motor feature of Parkinson disease (PD). GI symptoms may start years before the onset of motor symptoms and impair quality of life. Robust clinical trial data is lacking to guide screening, diagnosis and treatment of GI dysfunction in PD. OBJECTIVE To develop consensus statements on screening, diagnosis, and treatment of GI dysfunction in PD. METHODS The application of a modified Delphi panel allowed for the synthesis of expert opinions into clinical statements. Consensus was predefined as a level of agreement of 100 % for each item. Five virtual Delphi rounds were held. Two movement disorders neurologists reviewed the literature on GI dysfunction in PD and developed draft statements based on the literature review. Draft statements were distributed among the panel that included five movement disorder neurologists and two gastroenterologists, both experts in GI dysmotility and its impact on PD symptoms. All members reviewed the statements and references in advance of the virtual meetings. In the virtual meetings, each statement was discussed, edited, and a vote was conducted. If there was not 100 % consensus, further discussions and modifications ensued until there was consensus. RESULTS Statements were developed for screening, diagnosis, and treatment of common GI symptoms in PD and were organized by anatomic segments: oral cavity and esophagus, stomach, small intestine, and colon and anorectum. CONCLUSIONS These consensus recommendations offer a practical framework for the diagnosis and treatment of GI dysfunction in PD.
Collapse
Affiliation(s)
- Delaram Safarpour
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
| | - Natividad Stover
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Ali G Hamedani
- Departments of Neurology, Ophthalmology, and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald F Pfeiffer
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Henry P Parkman
- Section of Gastroenterology, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Eamonn Mm Quigley
- Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| | - Leslie J Cloud
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
9
|
Deliz JR, Tanner CM, Gonzalez-Latapi P. Epidemiology of Parkinson's Disease: An Update. Curr Neurol Neurosci Rep 2024; 24:163-179. [PMID: 38642225 DOI: 10.1007/s11910-024-01339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW In recent decades, epidemiological understanding of Parkinson disease (PD) has evolved significantly. Major discoveries in genetics and large epidemiological investigations have provided a better understanding of the genetic, behavioral, and environmental factors that play a role in the pathogenesis and progression of PD. In this review, we provide an epidemiological update of PD with a particular focus on advances in the last five years of published literature. RECENT FINDINGS We include an overview of PD pathophysiology, followed by a detailed discussion of the known distribution of disease and varied determinants of disease. We describe investigations of risk factors for PD, and provide a critical summary of current knowledge, knowledge gaps, and both clinical and research implications. We emphasize the need to characterize the epidemiology of the disease in diverse populations. Despite increasing understanding of PD epidemiology, recent paradigm shifts in the conceptualization of PD as a biological entity will also impact epidemiological research moving forward and guide further work in this field.
Collapse
Affiliation(s)
- Juan R Deliz
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline M Tanner
- Weill Institute for Neurosciences, Department of Neurology, University of California -San Francisco, San Francisco, CA, USA
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
10
|
Jia X, Wang Q, Liu M, Ding JY. The interplay between gut microbiota and the brain-gut axis in Parkinson's disease treatment. Front Neurol 2024; 15:1415463. [PMID: 38867886 PMCID: PMC11168434 DOI: 10.3389/fneur.2024.1415463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 06/14/2024] Open
Abstract
This study delves into the pivotal role of the gut microbiota and the brain-gut axis in Parkinson's Disease (PD), a neurodegenerative disorder with significant motor and non-motor implications. It posits that disruptions in gut microbiota-dysbiosis-and alterations in the brain-gut axis contribute to PD's pathogenesis. Our findings highlight the potential of the gastrointestinal system's early involvement in PD, suggested by the precedence of gastrointestinal symptoms before motor symptoms emerge. This observation implies a possible gut-originated disease pathway. The analysis demonstrates that dysbiosis in PD patients leads to increased intestinal permeability and systemic inflammation, which in turn exacerbates neuroinflammation and neurodegeneration. Such insights into the interaction between gut microbiota and the brain-gut axis not only elucidate PD's underlying mechanisms but also pave the way for novel therapeutic interventions. We propose targeted treatment strategies, including dietary modifications and fecal microbiota transplantation, aimed at modulating the gut microbiota. These approaches hold promise for augmenting current PD treatment modalities by alleviating both motor and non-motor symptoms, thereby potentially improving patient quality of life. This research underscores the significance of the gut microbiota in the progression and treatment of PD, advocating for an integrated, multidisciplinary approach to develop personalized, efficacious management strategies for PD patients, combining insights from neurology, microbiology, and nutritional science.
Collapse
Affiliation(s)
- Xi Jia
- First Ward of Neurology Department, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Qin Wang
- Department of Rehabilitation, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Meilingzi Liu
- Third Ward of Neurology Department, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jia-yuan Ding
- Second Ward of Gastroenterology Department, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
11
|
Menozzi E, Schapira AHV. The Gut Microbiota in Parkinson Disease: Interactions with Drugs and Potential for Therapeutic Applications. CNS Drugs 2024; 38:315-331. [PMID: 38570412 PMCID: PMC11026199 DOI: 10.1007/s40263-024-01073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
The concept of a 'microbiota-gut-brain axis' has recently emerged as an important player in the pathophysiology of Parkinson disease (PD), not least because of the reciprocal interaction between gut bacteria and medications. The gut microbiota can influence levodopa kinetics, and conversely, drugs administered for PD can influence gut microbiota composition. Through a two-step enzymatic pathway, gut microbes can decarboxylate levodopa to dopamine in the small intestine and then dehydroxylate it to m-tyramine, thus reducing availability. Inhibition of bacterial decarboxylation pathways could therefore represent a strategy to increase levodopa absorption. Other bacterial perturbations common in PD, such as small intestinal bacterial overgrowth and Helicobacter pylori infection, can also modulate levodopa metabolism, and eradication therapies may improve levodopa absorption. Interventions targeting the gut microbiota offer a novel opportunity to manage disabling motor complications and dopa-unresponsive symptoms. Mediterranean diet-induced changes in gut microbiota composition might improve a range of non-motor symptoms. Prebiotics can increase levels of short-chain fatty acid-producing bacteria and decrease pro-inflammatory species, with positive effects on clinical symptoms and levodopa kinetics. Different formulations of probiotics showed beneficial outcomes on constipation, with some of them improving dopamine levels; however, the most effective dosage and duration and long-term effects of these treatments remain unknown. Data from faecal microbiota transplantation studies are preliminary, but show encouraging trends towards improvement in both motor and non-motor outcomes.This article summarises the most up-to-date knowledge in pharmacomicrobiomics in PD, and discusses how the manipulation of gut microbiota represents a potential new therapeutic avenue for PD.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, NW3 2PF, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, NW3 2PF, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
12
|
Hu GH, Pei JB. Progress in understanding of impact of Helicobacter pylori eradication on gastrointestinal microecology. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:216-220. [DOI: 10.11569/wcjd.v32.i3.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2024]
|
13
|
Liu J, Lv X, Ye T, Zhao M, Chen Z, Zhang Y, Yang W, Xie H, Zhan L, Chen L, Liu WC, Su KP, Sun J. Microbiota-microglia crosstalk between Blautia producta and neuroinflammation of Parkinson's disease: A bench-to-bedside translational approach. Brain Behav Immun 2024; 117:270-282. [PMID: 38211635 DOI: 10.1016/j.bbi.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
Parkinson's disease (PD) is intricately linked to abnormal gut microbiota, yet the specific microbiota influencing clinical outcomes remain poorly understood. Our study identified a deficiency in the microbiota genus Blautia and a reduction in fecal short-chain fatty acid (SCFA) butyrate level in PD patients compared to healthy controls. The abundance of Blautia correlated with the clinical severity of PD. Supplementation with butyrate-producing bacterium B. producta demonstrated neuroprotective effects, attenuating neuroinflammation and dopaminergic neuronal death in mice, consequently ameliorating motor dysfunction. A pivotal inflammatory signaling pathway, the RAS-related pathway, modulated by butyrate, emerged as a key mechanism inhibiting microglial activation in PD. The change of RAS-NF-κB pathway in PD patients was observed. Furthermore, B. producta-derived butyrate demonstrated the inhibition of microglial activation in PD through regulation of the RAS-NF-κB pathway. These findings elucidate the causal relationship between specific gut microbiota and PD, presenting a novel microbiota-based treatment perspective for PD.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xinhuang Lv
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Ye
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Zhao
- Department of Neurosurgery, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, Zhejiang, China
| | - Zhibo Chen
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yang Zhang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wenwen Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huijia Xie
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Zhan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liuzhu Chen
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Chun Liu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan.
| | - Jing Sun
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
14
|
Higinbotham AS, Kilbane CW. The gastrointestinal tract and Parkinson's disease. Front Cell Infect Microbiol 2024; 13:1158986. [PMID: 38292855 PMCID: PMC10825967 DOI: 10.3389/fcimb.2023.1158986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Alissa S. Higinbotham
- Parkinson's disease and Movement Disorders Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Camilla W. Kilbane
- Parkinson's disease and Movement Disorders Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
15
|
Wei BR, Zhao YJ, Cheng YF, Huang C, Zhang F. Helicobacter pylori infection and Parkinson's Disease: etiology, pathogenesis and levodopa bioavailability. Immun Ageing 2024; 21:1. [PMID: 38166953 PMCID: PMC10759355 DOI: 10.1186/s12979-023-00404-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder with an unknown etiology, is primarily characterized by the degeneration of dopamine (DA) neurons. The prevalence of PD has experienced a significant surge in recent years. The unidentified etiology poses limitations to the development of effective therapeutic interventions for this condition. Helicobacter pylori (H. pylori) infection has affected approximately half of the global population. Mounting evidences suggest that H. pylori infection plays an important role in PD through various mechanisms. The autotoxin produced by H. pylori induces pro-inflammatory cytokines release, thereby facilitating the occurrence of central inflammation that leads to neuronal damage. Simultaneously, H. pylori disrupts the equilibrium of gastrointestinal microbiota with an overgrowth of bacteria in the small intestinal known as small intestinal bacterial overgrowth (SIBO). This dysbiosis of the gut flora influences the central nervous system (CNS) through microbiome-gut-brain axis. Moreover, SIBO hampers levodopa absorption and affects its therapeutic efficacy in the treatment of PD. Also, H. pylori promotes the production of defensins to regulate the permeability of the blood-brain barrier, facilitating the entry of harmful factors into the CNS. In addition, H. pylori has been found to induce gastroparesis, resulting in a prolonged transit time for levodopa to reach the small intestine. H. pylori may exploit levodopa to facilitate its own growth and proliferation, or it can inflict damage to the gastrointestinal mucosa, leading to gastrointestinal ulcers and impeding levodopa absorption. Here, this review focused on the role of H. pylori infection in PD from etiology, pathogenesis to levodopa bioavailability.
Collapse
Affiliation(s)
- Bang-Rong Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Feng Cheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chun Huang
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
16
|
Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Med Res Rev 2024; 44:365-405. [PMID: 37589449 DOI: 10.1002/med.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation. Remarkably, proteins linked with diabetes, AD, and PD share this characteristic. This modulates protein's structure, aggregation tendency, and toxicity, highlighting renovated attention. Gut microbes and microbial metabolites marked their importance in human health and diseases. Though many scientific shreds of evidence are proposed for possible change and dysbiosis in gut flora in these diseases, very little is known about the mechanisms. Screening and unfolding their functionality in metabolic and neurodegenerative disorders is essential in hunting the gut treasure. Therefore, it is imperative to evaluate the role of glycation as a common link in diabetes and neurodegenerative diseases, which helps to clarify if modulation of nonenzymatic glycation may act as a beneficial therapeutic strategy and gut microbes/metabolites may answer some of the crucial questions. This review briefly emphasizes the common functional attributes of glycation and gut microbes, the possible linkages, and discusses current treatment options and therapeutic challenges.
Collapse
Affiliation(s)
- Rahul Shivaji Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
17
|
Hor JW, Toh TS, Lim SY, Tan AH. Advice to People with Parkinson's in My Clinic: Probiotics and Prebiotics. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1507-1518. [PMID: 39213091 PMCID: PMC11492197 DOI: 10.3233/jpd-240172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
There is increasing evidence that microbial-based therapies can be useful in people with Parkinson's disease (PD). In this viewpoint, we provide a state-of-the-art review of the clinical and pre-clinical evidence for probiotics and prebiotics in PD. Currently, short-term clinical studies, including double-blind placebo-controlled randomized clinical trials, have demonstrated safety, and efficacy primarily in improving constipation-related symptoms. Pre-clinical studies consistently reported improvements in a range of biological markers and outcomes, including evidence for attenuation of gut dysfunction and neuroprotection. Bacteria from the genus Lactobacillus and Bifidobacterium have been the most frequently studied both in clinical and pre-clinical probiotics studies, while research into prebiotics is still limited and primarily involved resistant starch and fructooligosaccharides. We provide practical suggestions for clinicians on how to advise patients in the clinic regarding these popular treatments, and important caveats to be aware of. Finally, areas for further advancements are highlighted. It is envisaged that in the future, microbial-based therapies may benefit from personalization based on an enhanced understanding of a whole range of host factors and host-microbiome interactions.
Collapse
Affiliation(s)
- Jia Wei Hor
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Tzi Shin Toh
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shen-Yang Lim
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ai Huey Tan
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Jia X, Chen Q, Zhang Y, Asakawa T. Multidirectional associations between the gut microbiota and Parkinson's disease, updated information from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. Front Cell Infect Microbiol 2023; 13:1296713. [PMID: 38173790 PMCID: PMC10762314 DOI: 10.3389/fcimb.2023.1296713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The human gastrointestinal tract is inhabited by a diverse range of microorganisms, collectively known as the gut microbiota, which form a vast and complex ecosystem. It has been reported that the microbiota-gut-brain axis plays a crucial role in regulating host neuroprotective function. Studies have shown that patients with Parkinson's disease (PD) have dysbiosis of the gut microbiota, and experiments involving germ-free mice and fecal microbiota transplantation from PD patients have revealed the pathogenic role of the gut microbiota in PD. Interventions targeting the gut microbiota in PD, including the use of prebiotics, probiotics, and fecal microbiota transplantation, have also shown efficacy in treating PD. However, the causal relationship between the gut microbiota and Parkinson's disease remains intricate. This study reviewed the association between the microbiota-gut-brain axis and PD from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. We found that the interactions among gut microbiota and PD are very complex, which should be "multidirectional", rather than conventionally regarded "bidirectional". To realize application of the gut microbiota-related mechanisms in the clinical setting, we propose several problems which should be addressed in the future study.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuanyuan Zhang
- Department of Acupuncture and Moxibustion, The Affiliated Traditional Chinese Medicine (TCM) Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
19
|
Justich MB, Rojas OL, Fasano A. The Role of Helicobacter pylori and Small Intestinal Bacterial Overgrowth in Parkinson's Disease. Semin Neurol 2023; 43:553-561. [PMID: 37562451 DOI: 10.1055/s-0043-1771468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder whose etiology remains largely unexplained. Several studies have aimed to describe a causative effect in the interactions between the gastrointestinal tract and the brain, for both PD pathogenesis and disease course. However, the results have been controversial. Helicobacter pylori and small intestinal bacterial overgrowth (SIBO) are theorized to be agents capable of triggering chronic proinflammatory changes with a possible neurotoxic effect, as well as a cause of erratic L-dopa response in PD patients. This review evaluates the individual and possibly synergistic influence of H. pylori and SIBO on PD, to provide an opportunity to consider prospective therapeutic approaches.
Collapse
Affiliation(s)
- Maria Belen Justich
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Olga L Rojas
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Department of Parkinson's Disease and Movement Disorders Rehabilitation, Moriggia-Pelascini Hospital - Gravedona ed Uniti, Como, Italy
| |
Collapse
|
20
|
Talman L, Safarpour D. An Overview of Gastrointestinal Dysfunction in Parkinsonian Syndromes. Semin Neurol 2023; 43:583-597. [PMID: 37703887 DOI: 10.1055/s-0043-1771461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Gastrointestinal (GI) dysfunction is a common nonmotor symptom in Parkinson's disease (PD) as well as other parkinsonian syndromes and may precede the onset of motor symptoms by decades. Involvement of all segments of the GI tract can lead to altered responses to medications and worsened quality of life for patients. While some GI symptoms occur in isolation, others overlap. Therefore, understanding the changes in different segments of the GI tract and how they relate to altered responses to PD treatment can guide both diagnostic and pharmacological interventions. Gut microbiota plays a critical role in immune activity and modulation of the enteric and central nervous systems. Understanding this bidirectional relationship helps to elucidate the pathogenesis of neurodegeneration. This review will describe the current understanding of how GI dysfunction develops in parkinsonian syndromes, common symptoms in PD and related disorders, and available treatments.
Collapse
Affiliation(s)
- Lauren Talman
- Department of Neurology School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Delaram Safarpour
- Department of Neurology School of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
21
|
Zhong Z, Ye M, Yan F. A review of studies on gut microbiota and levodopa metabolism. Front Neurol 2023; 14:1046910. [PMID: 37332996 PMCID: PMC10272754 DOI: 10.3389/fneur.2023.1046910] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease globally. Levodopa (L-dopa) has been the cornerstone for treating Parkinson's since the 1960s. However, complications such as "wearing-off" and dyskinesia inevitably appear with disease progression. With the further development of microbiomics in recent years, It has been recognized that gut microbiota plays a crucial role in Parkinson's disease pathogenesis. However, Little is known about the impact of gut microbiota in PD treatment, especially in levodopa metabolism. This review examines the possible mechanisms of gut microbiota, such as Helicobacter pylori, Enterobacter faecalis, and Clostridium sporogenes, affecting L-dopa absorption. Furthermore, we review the current status of gut microbiota intervention strategies, providing new insights into the treatment of PD.
Collapse
Affiliation(s)
- Zhe Zhong
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Research Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Min Ye
- Department of Neurology, Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fuling Yan
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Research Institution of Neuropsychiatry, Southeast University, Nanjing, China
| |
Collapse
|
22
|
Qamar MA, Rota S, Batzu L, Subramanian I, Falup-Pecurariu C, Titova N, Metta V, Murasan L, Odin P, Padmakumar C, Kukkle PL, Borgohain R, Kandadai RM, Goyal V, Chaudhuri KR. Chaudhuri's Dashboard of Vitals in Parkinson's syndrome: an unmet need underpinned by real life clinical tests. Front Neurol 2023; 14:1174698. [PMID: 37305739 PMCID: PMC10248458 DOI: 10.3389/fneur.2023.1174698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
We have recently published the notion of the "vitals" of Parkinson's, a conglomeration of signs and symptoms, largely nonmotor, that must not be missed and yet often not considered in neurological consultations, with considerable societal and personal detrimental consequences. This "dashboard," termed the Chaudhuri's vitals of Parkinson's, are summarized as 5 key vital symptoms or signs and comprise of (a) motor, (b) nonmotor, (c) visual, gut, and oral health, (d) bone health and falls, and finally (e) comorbidities, comedication, and dopamine agonist side effects, such as impulse control disorders. Additionally, not addressing the vitals also may reflect inadequate management strategies, leading to worsening quality of life and diminished wellness, a new concept for people with Parkinson's. In this paper, we discuss possible, simple to use, and clinically relevant tests that can be used to monitor the status of these vitals, so that these can be incorporated into clinical practice. We also use the term Parkinson's syndrome to describe Parkinson's disease, as the term "disease" is now abandoned in many countries, such as the U.K., reflecting the heterogeneity of Parkinson's, which is now considered by many as a syndrome.
Collapse
Affiliation(s)
- Mubasher A. Qamar
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Silvia Rota
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lucia Batzu
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Indu Subramanian
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Parkinson’s Disease Research, Education and Clinical Centers, Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, United States
| | - Cristian Falup-Pecurariu
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Brașov, Romania
| | - Nataliya Titova
- Department of Neurology, Neurosurgery and Medical Genetics, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Neurodegenerative Diseases, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency, Moscow, Russia
| | - Vinod Metta
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lulia Murasan
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Brașov, Romania
| | - Per Odin
- Department of Neurology, University Hospital, Lund, Sweden
| | | | - Prashanth L. Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Karnataka, India, Bangalore
- Parkinson’s Disease and Movement Disorders Clinic, Bangalore, Karnataka, India
| | - Rupam Borgohain
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rukmini Mridula Kandadai
- Department of Neurology, Nizam’s Institute of Medical Sciences, Autonomous University, Hyderabad, India
| | - Vinay Goyal
- Neurology Department, Medanta, Gurugram, India
| | - Kallo Ray Chaudhuri
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
23
|
Abstract
Abnormalities in gut microbiota have been suggested to be involved in the pathophysiology and progression of Parkinson's disease (PD). Gastrointestinal nonmotor symptoms often precede the onset of motor features in PD, suggesting a role for gut dysbiosis in neuroinflammation and α-synuclein (α-syn) aggregation. In the first part of this chapter, we analyze critical features of healthy gut microbiota and factors (environmental and genetic) that modify its composition. In the second part, we focus on the mechanisms underlying the gut dysbiosis and how it alters anatomically and functionally the mucosal barrier, triggering neuroinflammation and subsequently α-syn aggregation. In the third part, we describe the most common alterations in the gut microbiota of PD patients, dividing the gastrointestinal system in higher and lower tract to examine the association between microbiota abnormalities and clinical features. In the final section, we report on current and future therapeutic approaches to gut dysbiosis aiming to either reduce the risk for PD, modify the disease course, or improve the pharmacokinetic profile of dopaminergic therapies. We also suggest that further studies will be needed to clarify the role of the microbiome in PD subtyping and of pharmacological and nonpharmacological interventions in modifying specific microbiota profiles in individualizing disease-modifying treatments in PD.
Collapse
Affiliation(s)
- Salvatore Bonvegna
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy.
| |
Collapse
|
24
|
Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:67-93. [PMID: 36803824 DOI: 10.1016/b978-0-323-85555-6.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In recent years, the contraposition between inflammatory and neurodegenerative processes has been increasingly challenged. Inflammation has been emphasized as a key player in the onset and progression of Parkinson disease (PD) and other neurodegenerative disorders. The strongest indicators of the involvement of the immune system derived from evidence of microglial activation, profound imbalance in phenotype and composition of peripheral immune cells, and impaired humoral immune responses. Moreover, peripheral inflammatory mechanisms (e.g., involving the gut-brain axis) and immunogenetic factors are likely to be implicated. Even though several lines of preclinical and clinical studies are supporting and defining the complex relationship between the immune system and PD, the exact mechanisms are currently unknown. Similarly, the temporal and causal connections between innate and adaptive immune responses and neurodegeneration are unsettled, challenging our ambition to define an integrated and holistic model of the disease. Despite these difficulties, current evidence is providing the unique opportunity to develop immune-targeted approaches for PD, thus enriching our therapeutic armamentarium. This chapter aims to provide an extensive overview of past and present studies that explored the implication of the immune system in neurodegeneration, thus paving the road for the concept of disease modification in PD.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, S.Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
25
|
Leta V, Klingelhoefer L, Longardner K, Campagnolo M, Levent HÇ, Aureli F, Metta V, Bhidayasiri R, Chung-Faye G, Falup-Pecurariu C, Stocchi F, Jenner P, Warnecke T, Ray Chaudhuri K. Gastrointestinal barriers to levodopa transport and absorption in Parkinson's disease. Eur J Neurol 2023; 30:1465-1480. [PMID: 36757008 DOI: 10.1111/ene.15734] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Levodopa is the gold standard for the symptomatic treatment of Parkinson's disease (PD). There are well documented motor and non-motor fluctuations, however, that occur almost inevitably once levodopa is started after a variable period in people with PD. Whilst brain neurodegenerative processes play a part in the pathogenesis of these fluctuations, a range of barriers across the gastrointestinal (GI) tract can alter levodopa pharmacokinetics, ultimately contributing to non-optimal levodopa response and symptoms fluctuations. GI barriers to levodopa transport and absorption include dysphagia, delayed gastric emptying, constipation, Helicobacter pylori infection, small intestinal bacterial overgrowth and gut dysbiosis. In addition, a protein-rich diet and concomitant medication intake can further alter levodopa pharmacokinetics. This can result in unpredictable or sub-optimal levodopa response, 'delayed on' or 'no on' phenomena. In this narrative review, we provided an overview on the plethora of GI obstacles to levodopa transport and absorption in PD and their implications on levodopa pharmacokinetics and development of motor fluctuations. In addition, management strategies to address GI dysfunction in PD are highlighted, including use of non-oral therapies to bypass the GI tract.
Collapse
Affiliation(s)
- Valentina Leta
- Parkinson's Foundation Center of Excellence at King's College Hospital, London, UK.,Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London and National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
| | | | - Katherine Longardner
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Marta Campagnolo
- Department of Neurosciences (DNS), University of Padova, Padova, Italy
| | | | - Federico Aureli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Vinod Metta
- Parkinson's Foundation Center of Excellence at King's College Hospital, London, UK.,Kings College Hospital London, Dubai, United Arab Emirates
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.,Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Guy Chung-Faye
- Parkinson's Foundation Center of Excellence at King's College Hospital, London, UK.,Kings College Hospital London, Dubai, United Arab Emirates
| | | | - Fabrizio Stocchi
- Department of Neurology, University San Raffaele Roma and IRCCS San Raffaele Pisana, Rome, Italy
| | - Peter Jenner
- Institute of Pharmaceutical Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Tobias Warnecke
- Department of Neurology and Neurorehabilitation, Klinikum Osnabrueck-Academic Teaching Hospital of the WWU Muenster, Osnabrueck, Germany
| | - K Ray Chaudhuri
- Parkinson's Foundation Center of Excellence at King's College Hospital, London, UK.,Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London and National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
| | | |
Collapse
|
26
|
Yang H, Mou Y, Hu B. Discussion on the common controversies of Helicobacter pylori infection. Helicobacter 2023; 28:e12938. [PMID: 36436202 DOI: 10.1111/hel.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Helicobacter pylori ( H. pylori ) can persistently colonize on the gastric mucosa after infection and cause gastritis, atrophy, metaplasia, and even gastric cancer (GC). METHODS Therefore, the detection and eradication of H. pylori are the prerequisite. RESULTS Clinically, there are some controversial issues, such as why H. pylori infection is persistent, why it translocases along with the lesser curvature of the stomach, why there is oxyntic antralization, what the immunological characteristic of gastric chronic inflammation caused by H. pylori is, whether H. pylori infection is associated with extra-gastric diseases, whether chronic atrophic gastritis (CAG) is reversible, and what the potential problems are after H. pylori eradication. What are the possible answers? CONCLUSION In the review, we will discuss these issues from the attachment to eradication in detail.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Mou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Elbehiry A, Marzouk E, Aldubaib M, Abalkhail A, Anagreyyah S, Anajirih N, Almuzaini AM, Rawway M, Alfadhel A, Draz A, Abu-Okail A. Helicobacter pylori Infection: Current Status and Future Prospects on Diagnostic, Therapeutic and Control Challenges. Antibiotics (Basel) 2023; 12:191. [PMID: 36830102 PMCID: PMC9952126 DOI: 10.3390/antibiotics12020191] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection, which affects approximately half of the world's population, remains a serious public health problem. As H. pylori infection leads to a number of gastric pathologies, including inflammation, gastroduodenal ulcers, and malignancies, early detection and treatment are crucial to preventing the spread of the infection. Multiple extragastric complications, such as iron deficiency anaemia, immune thrombocytopenic purpura, vitamin B12 deficiency, diabetes mellitus, cardiovascular diseases, and certain neurological disorders, have also been linked to H. pylori infection. An awareness of H. pylori and associated health hazards is necessary to minimize or even eradicate the infection. Therefore, there is an urgent need to raise the standards for the currently employed diagnostic, eradication, alternative treatment strategies. In addition, a brief overview of traditional and cutting-edge approaches that have proven effective in identifying and managing H. pylori is needed. Based on the test and laboratory equipment available and patient clinical characteristics, the optimal diagnostic approach requires weighing several factors. The pathophysiology and pathogenic mechanisms of H. pylori should also be studied, focusing more on the infection-causing virulence factors of this bacterium. Accordingly, this review aims to demonstrate the various diagnostic, pathophysiological, therapeutic, and eradication tactics available for H. pylori, emphasizing both their advantages and disadvantages. Invasive methods (such as quick urease testing, biopsy, or culture) or noninvasive methods (such as breath tests, stool investigations, or serological tests) can be used. We also present the most recent worldwide recommendations along with scientific evidence for treating H. pylori. In addition to the current antibiotic regimens, alternative therapies may also be considered. It is imperative to eradicate the infections caused by H. pylori as soon as possible to prevent problems and the development of stomach cancer. In conclusion, significant advances have been made in identifying and treating H. pylori. To improve eradication rates, peptide mass fingerprinting can be used as a diagnostic tool, and vaccines can also eliminate the infection.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Musaad Aldubaib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Sulaiman Anagreyyah
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Nuha Anajirih
- Medical Emergency Services Department, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah P.O. Box 1109, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka 42421, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Assiut 71524, Egypt
| | - Abdulmajeed Alfadhel
- Performance Excellence and Quality, Qassim Health Cluster, Buraydah 52367, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
28
|
Mahjoub Y, Martino D. Immunology and microbiome: Implications for motor systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:135-157. [PMID: 37562867 DOI: 10.1016/b978-0-323-98818-6.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Immune-inflammatory mechanisms seem to play a relevant role in neurodegenerative disorders affecting motor systems, particularly Parkinson's disease, where activity changes in inflammatory cells and evidence of neuroinflammation in experimental models and patients is available. Amyotrophic lateral sclerosis is also characterized by neuroinflammatory changes that involve primarily glial cells, both microglia and astrocytes, as well as systemic immune dysregulation associated with more rapid progression. Similarly, the exploration of gut dysbiosis in these two prototypical neurodegenerative motor disorders is advancing rapidly. Altered composition of gut microbial constituents and related metabolic and putative functional pathways is supporting a pathophysiological link that is currently explored in preclinical, germ-free animal models. Less compelling, but still intriguing, evidence suggests that motor neurodevelopmental disorders, e.g., Tourette syndrome, are associated with abnormal trajectories of maturation that include also immune system development. Microglia has a key role also in these disorders, and new therapeutic avenues aiming at its modulation are exciting prospects. Preclinical and clinical research on the role of gut dysbiosis in Tourette syndrome and related behavioral disorders is still in its infancy, but early findings support the rationale to delve deeper into its contribution to neural and immune maturation abnormalities in its spectrum.
Collapse
Affiliation(s)
- Yasamin Mahjoub
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
29
|
Ashraf N. Tailoring Motor Fluctuation Treatment: Beyond Levodopa Dose Adjustment. EUROPEAN MEDICAL JOURNAL 2022. [DOI: 10.33590/emj/10022165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Susan Fox opened this satellite symposium at the 8th European Academy of Neurology (EAN) Congress with an overview of the concept of motor fluctuations (MF) in Parkinson’s disease (PD). She emphasised that levodopa remains the gold standard therapy for PD. However, MFs are one of the critical complications of levodopa therapy that affect many patients with advancing PD and, when diagnosed, represent a challenge in patient management. Alternative options are, therefore, needed to provide continuous dopaminergic stimulation while maximising the levodopa benefit. Despite different options, Angelo Antonini showed that neurologists often prefer to adjust levodopa dose rather than add an adjunctive agent. Market research confirms that, in patients with PD, the levodopa dose is adjusted in around 80% of patients, while only 20% have adjunct therapy as a first-line option. Adjusting the levodopa dose, either by increasing or fractionating the dose, or both, remains a valid, tried-and-tested option, although it has limitations. Joaquim Ferreira presented emerging evidence from a Phase II clinical trial, suggesting a potential benefit of adding opicapone 50 mg compared with 100 mg levodopa to treat patients with PD and end-of-dose fluctuations. This symposium aimed to present the effect of opicapone with relatively low total daily doses of levodopa; an option that may not have been traditionally considered by neurologists who are used to adjusting levodopa as a first-line response.
Collapse
|
30
|
Silva DF, Empadinhas N, Cardoso SM, Esteves AR. Neurodegenerative Microbially-Shaped Diseases: Oxidative Stress Meets Neuroinflammation. Antioxidants (Basel) 2022; 11:2141. [PMID: 36358513 PMCID: PMC9686748 DOI: 10.3390/antiox11112141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 04/18/2025] Open
Abstract
Inflammation and oxidative stress characterize a number of chronic conditions including neurodegenerative diseases and aging. Inflammation is a key component of the innate immune response in Alzheimer's disease and Parkinson's disease of which oxidative stress is an important hallmark. Immune dysregulation and mitochondrial dysfunction with concomitant reactive oxygen species accumulation have also been implicated in both diseases, both systemically and within the Central Nervous System. Mitochondria are a centrally positioned signalling hub for inflammatory responses and inflammatory cells can release reactive species at the site of inflammation often leading to exaggerated oxidative stress. A growing body of evidence suggests that disruption of normal gut microbiota composition may induce increased permeability of the gut barrier leading to chronic systemic inflammation, which may, in turn, impair the blood-brain barrier function and promote neuroinflammation and neurodegeneration. The gastrointestinal tract is constantly exposed to myriad exogenous substances and microbial pathogens, which are abundant sources of reactive oxygen species, oxidative damage and pro-inflammatory events. Several studies have demonstrated that microbial infections may also affect the balance in gut microbiota composition (involving oxidant and inflammatory processes by the host and indigenous microbiota) and influence downstream Alzheimer's disease and Parkinson's disease pathogenesis, in which blood-brain barrier damage ultimately occurs. Therefore, the oxidant/inflammatory insults triggered by a disrupted gut microbiota and chronic dysbiosis often lead to compromised gut barrier function, allowing inflammation to "escape" as well as uncontrolled immune responses that may ultimately disrupt mitochondrial function upwards the brain. Future therapeutic strategies should be designed to "restrain" gut inflammation, a goal that could ideally be attained by microbiota modulation strategies, in alternative to classic anti-inflammatory agents with unpredictable effects on the microbiota architecture itself.
Collapse
Affiliation(s)
- Diana Filipa Silva
- CNC—Center for Neuroscience and Cell Biology and CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Nuno Empadinhas
- CNC—Center for Neuroscience and Cell Biology and CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC—Center for Neuroscience and Cell Biology and CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC—Center for Neuroscience and Cell Biology and CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
31
|
Zou H, Aggarwal V, Stebbins GT, Müller MLTM, Cedarbaum JM, Pedata A, Stephenson D, Simuni T, Luo S. Application of longitudinal item response theory models to modeling Parkinson's disease progression. CPT Pharmacometrics Syst Pharmacol 2022; 11:1382-1392. [PMID: 35895005 PMCID: PMC9574723 DOI: 10.1002/psp4.12853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 01/19/2023] Open
Abstract
The Movement Disorder Society revised version of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts 2 and 3 reflect patient-reported functional impact and clinician-reported severity of motor signs of Parkinson's disease (PD), respectively. Total scores are common clinical outcomes but may obscure important time-based changes in items. We aim to analyze longitudinal disease progression based on MDS-UPRDS parts 2 and 3 item-level responses over time and as functions of Hoehn & Yahr (H&Y) stages 1 and 2 for subjects with early PD. The longitudinal item response theory (IRT) modeling is a novel statistical method addressing limitations in traditional linear regression approaches, such as ignoring varying item sensitivities and the sum score balancing out improvements and declines. We utilized a harmonized dataset consisting of six studies with 3573 subjects with early PD and 14,904 visits, and mean follow-up time of 2.5 years (±1.57). We applied both a unidimensional (each part separately) and multidimensional (both parts combined) longitudinal IRT models. We assessed the progression rates for both parts, anchored to baseline H&Y stages 1 and 2. Both the uni- and multidimensional longitudinal IRT models indicate significant worsening time effects in both parts 2 and 3. Baseline H&Y stage 2 was associated with significantly higher baseline severities, but slower progression rates in both parts, as compared with stage 1. Patients with baseline H&Y stage 1 demonstrated slower progression in part 2 severity compared to part 3, whereas patients with baseline H&Y stage 2 progressed faster in part 2 than part 3. The multidimensional model had a superior fit compared to the unidimensional models and it had excellent model performance.
Collapse
Affiliation(s)
- Haotian Zou
- University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | | | | | | | | | | | - Tanya Simuni
- Northwestern University Medical CenterChicagoIllinoisUSA
| | - Sheng Luo
- Duke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
32
|
Mărginean CD, Mărginean CO, Meliț LE. Helicobacter pylori-Related Extraintestinal Manifestations—Myth or Reality. CHILDREN 2022; 9:children9091352. [PMID: 36138661 PMCID: PMC9497822 DOI: 10.3390/children9091352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
It is well documented that Helicobacter pylori (H. pylori) can cause both gastrointestinal and extraintestinal manifestations. The latter one represents a major burden in terms of diagnosis and treatment. H. pylori-associated systemic subclinical inflammation is mostly responsible for the development of extraintestinal manifestations, and its early eradication might result in preventing all adverse events related to their occurrence. Thus, it was suggested that H. pylori might be associated with iron deficiency anemia, thrombocytopenia (immune thrombocytopenic purpura), Schonlein Henoch purpura, failure to thrive, vitamin B12 deficiency, diabetes mellitus, body mass index, cardiovascular diseases, as well as certain neurological conditions. Nevertheless, studies showed both pros and cons in terms of the role of H. pylori in the development of previously mentioned clinical entity underlining the crucial need for further studies on these topics. Although most of these extraintestinal manifestations occur during adulthood, we must not forget that H. pylori infection is acquired mainly during childhood, and thus its early diagnosis and eradication might represent the cornerstone in the prevention of H. pylori-induced inflammatory status and consequently of all related extraintestinal conditions.
Collapse
Affiliation(s)
- Cristian Dan Mărginean
- Department of Pediatrics I, County Emergency Hospital Târgu Mureș, Gheorghe Marinescu Street No. 50, 540136 Târgu Mureș, Romania
| | - Cristina Oana Mărginean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania
- Correspondence:
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania
| |
Collapse
|
33
|
Sun X, Xue L, Wang Z, Xie A. Update to the Treatment of Parkinson's Disease Based on the Gut-Brain Axis Mechanism. Front Neurosci 2022; 16:878239. [PMID: 35873830 PMCID: PMC9299103 DOI: 10.3389/fnins.2022.878239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal (GI) symptoms represented by constipation were significant non-motor symptoms of Parkinson’s disease (PD) and were considered early manifestations and aggravating factors of the disease. This paper reviewed the research progress of the mechanism of the gut-brain axis (GBA) in PD and discussed the roles of α-synuclein, gut microbiota, immune inflammation, neuroendocrine, mitochondrial autophagy, and environmental toxins in the mechanism of the GBA in PD. Treatment of PD based on the GBA theory has also been discussed, including (1) dietary therapy, such as probiotics, vitamin therapy, Mediterranean diet, and low-calorie diet, (2) exercise therapy, (3) drug therapy, including antibiotics; GI peptides; GI motility agents, and (4) fecal flora transplantation can improve the flora. (5) Vagotomy and appendectomy were associated but not recommended.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xue
- Recording Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zechen Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Fan HX, Sheng S, Zhang F. New hope for Parkinson's disease treatment: Targeting gut microbiota. CNS Neurosci Ther 2022; 28:1675-1688. [PMID: 35822696 PMCID: PMC9532916 DOI: 10.1111/cns.13916] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 12/14/2022] Open
Abstract
There might be more than 10 million confirmed cases of Parkinson's disease (PD) worldwide by 2040. However, the pathogenesis of PD is still unclear. Host health is closely related to gut microbiota, which are affected by factors such as age, diet, and exercise. Recent studies have found that gut microbiota may play key roles in the progression of a wide range of diseases, including PD. Changes in the abundance of gut bacteria, such as Helicobacter pylori, Enterococcus faecalis, and Desulfovibrio, might be involved in PD pathogenesis or interfere with PD therapy. Gut microbiota and the distal brain achieve action on each other through a gut‐brain axis composed of the nervous system, endocrine system, and immune system. Here, this review focused on the current understanding of the connection between Parkinson's disease and gut microbiota, to provide potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Hong-Xia Fan
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shuo Sheng
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
35
|
Di Luca DG, Reyes NGD, Fox SH. Newly Approved and Investigational Drugs for Motor Symptom Control in Parkinson's Disease. Drugs 2022; 82:1027-1053. [PMID: 35841520 PMCID: PMC9287529 DOI: 10.1007/s40265-022-01747-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Motor symptoms are a core feature of Parkinson's disease (PD) and cause a significant burden on patients' quality of life. Oral levodopa is still the most effective treatment, however, the motor benefits are countered by inherent pharmacologic limitations of the drug. Additionally, with disease progression, chronic levodopa leads to the appearance of motor complications including motor fluctuations and dyskinesia. Furthermore, several motor abnormalities of posture, balance, and gait may become less responsive to levodopa. With these unmet needs and our evolving understanding of the neuroanatomic and pathophysiologic underpinnings of PD, several advances have been made in defining new therapies for motor symptoms. These include newer levodopa formulations and drug delivery systems, refinements in adjunctive medications, and non-dopaminergic treatment strategies. Although some are in early stages of development, these novel treatments potentially widen the available options for the management of motor symptoms allowing clinicians to provide an individually tailored care for PD patients. Here, we review the existing and emerging interventions for PD with focus on newly approved and investigational drugs for motor symptoms, motor fluctuations, dyskinesia, and balance and gait dysfunction.
Collapse
Affiliation(s)
- Daniel Garbin Di Luca
- Edmond J. Safra Program in Parkinson’s Disease, Movement Disorders Clinic, Krembil Brain Institute, Toronto Western Hospital, Toronto, ON Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON Canada
| | - Nikolai Gil D. Reyes
- Edmond J. Safra Program in Parkinson’s Disease, Movement Disorders Clinic, Krembil Brain Institute, Toronto Western Hospital, Toronto, ON Canada
| | - Susan H. Fox
- Edmond J. Safra Program in Parkinson’s Disease, Movement Disorders Clinic, Krembil Brain Institute, Toronto Western Hospital, Toronto, ON Canada
| |
Collapse
|
36
|
Tan AH, Lim SY, Lang AE. The microbiome-gut-brain axis in Parkinson disease - from basic research to the clinic. Nat Rev Neurol 2022; 18:476-495. [PMID: 35750883 DOI: 10.1038/s41582-022-00681-2] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
Abstract
Evidence for a close bidirectional link between the brain and the gut has led to a paradigm shift in neurology, especially in the case of Parkinson disease (PD), in which gastrointestinal dysfunction is a prominent feature. Over the past decade, numerous high-quality preclinical and clinical publications have shed light on the highly complex relationship between the gut and the brain in PD, providing potential for the development of new biomarkers and therapeutics. With the advent of high-throughput sequencing, the role of the gut microbiome has been specifically highlighted. Here, we provide a critical review of the literature on the microbiome-gut-brain axis in PD and present perspectives that will be useful for clinical practice. We begin with an overview of the gut-brain axis in PD, including the potential roles and interrelationships of the vagus nerve, α-synuclein in the enteric nervous system, altered intestinal permeability and inflammation, and gut microbes and their metabolic activities. The sections that follow synthesize the proposed roles of gut-related factors in the development and progression of, in responses to PD treatment, and as therapeutic targets. Finally, we summarize current knowledge gaps and challenges and delineate future directions for the field.
Collapse
Affiliation(s)
- Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. .,Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shen Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Ontario, Canada.,Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Luo S, Goetz CG, Choi D, Aggarwal S, Mestre TA, Stebbins GT. Resolving Missing Data from the Movement Disorder Society Unified Parkinson's Disease Rating Scale: Implications for Telemedicine. Mov Disord 2022; 37:1749-1755. [PMID: 35716143 PMCID: PMC9391277 DOI: 10.1002/mds.29129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Telemedicine has become standard in clinical care and research during the coronavirus disease 2019 pandemic. Remote administration of Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III (Motor Examination) precludes ratings of all items, because Rigidity and Postural Stability (six scores) require in-person rating. OBJECTIVE The objective of this study was to determine imputation accuracy for total-sum and item-specific MDS-UPDRS Motor Examination scores in remote administration. METHODS We applied multivariate imputation by chained equations techniques in a cross-sectional dataset where patients had one MDS-UPDRS rating (International Translational Program, n = 8,588) and in a longitudinal dataset where patients had multiple ratings (Rush Program, n = 396). Successful imputation was stringently defined as (1) generalized Lin's concordance correlation coefficient >0.95, reflecting near-perfect agreement between total-sum score with complete data and surrogate score, calculated without patients' actual Rigidity and Postural Stability scores; and (2) perfect agreement for item-level scores for Rigidity and Postural Stability items. RESULTS For total-sum score when Rigidity and Postural Stability scores were withdrawn, using one or multiple visits, multivariate imputation by chained equations imputation reached near-perfect agreement with the original total-sum score. However, at the item level, the degree of perfect agreement between the surrogate and actual Rigidity items and Postural Stability scores always fell below threshold. CONCLUSIONS The MDS-UPDRS Part III total-sum score, a key clinical outcome in research and in clinical practice, can be accurately imputed without the Rigidity and Postural Stability items that cannot be rated by telemedicine. No formula, however, allows for specific item-level imputation. When Rigidity and Postural Stability item scores are of key clinical or research interest, patients with PD must be scored in person. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sheng Luo
- Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Christopher G Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Dongrak Choi
- Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Sanket Aggarwal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Tiago A Mestre
- Ottawa Hospital Research Institute, University of Ottawa Brain and Mind Research Institute, Division of Neurology, Department of Medicine, University of Ottawa, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Glenn T Stebbins
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
38
|
Exploring the multifactorial aspects of Gut Microbiome in Parkinson's Disease. Folia Microbiol (Praha) 2022; 67:693-706. [PMID: 35583791 PMCID: PMC9526693 DOI: 10.1007/s12223-022-00977-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
Advanced research in health science has broadened our view in approaching and understanding the pathophysiology of diseases and has also revolutionised diagnosis and treatment. Ever since the establishment of Braak’s hypothesis in the propagation of alpha-synuclein from the distant olfactory and enteric nervous system towards the brain in Parkinson’s Disease (PD), studies have explored and revealed the involvement of altered gut microbiota in PD. This review recapitulates the gut microbiome associated with PD severity, duration, motor and non-motor symptoms, and antiparkinsonian treatment from recent literature. Gut microbial signatures in PD are potential predictors of the disease and are speculated to be used in early diagnosis and treatment. In brief, the review also emphasises on implications of the prebiotic, probiotic, faecal microbiota transplantation, and dietary interventions as alternative treatments in modulating the disease symptoms in PD.
Collapse
|
39
|
Beckers M, Bloem BR, Verbeek MM. Mechanisms of peripheral levodopa resistance in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:56. [PMID: 35546556 PMCID: PMC9095610 DOI: 10.1038/s41531-022-00321-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is an increasingly common neurodegenerative condition. The disease has a significant negative impact on quality of life, but a personalized management approach can help reduce disability. Pharmacotherapy with levodopa remains the cornerstone of treatment, and a gratifying and sustained response to this treatment is a supportive criterion that argues in favor of an underlying diagnosis of PD. Yet, in daily practice, it is not uncommon to encounter patients who appear to have true PD, but who nevertheless seem to lose the responsiveness to levodopa (secondary non-responders). Some patients may even fail to respond altogether (primary non-responders). Here, we address how two mechanisms of “peripheral resistance” may underlie this failing response to levodopa in persons with PD. The first explanation relates to impaired bowel motility leading to secondary bacterial overgrowth, and more specifically, to the excessive bacterial production of the enzyme tyrosine decarboxylase (TDC). This enzyme may convert levodopa to dopamine in the gut, thereby hampering entry into the circulation and, subsequently, into the brain. The second explanation relates to the systemic induction of the enzyme aromatic l-amino acid decarboxylase (AADC), leading to premature conversion of levodopa into dopamine, again limiting the bioavailability within the brain. We discuss these two mechanisms and focus on the clinical implications, potential treatments and directions for future research.
Collapse
Affiliation(s)
- Milan Beckers
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboudumc Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
| | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
40
|
Safikhani Mahmoodzadeh A, Moazamian E, Shamsdin SA, Kaydani GA. Prevalence of Virulence Genes and Antigen Pattern in Helicobacter pylori-Infected Patients and the Level of Some Inflammatory Cytokines Compared with Non-infected Individuals. Jundishapur J Microbiol 2022; 15. [DOI: 10.5812/jjm-121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/22/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2025] Open
Abstract
Background: The worldwide prevalence of Helicobacter pylori is about 50%. This bacterium needs a number of virulence factors for pathogenesis. Objectives: This study aimed to determine the prevalence of virulence genes (ureB, cytotoxin-associated gene A [cagA], and vacuolating cytotoxin [vacA]), as well as the antigenic profile in H. pylori strains. Methods: Eighty-five patients with abdominal pain, including 46 H. pylori-positive and 39 H. pylori-negative cases, were enrolled in this study. The serum levels of interleukin (IL)-17F, tumor necrosis factor α (TNF-α), and interferon γ (IFN-γ) cytokines were measured by multiplex kits and flow cytometry. After molecular identification by the ureC gene, vacA, cagA, and ureB genes were detected by polymerase chain reaction (PCR). Finally, after antigenic extraction, the whole-cell protein was exhibited by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE). Results: The prevalence of vacA, ureB, and cagA genes were 91.3%, 67.39%, and 50%, respectively. The frequency of genes and cell surface antigens were not significantly different based on the gastritis severity (P > 0.05). IL-17F significantly (P = 0.046) increased in the presence of 19.5 kDa (outer membrane protein [OMP]). Moreover, the OMP antigen significantly enhanced immunoglobulin A (IgA; P = 0.013). In the presence of the 66-kDa (ureB) antigen, the serum level of IFN-γ increased (p = 0.041). Finally, the CagA protein led to increased IgG antibody levels (p = 0.027). Conclusions: Early detection of H. pylori infection can play a crucial role in managing it. Our results suggest that IL-17F, TNF-α, and IFN-γ cytokines could be diagnostic markers. However, further studies are required to fully investigate this suggestion.
Collapse
|
41
|
Talman LS, Pfeiffer RF. Movement Disorders and the Gut: A Review. Mov Disord Clin Pract 2022; 9:418-428. [PMID: 35586541 PMCID: PMC9092751 DOI: 10.1002/mdc3.13407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/07/2022] Open
Abstract
There is a close link between multiple movement disorders and gastrointestinal dysfunction. Gastrointestinal symptoms may precede the development of the neurologic syndrome or may arise following the neurologic presentation. This review will provide an overview of gastrointestinal accompaniments to several well-known as well as lesser known movement disorders. It will also highlight several disorders which may not be considered primary movement disorders but have an overlapping presentation of both gastrointestinal and movement abnormalities.
Collapse
Affiliation(s)
- Lauren S. Talman
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - Ronald F. Pfeiffer
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
42
|
|
43
|
Linard M, Ravier A, Mougué L, Grgurina I, Boutillier AL, Foubert-Samier A, Blanc F, Helmer C. Infectious Agents as Potential Drivers of α-Synucleinopathies. Mov Disord 2022; 37:464-477. [PMID: 35040520 DOI: 10.1002/mds.28925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
α-synucleinopathies, encompassing Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are devastating neurodegenerative diseases for which available therapeutic options are scarce, mostly because of our limited understanding of their pathophysiology. Although these pathologies are attributed to an intracellular accumulation of the α-synuclein protein in the nervous system with subsequent neuronal loss, the trigger(s) of this accumulation is/are not clearly identified. Among the existing hypotheses, interest in the hypothesis advocating the involvement of infectious agents in the onset of these diseases is renewed. In this article, we aimed to review the ongoing relevant factors favoring and opposing this hypothesis, focusing on (1) the potential antimicrobial role of α-synuclein, (2) potential entry points of pathogens in regard to early symptoms of diverse α-synucleinopathies, (3) pre-existing literature reviews assessing potential associations between infectious agents and Parkinson's disease, (4) original studies assessing these associations for dementia with Lewy bodies and multiple system atrophy (identified through a systematic literature review), and finally (5) potential susceptibility factors modulating the effects of infectious agents on the nervous system. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Morgane Linard
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France
| | - Alix Ravier
- CM2R (Memory Resource and Research Centre), Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France
| | - Louisa Mougué
- Cognitive-Behavioral Unit and Memory Consultations, Hospital of Sens, Sens, France
| | - Iris Grgurina
- University of Strasbourg, UMR7364 CNRS, LNCA, Strasbourg, France
| | | | - Alexandra Foubert-Samier
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France.,French Reference Centre for MSA, University Hospital of Bordeaux, Bordeaux, France
| | - Frédéric Blanc
- CM2R (Memory Resource and Research Centre), Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France.,ICube Laboratory and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg, Strasbourg, France
| | - Catherine Helmer
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France
| |
Collapse
|
44
|
Kramer P. Mitochondria-Microbiota Interaction in Neurodegeneration. Front Aging Neurosci 2022; 13:776936. [PMID: 35002678 PMCID: PMC8733591 DOI: 10.3389/fnagi.2021.776936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s and Parkinson’s are the two best-known neurodegenerative diseases. Each is associated with the excessive aggregation in the brain and elsewhere of its own characteristic amyloid proteins. Yet the two afflictions have much in common and often the same amyloids play a role in both. These amyloids need not be toxic and can help regulate bile secretion, synaptic plasticity, and immune defense. Moreover, when they do form toxic aggregates, amyloids typically harm not just patients but their pathogens too. A major port of entry for pathogens is the gut. Keeping the gut’s microbe community (microbiota) healthy and under control requires that our cells’ main energy producers (mitochondria) support the gut-blood barrier and immune system. As we age, these mitochondria eventually succumb to the corrosive byproducts they themselves release, our defenses break down, pathogens or their toxins break through, and the side effects of inflammation and amyloid aggregation become problematic. Although it gets most of the attention, local amyloid aggregation in the brain merely points to a bigger problem: the systemic breakdown of the entire human superorganism, exemplified by an interaction turning bad between mitochondria and microbiota.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
45
|
Menozzi E, Macnaughtan J, Schapira AHV. The gut-brain axis and Parkinson disease: clinical and pathogenetic relevance. Ann Med 2021; 53:611-625. [PMID: 33860738 PMCID: PMC8078923 DOI: 10.1080/07853890.2021.1890330] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal disorders are one of the most significant non-motor problems affecting people with Parkinson disease (PD). Pathogenetically, the gastrointestinal tract has been proposed to be the initial site of pathological changes in PD. Intestinal inflammation and alterations in the gut microbiota may contribute to initiation and progression of pathology in PD. However, the mechanisms underlying this "gut-brain" axis in PD remain unclear. PD patients can display a large variety of gastrointestinal symptoms, leading to reduced quality of life and psychological distress. Gastrointestinal disorders can also limit patients' response to medications, and consequently negatively impact on neurological outcomes. Despite an increasing research focus, gastrointestinal disorders in PD remain poorly understood and their clinical management often suboptimal. This review summarises our understanding of the relevance of the "gut-brain" axis to the pathogenesis of PD, discusses the impact of gastrointestinal disorders in patients with PD, and provides clinicians with practical guidance to their management.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Jane Macnaughtan
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Anthony H. V. Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
46
|
Berlamont H, Bruggeman A, Bauwens E, Vandendriessche C, Clarebout E, Xie J, De Bruyckere S, Van Imschoot G, Van Wonterghem E, Ducatelle R, Santens P, Smet A, Haesebrouck F, Vandenbroucke RE. Gastric Helicobacter suis Infection Partially Protects against Neurotoxicity in A 6-OHDA Parkinson's Disease Mouse Model. Int J Mol Sci 2021; 22:ijms222111328. [PMID: 34768765 PMCID: PMC8582972 DOI: 10.3390/ijms222111328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022] Open
Abstract
The exact etiology of Parkinson’s disease (PD) remains largely unknown, but more and more research suggests the involvement of the gut microbiota. Interestingly, idiopathic PD patients were shown to have at least a 10 times higher prevalence of Helicobacter suis (H. suis) DNA in gastric biopsies compared to control patients. H. suis is a zoonotic Helicobacter species that naturally colonizes the stomach of pigs and non-human primates but can be transmitted to humans. Here, we investigated the influence of a gastric H. suis infection on PD disease progression through a 6-hydroxydopamine (6-OHDA) mouse model. Therefore, mice with either a short- or long-term H. suis infection were stereotactically injected with 6-OHDA in the left striatum and sampled one week later. Remarkably, a reduced loss of dopaminergic neurons was seen in the H. suis/6-OHDA groups compared to the control/6-OHDA groups. Correspondingly, motor function of the H. suis-infected 6-OHDA mice was superior to that in the non-infected 6-OHDA mice. Interestingly, we also observed higher expression levels of antioxidant genes in brain tissue from H. suis-infected 6-OHDA mice, as a potential explanation for the reduced 6-OHDA-induced cell loss. Our data support an unexpected neuroprotective effect of gastric H. suis on PD pathology, mediated through changes in oxidative stress.
Collapse
Affiliation(s)
- Helena Berlamont
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Arnout Bruggeman
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Department of Neurology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Eva Bauwens
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Elien Clarebout
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Junhua Xie
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Sofie De Bruyckere
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Griet Van Imschoot
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Richard Ducatelle
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium;
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (H.B.); (E.B.); (S.D.B.); (R.D.); (F.H.)
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (A.B.); (C.V.); (E.C.); (J.X.); (G.V.I.); (E.V.W.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-3313730
| |
Collapse
|
47
|
Bindas AJ, Kulkarni S, Koppes RA, Koppes AN. Parkinson's disease and the gut: Models of an emerging relationship. Acta Biomater 2021; 132:325-344. [PMID: 33857691 DOI: 10.1016/j.actbio.2021.03.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by a progressive loss of fine motor function that impacts 1-2 out of 1,000 people. PD occurs predominately late in life and lacks a definitive biomarker for early detection. Recent cross-disciplinary progress has implicated the gut as a potential origin of PD pathogenesis. The gut-origin hypothesis has motivated research on gut PD pathology and transmission to the brain, especially during the prodromal stage (10-20 years before motor symptom onset). Early findings have revealed several possible triggers for Lewy pathology - the pathological hallmark of PD - in the gut, suggesting that microbiome and epithelial interactions may play a greater than appreciated role. But the mechanisms driving Lewy pathology and gut-brain transmission in PD remain unknown. Development of artificial α-Synuclein aggregates (α-Syn preformed fibrils) and animal disease models have recapitulated features of PD progression, enabling for the first time, controlled investigation of the gut-origin hypothesis. However, the role of specific cells in PD transmission, such as neurons, remains limited and requires in vitro models for controlled evaluation and perturbation. Human cell populations, three-dimensional organoids, and microfluidics as discovery platforms inch us closer to improving existing treatment for patients by providing platforms for discovery and screening. This review includes a discussion of PD pathology, conventional treatments, in vivo and in vitro models, and future directions. STATEMENT OF SIGNIFICANCE: Parkinson's Disease remains a common neurodegenerative disease with palliative versus causal treatments. Recently, the gut-origin hypothesis, where Parkinson's disease is thought to originate and spread from the gut to the brain, has gained traction as a field of investigation. However, despite the wealth of studies and innovative approaches to accelerate the field, there remains a need for in vitro tools to enable fundamental biological understanding of disease progression, and compound screening and efficacy. In this review, we present a historical perspective of Parkinson's Disease pathogenesis, detection, and conventional therapy, animal and human models investigating the gut-origin hypothesis, in vitro models to enable controlled discovery, and future outlooks for this blossoming field.
Collapse
Affiliation(s)
- Adam J Bindas
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA.
| | - Subhash Kulkarni
- Division of Gastroenterology and Hepatology, Johns Hopkins University, 720 Rutland Avenue., Baltimore, MD 21205, USA.
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA.
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA; Department of Biology, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Zheng SY, Li HX, Xu RC, Miao WT, Dai MY, Ding ST, Liu HD. Potential roles of gut microbiota and microbial metabolites in Parkinson's disease. Ageing Res Rev 2021; 69:101347. [PMID: 33905953 DOI: 10.1016/j.arr.2021.101347] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease attributed to multifactorial changes. However, its pathological mechanism remains undetermined. Accumulating evidence has revealed the emerging functions of gut microbiota and microbial metabolites, which can affect both the enteric nervous system and the central nervous system via the microbiota-gut-brain axis. Accordingly, intestinal dysbiosis might be closely associated with PD. This review explores alterations to gut microbiota, correlations with clinical manifestations of PD, and briefly probes the underlying mechanisms. Next, the highly controversial roles of microbial metabolites including short-chain fatty acids (SCFAs), H2 and H2S are discussed. Finally, the pros and cons of the current treatments for PD, including those targeting microbiota, are assessed. Advancements in research techniques, further studies on levels of specific strains and longitudinal prospective clinical trials are urgently needed for the identification of early diagnostic markers and the development of novel therapeutic approaches for PD.
Collapse
|
49
|
Bai F, Li X. Association of Helicobacter pylori treatment with Parkinsonism and related disorders: A systematic review and meta-analysis. Life Sci 2021; 281:119767. [PMID: 34216625 DOI: 10.1016/j.lfs.2021.119767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
AIMS Previous studies have suggested that Helicobacter pylori (H. pylori) infections may be the cause of or worsen Parkinson's disease symptoms. In this meta-analysis, all relevant studies were reviewed to assess whether H. pylori treatment would benefit patients with Parkinson's disease. MAIN METHODS Systemically searches were carried out in MEDLINE and other popular databases. The software RevMan 5.2 was used for meta-analysis. The mean difference (MD) was used as the effect size to draw forest plots. KEY FINDINGS A total of 10 qualified studies were included. For bradykinesia, the pooled MD value of stride length was -75.76, 95% CI [-109.37, -42.15, P < 0.05]; for myotonia, the pooled MD value of torque to flex was 75.24, 95% CI [27.36, 123.13, P < 0.05]. The pooled MD value of Unified Parkinson's Disease Rating Scale (UPDRS)-III scores before and after treatment was 6.27, 95% CI [1.30, 11.24, P < 0.05], suggesting that UPDRS-III scores improved in response to H. pylori treatment. The pooled MD value of levodopa onset time (min) was 14.91, 95% CI [8.92, 20.90, P < 0.05]. SIGNIFICANCE H. pylori treatment may improve the stride length in the bradykinesia index and significantly improve UPDRS-III scores.
Collapse
Affiliation(s)
- Fusheng Bai
- Department of Neurology, Liaoning Province Jinqiu Hospital, No. 317 Xiaonan Street, Shenyang 110016, Liaoning Province, China
| | - Xinming Li
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146 North Huanghe Street, Shenyang 110034, Liaoning Province, China.
| |
Collapse
|
50
|
Lolekha P, Sriphanom T, Vilaichone RK. Helicobacter pylori eradication improves motor fluctuations in advanced Parkinson's disease patients: A prospective cohort study (HP-PD trial). PLoS One 2021; 16:e0251042. [PMID: 33945559 PMCID: PMC8096108 DOI: 10.1371/journal.pone.0251042] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Helicobacter pylori (HP) is a bacterium associated with many gastrointestinal (GI) diseases and has shown a high prevalence in Parkinson's disease (PD). As HP-associated GI dysfunction could affect L-dopa (levodopa) absorption, HP eradication might improve the clinical response and decrease motor fluctuations. METHODS A prospective cohort study was conducted on the clinical symptoms of PD patients with motor fluctuations. The 13C-urea breath test was used to diagnose a current HP infection. All patients with HP infection received a 2-week regimen of triple therapy. The changes in the Unified Parkinson's Disease Rating Scale (UPDRS) motor score, L-dopa onset time, wearing-off symptoms, mean daily on-off time, GI symptom scores, and quality of life score were measured at baseline and at a 6-week follow-up. RESULTS A total of 163 PD patients were assessed, of whom 40 were enrolled. Fifty-five percent of the enrolled patients (22/40) had a current HP infection, whereas HP eradication was identified in 17 of 22 (77.3%) patients who received eradication therapy. Patients with HP eradication showed a significant decrease in daily 'off' time (4.0 vs. 4.7 h, p = 0.040) and an increase in daily 'on' time (11.8 vs. 10.9 h, p = 0.009). Total wearing-off score (4.4 vs. 6.0, p = 0.001) and the GI symptom score (8.1 vs. 12.8, p = 0.007) were significantly improved. There was no significant improvement in L-dopa onset time, UPDRS motor score, or quality of life score. CONCLUSIONS HP eradication leads to significant clinical improvement in the symptoms of PD. Eradication of HP not only increases the total daily 'on' time but also decreases wearing-off symptoms and improves GI symptoms.
Collapse
Affiliation(s)
- Praween Lolekha
- Faculty of Medicine, Division of Neurology, Department of Internal Medicine, Thammasat University, Pathumthani, Thailand
| | - Thanakarn Sriphanom
- Faculty of Medicine, Division of Neurology, Department of Internal Medicine, Thammasat University, Pathumthani, Thailand
| | - Ratha-Korn Vilaichone
- Faculty of Medicine, Department of Internal Medicine, Gastroenterology Unit, Thammasat University, Pathumthani, Thailand
- Department of Medicine, Chulabhorn International College of Medicine (CICM), Thammasat University, Pathumthani, Thailand
- Faculty of Medicine, Division of Gastroentero-Hepatology, Department of Internal Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|