1
|
Sartorelli J, Travaglini L, Colona VL, Casali C, Cumbo F, D'Amico A, Longo D, Novelli A, Vasco G, Bertini E, Nicita F. De Novo GRID2 Variant as a Cause of Ataxia with Oculomotor Apraxia and Alpha-Fetoprotein Elevation. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2408-2413. [PMID: 39312122 DOI: 10.1007/s12311-024-01743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 11/24/2024]
Abstract
Bi-allelic pathogenic variants in GRID2 have been initially associated to an autosomal recessive form of spinocerebellar ataxia, namely SCAR18. Subsequently, few monoallelic cases have been described. Here we present a new subject harboring a novel de novo heterozygous GRID2 missense variant presenting with progressive ataxia together with cerebellar atrophy and, for the first time, alpha-fetoprotein (AFP) elevation. We retrospectively collected data of the patient followed at our clinic. Genetic analysis was performed through clinical exome sequencing with an in-house in-silico ataxia-related genes panel. Variant effect prediction was performed through in silico modeling. The patient had normal psychomotor development except for mild fine and gross motor impairment. In adolescence, he started presenting dysarthria and progressive ataxia. Blood tests showed significant AFP elevation. Brain MRI showed cerebellar atrophy mainly involving the vermis. The novel de novo heterozygous GRID2 (c.1954C>A; p.Leu652Ile) missense variant was disclosed. This variant is located within a highly conserved site with low tolerance to variation and it is predicted to cause protein structure destabilization. GRID2 expression appears to be influenced by other genes related with ataxia and AFP elevation, like ATM and APTX, suggesting a possible shared mechanism. This additional patient increases the scarce literature and genotypic spectrum of the GRID2-related ataxia and evidences a fairly homogeneous phenotype of ataxia with oculomotor abnormalities for the autosomal-dominant form. Alfa-fetoprotein elevation is a novel finding in this condition and this data must be confirmed in larger case-series to definitively state that GRID2-related ataxia can be included among ataxias with AFP increase.
Collapse
Affiliation(s)
- Jacopo Sartorelli
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Lorena Travaglini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Vito Luigi Colona
- Unit of Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Francesca Cumbo
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Adele D'Amico
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Daniela Longo
- Neuroradiology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Gessica Vasco
- Unit of Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Francesco Nicita
- Unit of Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy.
| |
Collapse
|
2
|
Zhou Q, Chen M, Tao E. Novel pathogenic ATM mutation with ataxia-telangiectasia in a Chinese family. Front Genet 2024; 15:1491649. [PMID: 39678378 PMCID: PMC11638744 DOI: 10.3389/fgene.2024.1491649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024] Open
Abstract
Ataxia-Telangiectasia (A-T) is a rare, autosomal recessive disorder characterized by progressive cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, and increased cancer risk. Mutations in the ATM gene, which is essential for DNA damage repair, underlie this condition. This study reports a novel homozygous frameshift mutation (ATM_ex20 c.3062delT, p. Val1021fs) in a Chinese family with two affected siblings. The mutation, located in exon 20, has not been previously documented, expanding the spectrum of ATM mutations. The proband and her older sister presented with classic A-T symptoms, including gait instability and conjunctival telangiectasia. Both siblings presented with immunodeficiency, characterized by low immunoglobulin A (IgA) levels, slightly elevated IgM levels, and elevated alpha-fetoprotein (AFP). Cranial magnetic resonance imaging (MRI) findings revealed cerebellar atrophy and cerebral white matter lesions in both sisters. Interestingly, while both sisters shared the same mutation, their clinical severity differed, highlighting the complexity of genotype-phenotype correlations in A-T. The parents and an unaffected sister were heterozygous carriers, consistent with autosomal recessive inheritance. This study underscores the importance of genetic testing in A-T diagnosis and provides new insights into the genetic diversity of ATM-related diseases. Further research is needed to understand the broader implications of this mutation.
Collapse
Affiliation(s)
- Qiaomin Zhou
- Department of Eugenic Genetics, Wenling Maternal and Child Healthcare Hospital, Wenling, Zhejiang, China
| | - Minling Chen
- Department of Maternity, Wenling Maternal and Child Healthcare Hospital, Wenling, Zhejiang, China
| | - Enfu Tao
- Department of Neonatology and NICU, Wenling Maternal and Child Healthcare Hospital, Wenling, Zhejiang, China
| |
Collapse
|
3
|
Rudaks LI, Yeow D, Ng K, Deveson IW, Kennerson ML, Kumar KR. An Update on the Adult-Onset Hereditary Cerebellar Ataxias: Novel Genetic Causes and New Diagnostic Approaches. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2152-2168. [PMID: 38760634 PMCID: PMC11489183 DOI: 10.1007/s12311-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
The hereditary cerebellar ataxias (HCAs) are rare, progressive neurologic disorders caused by variants in many different genes. Inheritance may follow autosomal dominant, autosomal recessive, X-linked or mitochondrial patterns. The list of genes associated with adult-onset cerebellar ataxia is continuously growing, with several new genes discovered in the last few years. This includes short-tandem repeat (STR) expansions in RFC1, causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), FGF14-GAA causing spinocerebellar ataxia type 27B (SCA27B), and THAP11. In addition, the genetic basis for SCA4, has recently been identified as a STR expansion in ZFHX3. Given the large and growing number of genes, and different gene variant types, the approach to diagnostic testing for adult-onset HCA can be complex. Testing methods include targeted evaluation of STR expansions (e.g. SCAs, Friedreich ataxia, fragile X-associated tremor/ataxia syndrome, dentatorubral-pallidoluysian atrophy), next generation sequencing for conventional variants, which may include targeted gene panels, whole exome, or whole genome sequencing, followed by various potential additional tests. This review proposes a diagnostic approach for clinical testing, highlights the challenges with current testing technologies, and discusses future advances which may overcome these limitations. Implementing long-read sequencing has the potential to transform the diagnostic approach in HCA, with the overall aim to improve the diagnostic yield.
Collapse
Affiliation(s)
- Laura Ivete Rudaks
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia.
- Clinical Genetics Unit, Royal North Shore Hospital, Sydney, Australia.
| | - Dennis Yeow
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Karl Ng
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Neurology Department, Royal North Shore Hospital, Sydney, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Marina L Kennerson
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- The Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney Local Health District, Sydney, Australia
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
- Faculty of Medicine, St Vincent's Healthcare Campus, UNSW Sydney, Sydney, Australia
| |
Collapse
|
4
|
Jenni R, Klaa H, Khamessi O, Chikhaoui A, Najjar D, Ghedira K, Kraoua I, Turki I, Yacoub-Youssef H. Clinical and genetic spectrum of Ataxia Telangiectasia Tunisian patients: Bioinformatic analysis unveil mechanisms of ATM variants pathogenicity. Int J Biol Macromol 2024; 278:134444. [PMID: 39098699 DOI: 10.1016/j.ijbiomac.2024.134444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Ataxia Telangiectasia (AT) is a rare multisystemic neurodegenerative disease caused by biallelic mutations in the ATM gene. Few clinical studies on AT disease have been conducted in Tunisia, however, the mutational landscape is still undefined. Our aim is to determine the clinical and genetic spectrum of AT Tunisian patients and to explore the potential underlying mechanism of variant pathogenicity. Sanger sequencing was performed for nine AT patients. A comprehensive computational analysis was conducted to evaluate the possible pathogenic effect of ATM identified variants. Genetic screening of ATM gene has identified nine different variants from which six have not been previously reported. In silico analysis has predicted a pathogenic effect of identified mutations. This was corroborated by a structural bioinformatics study based on molecular modeling and docking for novel missense mutations. Our findings suggest a profound impact of identified mutations not only on the ATM protein stability, but also on the ATM-ligand interactions. Our study characterizes the mutational landscape of AT Tunisian patients which will allow to set up genetic counseling and prenatal diagnosis for families at risk and expand the spectrum of ATM variants worldwide. Furthermore, understanding the mechanism that underpin variant pathogenicity could provide further insights into disease pathogenesis.
Collapse
Affiliation(s)
- Rim Jenni
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Hedia Klaa
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Oussema Khamessi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia; Institut de Biotechnologie de Sidi Thabet, Université de la Manouba, Ariana BP-66, Manouba 2010, Tunisia.
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Dorra Najjar
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia.
| | - Ichraf Kraoua
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Ilhem Turki
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| |
Collapse
|
5
|
Lin Z, Pan R, Wu L, Zhu F, Fang Q, Kwok HF, Lu X. AFP-HSP90 mediated MYC/MET activation promotes tumor progression in hepatocellular carcinoma and gastric cancers. Cancer Cell Int 2024; 24:283. [PMID: 39135041 PMCID: PMC11321088 DOI: 10.1186/s12935-024-03455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Alpha-fetoprotein (AFP) elevation is a well-known biomarker in various diseases, particularly in the diagnosis of hepatocellular carcinoma (HCC). Intracellular AFP has been previously implicated in promoting tumorigenesis. In this study, we discovered that AFP enhances the stability of oncoproteins c-MYC and c-MET, thereby facilitating the progression of liver and gastric tumors. Our findings suggest that AFP acts by stabilizing these oncoproteins, which are clients of heat shock protein 90 (HSP90), and prevents their degradation through ubiquitination. Intriguingly, we identified AFP as a novel co-chaperone of HSP90, demonstrating its ability to regulate the stabilization of HSP90 client proteins. Furthermore, our results indicate that inhibiting AFP or HSP90 enhances the cytotoxicity of chemotherapeutic agents in AFP-producing HCC and gastric cancer cells. These findings have significant implications for the development of therapeutic strategies targeting AFP-producing tumors, as the AFP-HSP90-mediated activation of c-MYC and c-MET provides new insights into potential treatment approaches. In summary, this study sheds light on the role of AFP in promoting tumor progression by stabilizing oncoproteins through its interaction with HSP90. The identification of this mechanism opens up new avenues for therapeutic interventions in AFP-producing tumors.
Collapse
Affiliation(s)
- Ziqi Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Rulu Pan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Liyue Wu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Fangsheng Zhu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Qiwei Fang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
| |
Collapse
|
6
|
Hasan HA, Johnstone LS, Benedetti DJ. A case of pancreatoblastoma in a child with Simpson-Golabi-Behmel syndrome: Highlighting the importance of alpha fetoprotein monitoring. Pediatr Blood Cancer 2024; 71:e31097. [PMID: 38773720 DOI: 10.1002/pbc.31097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 05/24/2024]
Affiliation(s)
- Hira A Hasan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lindsey S Johnstone
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel J Benedetti
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Pediatric Hematology Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Kamate M, Basavanagowda T. ARV1 Gene: A Novel Cause of Autosomal Recessive Cerebellar Ataxia with Elevated Alpha Fetoprotein. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1239-1244. [PMID: 37749428 DOI: 10.1007/s12311-023-01606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
ARV1 mutation is known to present as developmental and epileptic encephalopathy (DEE)-38. However, the phenotypic spectrum has been expanding ever since it was reported in 2016. Along with seizures and developmental delay, other unique clinical features include ophthalmological abnormalities and movement disorders in the form of ataxia and dystonia, especially in those with missense mutation. These manifestations closely mimic ataxia telangiectasia. Elevation of alpha-fetoprotein levels is an important investigative marker in the diagnosis of ataxia telangiectasia and ataxia with oculomotor apraxia syndromes. ARV1 can also be associated with increased alpha-fetoprotein. There are no reports evaluating alpha-fetoprotein levels in cases with ARV1 mutation, which is significant in the context of ocular abnormalities with ataxia. We report a case of ARV1 mutation presenting with ataxia, ocular abnormalities, and elevated alpha-fetoprotein levels, thus mimicking autosomal recessive cerebellar ataxias. This study provides a comprehensive literature review of the cases reported so far, thus expanding the understanding of the spectrum of presentation, and helps in correlating the clinical picture with the underlying causative genetic mutation. ARV1 gene is another example of one gene with phenotypic pleiotropy. Though presentation with DEE is common, a few, especially those with missense mutations, can present with ataxia and ocular abnormalities. All cases presenting with ataxia who have increased alpha-fetoprotein levels and seizures should be tested for the ARV1 gene, when testing for ataxia genes is negative. The underlying genetic mechanism can explain the varying clinical manifestations of the ARV1 gene.
Collapse
Affiliation(s)
- Mahesh Kamate
- Department of Pediatric Neurology, Jawaharlal Nehru Medical College, KLE Academy of Higher Education and Research, Room No. 25, KLE's PK Hospital, Belagavi, Karnataka, 590010, India.
| | - Thanuja Basavanagowda
- Department of Pediatric Neurology, Jawaharlal Nehru Medical College, KLE Academy of Higher Education and Research, Room No. 25, KLE's PK Hospital, Belagavi, Karnataka, 590010, India
| |
Collapse
|
8
|
Van de Vondel L, De Winter J, Timmerman V, Baets J. Overarching pathomechanisms in inherited peripheral neuropathies, spastic paraplegias, and cerebellar ataxias. Trends Neurosci 2024; 47:227-238. [PMID: 38360512 DOI: 10.1016/j.tins.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
International consortia collaborating on the genetics of rare diseases have significantly boosted our understanding of inherited neurological disorders. Historical clinical classification boundaries were drawn between disorders with seemingly different etiologies, such as inherited peripheral neuropathies (IPNs), spastic paraplegias, and cerebellar ataxias. These clinically defined borders are being challenged by the identification of mutations in genes displaying wide phenotypic spectra and by shared pathomechanistic themes, which are valuable indications for therapy development. We highlight common cellular alterations that underlie this genetic landscape, including alteration of cytoskeleton, axonal transport, mitochondrial function, and DNA repair response. Finally, we discuss venues for future research using the long axonopathies of the PNS as a model to explore other neurogenetic disorders.
Collapse
Affiliation(s)
- Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jonathan De Winter
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Vincent Timmerman
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
9
|
Martínez-Rubio D, Hinarejos I, Argente-Escrig H, Marco-Marín C, Lozano MA, Gorría-Redondo N, Lupo V, Martí-Carrera I, Miranda C, Vázquez-López M, García-Pérez A, Marco-Hernández AV, Tomás-Vila M, Aguilera-Albesa S, Espinós C. Genetic Heterogeneity Underlying Phenotypes with Early-Onset Cerebellar Atrophy. Int J Mol Sci 2023; 24:16400. [PMID: 38003592 PMCID: PMC10671053 DOI: 10.3390/ijms242216400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cerebellar atrophy (CA) is a frequent neuroimaging finding in paediatric neurology, usually associated with cerebellar ataxia. The list of genes involved in hereditary forms of CA is continuously growing and reveals its genetic complexity. We investigated ten cases with early-onset cerebellar involvement with and without ataxia by exome sequencing or by a targeted panel with 363 genes involved in ataxia or spastic paraplegia. Novel variants were investigated by in silico or experimental approaches. Seven probands carry causative variants in well-known genes associated with CA or cerebellar hypoplasia: SETX, CACNA1G, CACNA1A, CLN6, CPLANE1, and TBCD. The remaining three cases deserve special attention; they harbour variants in MAST1, PI4KA and CLK2 genes. MAST1 is responsible for an ultrarare condition characterised by global developmental delay and cognitive decline; our index case added ataxia to the list of concomitant associated symptoms. PIK4A is mainly related to hypomyelinating leukodystrophy; our proband presented with pure spastic paraplegia and normal intellectual capacity. Finally, in a patient who suffers from mild ataxia with oculomotor apraxia, the de novo novel CLK2 c.1120T>C variant was found. The protein expression of the mutated protein was reduced, which may indicate instability that would affect its kinase activity.
Collapse
Affiliation(s)
- Dolores Martínez-Rubio
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
| | - Isabel Hinarejos
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
| | | | - Clara Marco-Marín
- Structural Enzymopathology Unit, Instituto de Biomedicina de Valencia (IBV), Consejo Superior de Investigaciones Científicas (CSIC), 46022 València, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - María Ana Lozano
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
| | - Nerea Gorría-Redondo
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Vincenzo Lupo
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
| | - Itxaso Martí-Carrera
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario Donostia, 20014 Donostia, Spain
| | - Concepción Miranda
- Paediatric Neurology Unit, Department of Paediatrics, Hospital General Universitario Gregorio Marañón, 28027 Madrid, Spain
| | - María Vázquez-López
- Paediatric Neurology Unit, Department of Paediatrics, Hospital General Universitario Gregorio Marañón, 28027 Madrid, Spain
| | - Asunción García-Pérez
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain
| | - Ana Victoria Marco-Hernández
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitari Doctor, Peset, 46017 València, Spain
| | - Miguel Tomás-Vila
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitari i Politècnic La Fe, 46026 València, Spain
| | - Sergio Aguilera-Albesa
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Biotechnology Department, Universitat Politècnica de València, 46022 València, Spain
| |
Collapse
|
10
|
Głowska-Ciemny J, Szymanski M, Kuszerska A, Rzepka R, von Kaisenberg CS, Kocyłowski R. Role of Alpha-Fetoprotein (AFP) in Diagnosing Childhood Cancers and Genetic-Related Chronic Diseases. Cancers (Basel) 2023; 15:4302. [PMID: 37686577 PMCID: PMC10486785 DOI: 10.3390/cancers15174302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Alpha-fetoprotein (AFP) is a protein commonly found during fetal development, but its role extends beyond birth. Throughout the first year of life, AFP levels can remain high, which can potentially mask various conditions from the neurological, metabolic, hematological, endocrine, and early childhood cancer groups. Although AFP reference values and clinical utility have been established in adults, evaluating AFP levels in children during the diagnostic process, treatment, and post-treatment surveillance is still associated with numerous diagnostic pitfalls. These challenges arise from the presence of physiologically elevated AFP levels, inconsistent data obtained from different laboratory tests, and the limited population of children with oncologic diseases that have been studied. To address these issues, it is essential to establish updated reference ranges for AFP in this specific age group. A population-based study involving a statistically representative group of patients could serve as a valuable solution for this purpose.
Collapse
Affiliation(s)
- Joanna Głowska-Ciemny
- PreMediCare Prenatal Research Center, ul. Czarna Rola 21, 61-625 Poznań, Poland; (M.S.); (A.K.); (R.K.)
- New Med Medical Center, ul. Szamotulska 100, 60-566 Poznań, Poland
| | - Marcin Szymanski
- PreMediCare Prenatal Research Center, ul. Czarna Rola 21, 61-625 Poznań, Poland; (M.S.); (A.K.); (R.K.)
| | - Agata Kuszerska
- PreMediCare Prenatal Research Center, ul. Czarna Rola 21, 61-625 Poznań, Poland; (M.S.); (A.K.); (R.K.)
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, University of Zielona Gora, ul. Zyty 28, 65-046 Zielona Góra, Poland;
| | - Rafał Rzepka
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, University of Zielona Gora, ul. Zyty 28, 65-046 Zielona Góra, Poland;
| | - Constantin S. von Kaisenberg
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| | - Rafał Kocyłowski
- PreMediCare Prenatal Research Center, ul. Czarna Rola 21, 61-625 Poznań, Poland; (M.S.); (A.K.); (R.K.)
- New Med Medical Center, ul. Szamotulska 100, 60-566 Poznań, Poland
| |
Collapse
|
11
|
Jett KA, Baker ZN, Hossain A, Boulet A, Cobine PA, Ghosh S, Ng P, Yilmaz O, Barreto K, DeCoteau J, Mochoruk K, Ioannou GN, Savard C, Yuan S, Abdalla OH, Lowden C, Kim BE, Cheng HYM, Battersby BJ, Gohil VM, Leary SC. Mitochondrial dysfunction reactivates α-fetoprotein expression that drives copper-dependent immunosuppression in mitochondrial disease models. J Clin Invest 2023; 133:e154684. [PMID: 36301669 PMCID: PMC9797342 DOI: 10.1172/jci154684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2022] [Indexed: 02/04/2023] Open
Abstract
Signaling circuits crucial to systemic physiology are widespread, yet uncovering their molecular underpinnings remains a barrier to understanding the etiology of many metabolic disorders. Here, we identified a copper-linked signaling circuit activated by disruption of mitochondrial function in the murine liver or heart that resulted in atrophy of the spleen and thymus and caused a peripheral white blood cell deficiency. We demonstrated that the leukopenia was caused by α-fetoprotein, which required copper and the cell surface receptor CCR5 to promote white blood cell death. We further showed that α-fetoprotein expression was upregulated in several cell types upon inhibition of oxidative phosphorylation. Collectively, our data argue that α-fetoprotein may be secreted by bioenergetically stressed tissue to suppress the immune system, an effect that may explain the recurrent or chronic infections that are observed in a subset of mitochondrial diseases or in other disorders with secondary mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kimberly A. Jett
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Zakery N. Baker
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Amzad Hossain
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Aren Boulet
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Sagnika Ghosh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Philip Ng
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Orhan Yilmaz
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Kris Barreto
- Department of Laboratory and Pathology Medicine, University of Saskatchewan, Saskatoon, Canada
| | - John DeCoteau
- Department of Laboratory and Pathology Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Karen Mochoruk
- Department of Laboratory and Pathology Medicine, University of Saskatchewan, Saskatoon, Canada
| | - George N. Ioannou
- Division of Gastroenterology
- Research and Development, Veterans Affairs Puget Sound Health Care System and the
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Christopher Savard
- Division of Gastroenterology
- Research and Development, Veterans Affairs Puget Sound Health Care System and the
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sai Yuan
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Osama H.M.H. Abdalla
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Christopher Lowden
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Byung-Eun Kim
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | | - Vishal M. Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Scot C. Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
12
|
Masingue M, Fernández-Eulate G, Debs R, Tard C, Labeyrie C, Leonard-Louis S, Dhaenens CM, Masson MA, Latour P, Stojkovic T. Strategy for genetic analysis in hereditary neuropathy. Rev Neurol (Paris) 2023; 179:10-29. [PMID: 36566124 DOI: 10.1016/j.neurol.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Inherited neuropathies are a heterogeneous group of slowly progressive disorders affecting either motor, sensory, and/or autonomic nerves. Peripheral neuropathy may be the major component of a disease such as Charcot-Marie-Tooth disease or a feature of a more complex multisystemic disease involving the central nervous system and other organs. The goal of this review is to provide the clinical clues orientating the genetic diagnosis in a patient with inherited peripheral neuropathy. This review focuses on primary inherited neuropathies, amyloidosis, inherited metabolic diseases, while detailing clinical, neurophysiological and potential treatment of these diseases.
Collapse
Affiliation(s)
- M Masingue
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France.
| | - G Fernández-Eulate
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - R Debs
- Service de neurophysiologie, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C Tard
- CHU de Lille, clinique neurologique, centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, 59037 Lille cedex, France
| | - C Labeyrie
- Service de neurologie, hôpital Kremlin-Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - S Leonard-Louis
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C-M Dhaenens
- Université de Lille, Inserm, CHU de Lille, U1172-LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - M A Masson
- Inserm U1127, Paris Brain Institute, ICM, Sorbonne Université, CNRS UMR 7225, hôpital Pitié-Salpêtrière, Paris, France
| | - P Latour
- Service de biochimie biologie moléculaire, CHU de Lyon, centre de biologie et pathologie Est, 69677 Bron cedex, France
| | - T Stojkovic
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
13
|
Benkirane M, Da Cunha D, Marelli C, Larrieu L, Renaud M, Varilh J, Pointaux M, Baux D, Ardouin O, Vangoethem C, Taulan M, Daumas Duport B, Bergougnoux A, Corbillé AG, Cossée M, Juntas Morales R, Tuffery-Giraud S, Koenig M, Isidor B, Vincent MC. RFC1 nonsense and frameshift variants cause CANVAS: clues for an unsolved pathophysiology. Brain 2022; 145:3770-3775. [PMID: 35883251 DOI: 10.1093/brain/awac280] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023] Open
Abstract
Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an inherited late-onset neurological disease caused by bi-allelic AAGGG pentanucleotide expansions within intron 2 of RFC1. Despite extensive studies, the pathophysiological mechanism of these intronic expansions remains elusive. We screened by clinical exome sequencing two unrelated patients presenting with late-onset ataxia. A repeat-primer polymerase chain reaction was used for RFC1 AAGGG intronic expansion identification. RFC1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction. We identified the first two CANVAS affected patients who are compound heterozygous for RFC1 truncating variants (p.Arg388* and c.575delA, respectively) and a pathological AAGGG expansion. RFC1 expression studies in whole blood showed a significant reduction of RFC1 mRNA for both patients compared to three patients with bi-allelic RFC1 expansions. In conclusion, this observation provides clues that suggest bi-allelic RFC1 conditional loss-of-function as the cause of the disease.
Collapse
Affiliation(s)
- Mehdi Benkirane
- Department of Molecular Genetics, Institut Universitaire de Recherche Clinique (IURC), Montpellier Hospital, Montpellier, France.,Genetics and Pathophysiology of NeuroMuscular Disorders, PhyMedExp Research Unit, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Dylan Da Cunha
- Genetics and Pathophysiology of NeuroMuscular Disorders, PhyMedExp Research Unit, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Cecilia Marelli
- Department of Neurology, Montpellier Hospital, Montpellier, France.,Molecular Mechanisms of Neurodegenerative Dementia (MMDN), EPHE University of Montpellier, INSERM, Montpellier, France
| | - Lise Larrieu
- Department of Molecular Genetics, Institut Universitaire de Recherche Clinique (IURC), Montpellier Hospital, Montpellier, France
| | - Mathilde Renaud
- Department of Medical Genetics, Nancy Hospital, Nancy, France
| | - Jessica Varilh
- Genetics and Pathophysiology of NeuroMuscular Disorders, PhyMedExp Research Unit, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Morgane Pointaux
- Department of Molecular Genetics, Institut Universitaire de Recherche Clinique (IURC), Montpellier Hospital, Montpellier, France
| | - David Baux
- Department of Molecular Genetics, Institut Universitaire de Recherche Clinique (IURC), Montpellier Hospital, Montpellier, France
| | - Olivier Ardouin
- Department of Molecular Genetics, Institut Universitaire de Recherche Clinique (IURC), Montpellier Hospital, Montpellier, France
| | - Charles Vangoethem
- Department of Molecular Genetics, Institut Universitaire de Recherche Clinique (IURC), Montpellier Hospital, Montpellier, France
| | - Magali Taulan
- Genetics and Pathophysiology of NeuroMuscular Disorders, PhyMedExp Research Unit, CNRS, INSERM, University of Montpellier, Montpellier, France
| | | | - Anne Bergougnoux
- Department of Molecular Genetics, Institut Universitaire de Recherche Clinique (IURC), Montpellier Hospital, Montpellier, France.,Genetics and Pathophysiology of NeuroMuscular Disorders, PhyMedExp Research Unit, CNRS, INSERM, University of Montpellier, Montpellier, France
| | | | - Mireille Cossée
- Department of Molecular Genetics, Institut Universitaire de Recherche Clinique (IURC), Montpellier Hospital, Montpellier, France.,Genetics and Pathophysiology of NeuroMuscular Disorders, PhyMedExp Research Unit, CNRS, INSERM, University of Montpellier, Montpellier, France
| | | | - Sylvie Tuffery-Giraud
- Genetics and Pathophysiology of NeuroMuscular Disorders, PhyMedExp Research Unit, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Michel Koenig
- Department of Molecular Genetics, Institut Universitaire de Recherche Clinique (IURC), Montpellier Hospital, Montpellier, France.,Genetics and Pathophysiology of NeuroMuscular Disorders, PhyMedExp Research Unit, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Bertrand Isidor
- Department of Medical Genetics, Nantes Hospital, Nantes, France
| | - Marie-Claire Vincent
- Department of Molecular Genetics, Institut Universitaire de Recherche Clinique (IURC), Montpellier Hospital, Montpellier, France.,Genetics and Pathophysiology of NeuroMuscular Disorders, PhyMedExp Research Unit, CNRS, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
14
|
Movement disorders and neuropathies: overlaps and mimics in clinical practice. J Neurol 2022; 269:4646-4662. [PMID: 35657406 DOI: 10.1007/s00415-022-11200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Movement disorders as well as peripheral neuropathies are extremely frequent in the general population; therefore, it is not uncommon to encounter patients with both these conditions. Often, the coexistence is coincidental, due to the high incidence of common causes of peripheral neuropathy, such as diabetes and other age-related disorders, as well as of Parkinson disease (PD), which has a typical late onset. Nonetheless, there is broad evidence that PD patients may commonly develop a sensory and/or autonomic polyneuropathy, triggered by intrinsic and/or extrinsic mechanisms. Similarly, some peripheral neuropathies may develop some movement disorders in the long run, such as tremor, and rarely dystonia and myoclonus, suggesting that central mechanisms may ensue in the pathogenesis of these diseases. Although rare, several acquired or hereditary causes may be responsible for the combination of movement and peripheral nerve disorders as a unique entity, some of which are potentially treatable, including paraneoplastic, autoimmune and nutritional aetiologies. Finally, genetic causes should be pursued in case of positive family history, young onset or multisystemic involvement, and examined for neuroacanthocytosis, spinocerebellar ataxias, mitochondrial disorders and less common causes of adult-onset cerebellar ataxias and spastic paraparesis. Deep phenotyping in terms of neurological and general examination, as well as laboratory tests, neuroimaging, neurophysiology, and next-generation genetic analysis, may guide the clinician toward the correct diagnosis and management.
Collapse
|
15
|
Subramony SH, Burns M, Kugelmann EL, Zingariello CD. Inherited Ataxias in Children. Pediatr Neurol 2022; 131:54-62. [PMID: 35490578 DOI: 10.1016/j.pediatrneurol.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
The purpose of this review is to describe the current diagnostic approach to inherited ataxias during childhood. With the expanding use and availability of gene testing technologies including large sequencing panels, the ability to arrive at a precise genetic diagnosis in this group of disorders has been improving. We have reviewed all the gene sequencing studies of ataxias available by a comprehensive literature search and summarize their results. We provide a logical algorithm for a diagnostic approach in the context of this evolving information. We stress the fact that both autosomal recessive and autosomal dominant mutations can occur in children with ataxias and the need for keeping in mind nucleotide repeat expansions, which cannot be detected by sequencing technologies, as a possible cause of progressive ataxias in children. We discuss the traditional phenotype-based diagnostic approach in the context of gene testing technologies. Finally, we summarize those disorders in which a specific therapy may be indicated.
Collapse
Affiliation(s)
- Sub H Subramony
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida; Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida.
| | - Matthew Burns
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - E Lee Kugelmann
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - Carla D Zingariello
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
16
|
Cord Blood Proteomic Biomarkers for Predicting Adverse Neurodevelopmental Outcomes in Monoamniotic Twins. Reprod Sci 2022; 29:1756-1763. [DOI: 10.1007/s43032-021-00825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
|
17
|
A Novel SETX Mutation in a Taiwanese Patient with Autosomal Recessive Cerebellar Ataxia Detected by Targeted Next-Generation Sequencing, and a Literature Review. Brain Sci 2022; 12:brainsci12020173. [PMID: 35203940 PMCID: PMC8869917 DOI: 10.3390/brainsci12020173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Ataxia with oculomotor apraxia type 2 (AOA2), also known as autosomal recessive spinocerebellar ataxia with axonal neuropathy-2 (SCAN2) (OMIM #606002), is a neurodegenerative disorder characterized by early-onset progressive cerebellar ataxia, polyneuropathy, and elevated levels of alpha-fetoprotein. It is caused by mutations in the SETX (OMIM #608465) gene. The prevalence of this disease is widely varied, from non-existent up to 1/150,000, depending on the region. Until now, no cases of AOA2/SCAN2 have been reported in Taiwan. Methods: Next-generation sequencing was used to detect disease-causing mutations of SETX in a Taiwanese patient presenting with autosomal recessive cerebellar ataxia, polyneuropathy, and elevated alpha-fetoprotein. The candidate mutations were further confirmed by polymerase chain reaction (PCR) and Sanger sequencing. Results: A compound heterozygous mutation of SETX c.6859C > T (p.R2287X) and c.7034-7036del was identified. The c.6859C > T (p.R2287X) has been previously found in a Saudi Arabia family, whereas c.7034-7036del is a novel mutation. Both mutations were predicted by bioinformatics programs to be likely pathogenic (having a damaging effect). We also reviewed the literature to address the reported clinical features of AOA2 from different populations. Conclusions: To our knowledge, we are the first to report a Taiwanese patient with AOA2/SCAN2, a result obtained by utilizing next-generation sequencing. The literature review shows that ataxia, polyneuropathy, and elevated AFP are common features and ocular motor apraxia (OMA) is a variable sign of AOA2 from different populations. OMA is rare and saccadic ocular pursuit and nystagmus are common in East Asian AOA2.
Collapse
|
18
|
Teive HAG, Camargo CHF, Munhoz RP. Autosomal-Recessive Cerebellar Ataxias and Movement Disorders With Elevated Alpha-Fetoprotein. Mov Disord 2021; 36:789. [PMID: 33749916 DOI: 10.1002/mds.28520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil.,Neurology Diseases Group, Postgraduate Program of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Carlos H F Camargo
- Neurology Diseases Group, Postgraduate Program of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Renato P Munhoz
- Movement Disorders Centre, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Renaud M, Tranchant C, Koenig M, Anheim M. Reply to: "Autosomal-Recessive Cerebellar Ataxias With Elevated Alpha-Fetoprotein: Uncommon Diseases, Common Biomarker". Mov Disord 2021; 36:789-790. [PMID: 33749920 DOI: 10.1002/mds.28524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Mathilde Renaud
- Service de Génétique Clinique, CHRU de Nancy, Nancy, France.,INSERM-U1256 NGERE, Université de Lorraine, Nancy, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|